LoongArch/smp: Call rcutree_report_cpu_starting() at tlb_init()
[platform/kernel/linux-rpi.git] / drivers / rtc / rtc-ti-k3.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments K3 RTC driver
4  *
5  * Copyright (C) 2021-2022 Texas Instruments Incorporated - https://www.ti.com/
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/sys_soc.h>
15 #include <linux/property.h>
16 #include <linux/regmap.h>
17 #include <linux/rtc.h>
18
19 /* Registers */
20 #define REG_K3RTC_S_CNT_LSW             0x08
21 #define REG_K3RTC_S_CNT_MSW             0x0c
22 #define REG_K3RTC_COMP                  0x10
23 #define REG_K3RTC_ON_OFF_S_CNT_LSW      0x20
24 #define REG_K3RTC_ON_OFF_S_CNT_MSW      0x24
25 #define REG_K3RTC_SCRATCH0              0x30
26 #define REG_K3RTC_SCRATCH7              0x4c
27 #define REG_K3RTC_GENERAL_CTL           0x50
28 #define REG_K3RTC_IRQSTATUS_RAW_SYS     0x54
29 #define REG_K3RTC_IRQSTATUS_SYS         0x58
30 #define REG_K3RTC_IRQENABLE_SET_SYS     0x5c
31 #define REG_K3RTC_IRQENABLE_CLR_SYS     0x60
32 #define REG_K3RTC_SYNCPEND              0x68
33 #define REG_K3RTC_KICK0                 0x70
34 #define REG_K3RTC_KICK1                 0x74
35
36 /* Freeze when lsw is read and unfreeze when msw is read */
37 #define K3RTC_CNT_FMODE_S_CNT_VALUE     (0x2 << 24)
38
39 /* Magic values for lock/unlock */
40 #define K3RTC_KICK0_UNLOCK_VALUE        0x83e70b13
41 #define K3RTC_KICK1_UNLOCK_VALUE        0x95a4f1e0
42
43 /* Multiplier for ppb conversions */
44 #define K3RTC_PPB_MULT                  (1000000000LL)
45 /* Min and max values supported with 'offset' interface (swapped sign) */
46 #define K3RTC_MIN_OFFSET                (-277761)
47 #define K3RTC_MAX_OFFSET                (277778)
48
49 static const struct regmap_config ti_k3_rtc_regmap_config = {
50         .name = "peripheral-registers",
51         .reg_bits = 32,
52         .val_bits = 32,
53         .reg_stride = 4,
54         .max_register = REG_K3RTC_KICK1,
55 };
56
57 enum ti_k3_rtc_fields {
58         K3RTC_KICK0,
59         K3RTC_KICK1,
60         K3RTC_S_CNT_LSW,
61         K3RTC_S_CNT_MSW,
62         K3RTC_O32K_OSC_DEP_EN,
63         K3RTC_UNLOCK,
64         K3RTC_CNT_FMODE,
65         K3RTC_PEND,
66         K3RTC_RELOAD_FROM_BBD,
67         K3RTC_COMP,
68
69         K3RTC_ALM_S_CNT_LSW,
70         K3RTC_ALM_S_CNT_MSW,
71         K3RTC_IRQ_STATUS_RAW,
72         K3RTC_IRQ_STATUS,
73         K3RTC_IRQ_ENABLE_SET,
74         K3RTC_IRQ_ENABLE_CLR,
75
76         K3RTC_IRQ_STATUS_ALT,
77         K3RTC_IRQ_ENABLE_CLR_ALT,
78
79         K3_RTC_MAX_FIELDS
80 };
81
82 static const struct reg_field ti_rtc_reg_fields[] = {
83         [K3RTC_KICK0] = REG_FIELD(REG_K3RTC_KICK0, 0, 31),
84         [K3RTC_KICK1] = REG_FIELD(REG_K3RTC_KICK1, 0, 31),
85         [K3RTC_S_CNT_LSW] = REG_FIELD(REG_K3RTC_S_CNT_LSW, 0, 31),
86         [K3RTC_S_CNT_MSW] = REG_FIELD(REG_K3RTC_S_CNT_MSW, 0, 15),
87         [K3RTC_O32K_OSC_DEP_EN] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 21, 21),
88         [K3RTC_UNLOCK] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 23, 23),
89         [K3RTC_CNT_FMODE] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 24, 25),
90         [K3RTC_PEND] = REG_FIELD(REG_K3RTC_SYNCPEND, 0, 1),
91         [K3RTC_RELOAD_FROM_BBD] = REG_FIELD(REG_K3RTC_SYNCPEND, 31, 31),
92         [K3RTC_COMP] = REG_FIELD(REG_K3RTC_COMP, 0, 31),
93
94         /* We use on to off as alarm trigger */
95         [K3RTC_ALM_S_CNT_LSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_LSW, 0, 31),
96         [K3RTC_ALM_S_CNT_MSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_MSW, 0, 15),
97         [K3RTC_IRQ_STATUS_RAW] = REG_FIELD(REG_K3RTC_IRQSTATUS_RAW_SYS, 0, 0),
98         [K3RTC_IRQ_STATUS] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 0, 0),
99         [K3RTC_IRQ_ENABLE_SET] = REG_FIELD(REG_K3RTC_IRQENABLE_SET_SYS, 0, 0),
100         [K3RTC_IRQ_ENABLE_CLR] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 0, 0),
101         /* Off to on is alternate */
102         [K3RTC_IRQ_STATUS_ALT] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 1, 1),
103         [K3RTC_IRQ_ENABLE_CLR_ALT] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 1, 1),
104 };
105
106 /**
107  * struct ti_k3_rtc - Private data for ti-k3-rtc
108  * @irq:                IRQ
109  * @sync_timeout_us:    data sync timeout period in uSec
110  * @rate_32k:           32k clock rate in Hz
111  * @rtc_dev:            rtc device
112  * @regmap:             rtc mmio regmap
113  * @r_fields:           rtc register fields
114  */
115 struct ti_k3_rtc {
116         unsigned int irq;
117         u32 sync_timeout_us;
118         unsigned long rate_32k;
119         struct rtc_device *rtc_dev;
120         struct regmap *regmap;
121         struct regmap_field *r_fields[K3_RTC_MAX_FIELDS];
122 };
123
124 static int k3rtc_field_read(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f)
125 {
126         int ret;
127         int val;
128
129         ret = regmap_field_read(priv->r_fields[f], &val);
130         /*
131          * We shouldn't be seeing regmap fail on us for mmio reads
132          * This is possible if clock context fails, but that isn't the case for us
133          */
134         if (WARN_ON_ONCE(ret))
135                 return ret;
136         return val;
137 }
138
139 static void k3rtc_field_write(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f, u32 val)
140 {
141         regmap_field_write(priv->r_fields[f], val);
142 }
143
144 /**
145  * k3rtc_fence  - Ensure a register sync took place between the two domains
146  * @priv:      pointer to priv data
147  *
148  * Return: 0 if the sync took place, else returns -ETIMEDOUT
149  */
150 static int k3rtc_fence(struct ti_k3_rtc *priv)
151 {
152         int ret;
153
154         ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_PEND], ret,
155                                              !ret, 2, priv->sync_timeout_us);
156
157         return ret;
158 }
159
160 static inline int k3rtc_check_unlocked(struct ti_k3_rtc *priv)
161 {
162         int ret;
163
164         ret = k3rtc_field_read(priv, K3RTC_UNLOCK);
165         if (ret < 0)
166                 return ret;
167
168         return (ret) ? 0 : 1;
169 }
170
171 static int k3rtc_unlock_rtc(struct ti_k3_rtc *priv)
172 {
173         int ret;
174
175         ret = k3rtc_check_unlocked(priv);
176         if (!ret)
177                 return ret;
178
179         k3rtc_field_write(priv, K3RTC_KICK0, K3RTC_KICK0_UNLOCK_VALUE);
180         k3rtc_field_write(priv, K3RTC_KICK1, K3RTC_KICK1_UNLOCK_VALUE);
181
182         /* Skip fence since we are going to check the unlock bit as fence */
183         ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_UNLOCK], ret,
184                                              ret, 2, priv->sync_timeout_us);
185
186         return ret;
187 }
188
189 /*
190  * This is the list of SoCs affected by TI's i2327 errata causing the RTC
191  * state-machine to break if not unlocked fast enough during boot. These
192  * SoCs must have the bootloader unlock this device very early in the
193  * boot-flow before we (Linux) can use this device.
194  */
195 static const struct soc_device_attribute has_erratum_i2327[] = {
196         { .family = "AM62X", .revision = "SR1.0" },
197         { /* sentinel */ }
198 };
199
200 static int k3rtc_configure(struct device *dev)
201 {
202         int ret;
203         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
204
205         /*
206          * HWBUG: The compare state machine is broken if the RTC module
207          * is NOT unlocked in under one second of boot - which is pretty long
208          * time from the perspective of Linux driver (module load, u-boot
209          * shell all can take much longer than this.
210          *
211          * In such occurrence, it is assumed that the RTC module is unusable
212          */
213         if (soc_device_match(has_erratum_i2327)) {
214                 ret = k3rtc_check_unlocked(priv);
215                 /* If there is an error OR if we are locked, return error */
216                 if (ret) {
217                         dev_err(dev,
218                                 HW_ERR "Erratum i2327 unlock QUIRK! Cannot operate!!\n");
219                         return -EFAULT;
220                 }
221         } else {
222                 /* May need to explicitly unlock first time */
223                 ret = k3rtc_unlock_rtc(priv);
224                 if (ret) {
225                         dev_err(dev, "Failed to unlock(%d)!\n", ret);
226                         return ret;
227                 }
228         }
229
230         /* Enable Shadow register sync on 32k clock boundary */
231         k3rtc_field_write(priv, K3RTC_O32K_OSC_DEP_EN, 0x1);
232
233         /*
234          * Wait at least clock sync time before proceeding further programming.
235          * This ensures that the 32k based sync is active.
236          */
237         usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 5);
238
239         /* We need to ensure fence here to make sure sync here */
240         ret = k3rtc_fence(priv);
241         if (ret) {
242                 dev_err(dev,
243                         "Failed fence osc_dep enable(%d) - is 32k clk working?!\n", ret);
244                 return ret;
245         }
246
247         /*
248          * FMODE setting: Reading lower seconds will freeze value on higher
249          * seconds. This also implies that we must *ALWAYS* read lower seconds
250          * prior to reading higher seconds
251          */
252         k3rtc_field_write(priv, K3RTC_CNT_FMODE, K3RTC_CNT_FMODE_S_CNT_VALUE);
253
254         /* Clear any spurious IRQ sources if any */
255         k3rtc_field_write(priv, K3RTC_IRQ_STATUS_ALT, 0x1);
256         k3rtc_field_write(priv, K3RTC_IRQ_STATUS, 0x1);
257         /* Disable all IRQs */
258         k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR_ALT, 0x1);
259         k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR, 0x1);
260
261         /* And.. Let us Sync the writes in */
262         return k3rtc_fence(priv);
263 }
264
265 static int ti_k3_rtc_read_time(struct device *dev, struct rtc_time *tm)
266 {
267         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
268         u32 seconds_lo, seconds_hi;
269
270         seconds_lo = k3rtc_field_read(priv, K3RTC_S_CNT_LSW);
271         seconds_hi = k3rtc_field_read(priv, K3RTC_S_CNT_MSW);
272
273         rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, tm);
274
275         return 0;
276 }
277
278 static int ti_k3_rtc_set_time(struct device *dev, struct rtc_time *tm)
279 {
280         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
281         time64_t seconds;
282
283         seconds = rtc_tm_to_time64(tm);
284
285         /*
286          * Read operation on LSW will freeze the RTC, so to update
287          * the time, we cannot use field operations. Just write since the
288          * reserved bits are ignored.
289          */
290         regmap_write(priv->regmap, REG_K3RTC_S_CNT_LSW, seconds);
291         regmap_write(priv->regmap, REG_K3RTC_S_CNT_MSW, seconds >> 32);
292
293         return k3rtc_fence(priv);
294 }
295
296 static int ti_k3_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
297 {
298         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
299         u32 reg;
300         u32 offset = enabled ? K3RTC_IRQ_ENABLE_SET : K3RTC_IRQ_ENABLE_CLR;
301
302         reg = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET);
303         if ((enabled && reg) || (!enabled && !reg))
304                 return 0;
305
306         k3rtc_field_write(priv, offset, 0x1);
307
308         /*
309          * Ensure the write sync is through - NOTE: it should be OK to have
310          * ISR to fire as we are checking sync (which should be done in a 32k
311          * cycle or so).
312          */
313         return k3rtc_fence(priv);
314 }
315
316 static int ti_k3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
317 {
318         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
319         u32 seconds_lo, seconds_hi;
320
321         seconds_lo = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_LSW);
322         seconds_hi = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_MSW);
323
324         rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, &alarm->time);
325
326         alarm->enabled = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET);
327
328         return 0;
329 }
330
331 static int ti_k3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
332 {
333         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
334         time64_t seconds;
335         int ret;
336
337         seconds = rtc_tm_to_time64(&alarm->time);
338
339         k3rtc_field_write(priv, K3RTC_ALM_S_CNT_LSW, seconds);
340         k3rtc_field_write(priv, K3RTC_ALM_S_CNT_MSW, (seconds >> 32));
341
342         /* Make sure the alarm time is synced in */
343         ret = k3rtc_fence(priv);
344         if (ret) {
345                 dev_err(dev, "Failed to fence(%d)! Potential config issue?\n", ret);
346                 return ret;
347         }
348
349         /* Alarm IRQ enable will do a sync */
350         return ti_k3_rtc_alarm_irq_enable(dev, alarm->enabled);
351 }
352
353 static int ti_k3_rtc_read_offset(struct device *dev, long *offset)
354 {
355         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
356         u32 ticks_per_hr = priv->rate_32k * 3600;
357         int comp;
358         s64 tmp;
359
360         comp = k3rtc_field_read(priv, K3RTC_COMP);
361
362         /* Convert from RTC calibration register format to ppb format */
363         tmp = comp * (s64)K3RTC_PPB_MULT;
364         if (tmp < 0)
365                 tmp -= ticks_per_hr / 2LL;
366         else
367                 tmp += ticks_per_hr / 2LL;
368         tmp = div_s64(tmp, ticks_per_hr);
369
370         /* Offset value operates in negative way, so swap sign */
371         *offset = (long)-tmp;
372
373         return 0;
374 }
375
376 static int ti_k3_rtc_set_offset(struct device *dev, long offset)
377 {
378         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
379         u32 ticks_per_hr = priv->rate_32k * 3600;
380         int comp;
381         s64 tmp;
382
383         /* Make sure offset value is within supported range */
384         if (offset < K3RTC_MIN_OFFSET || offset > K3RTC_MAX_OFFSET)
385                 return -ERANGE;
386
387         /* Convert from ppb format to RTC calibration register format */
388         tmp = offset * (s64)ticks_per_hr;
389         if (tmp < 0)
390                 tmp -= K3RTC_PPB_MULT / 2LL;
391         else
392                 tmp += K3RTC_PPB_MULT / 2LL;
393         tmp = div_s64(tmp, K3RTC_PPB_MULT);
394
395         /* Offset value operates in negative way, so swap sign */
396         comp = (int)-tmp;
397
398         k3rtc_field_write(priv, K3RTC_COMP, comp);
399
400         return k3rtc_fence(priv);
401 }
402
403 static irqreturn_t ti_k3_rtc_interrupt(s32 irq, void *dev_id)
404 {
405         struct device *dev = dev_id;
406         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
407         u32 reg;
408         int ret;
409
410         /*
411          * IRQ assertion can be very fast, however, the IRQ Status clear
412          * de-assert depends on 32k clock edge in the 32k domain
413          * If we clear the status prior to the first 32k clock edge,
414          * the status bit is cleared, but the IRQ stays re-asserted.
415          *
416          * To prevent this condition, we need to wait for clock sync time.
417          * We can either do that by polling the 32k observability signal for
418          * a toggle OR we could just sleep and let the processor do other
419          * stuff.
420          */
421         usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 2);
422
423         /* Lets make sure that this is a valid interrupt */
424         reg = k3rtc_field_read(priv, K3RTC_IRQ_STATUS);
425
426         if (!reg) {
427                 u32 raw = k3rtc_field_read(priv, K3RTC_IRQ_STATUS_RAW);
428
429                 dev_err(dev,
430                         HW_ERR
431                         "Erratum i2327/IRQ trig: status: 0x%08x / 0x%08x\n", reg, raw);
432                 return IRQ_NONE;
433         }
434
435         /*
436          * Write 1 to clear status reg
437          * We cannot use a field operation here due to a potential race between
438          * 32k domain and vbus domain.
439          */
440         regmap_write(priv->regmap, REG_K3RTC_IRQSTATUS_SYS, 0x1);
441
442         /* Sync the write in */
443         ret = k3rtc_fence(priv);
444         if (ret) {
445                 dev_err(dev, "Failed to fence irq status clr(%d)!\n", ret);
446                 return IRQ_NONE;
447         }
448
449         /*
450          * Force the 32k status to be reloaded back in to ensure status is
451          * reflected back correctly.
452          */
453         k3rtc_field_write(priv, K3RTC_RELOAD_FROM_BBD, 0x1);
454
455         /* Ensure the write sync is through */
456         ret = k3rtc_fence(priv);
457         if (ret) {
458                 dev_err(dev, "Failed to fence reload from bbd(%d)!\n", ret);
459                 return IRQ_NONE;
460         }
461
462         /* Now we ensure that the status bit is cleared */
463         ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_IRQ_STATUS],
464                                              ret, !ret, 2, priv->sync_timeout_us);
465         if (ret) {
466                 dev_err(dev, "Time out waiting for status clear\n");
467                 return IRQ_NONE;
468         }
469
470         /* Notify RTC core on event */
471         rtc_update_irq(priv->rtc_dev, 1, RTC_IRQF | RTC_AF);
472
473         return IRQ_HANDLED;
474 }
475
476 static const struct rtc_class_ops ti_k3_rtc_ops = {
477         .read_time = ti_k3_rtc_read_time,
478         .set_time = ti_k3_rtc_set_time,
479         .read_alarm = ti_k3_rtc_read_alarm,
480         .set_alarm = ti_k3_rtc_set_alarm,
481         .read_offset = ti_k3_rtc_read_offset,
482         .set_offset = ti_k3_rtc_set_offset,
483         .alarm_irq_enable = ti_k3_rtc_alarm_irq_enable,
484 };
485
486 static int ti_k3_rtc_scratch_read(void *priv_data, unsigned int offset,
487                                   void *val, size_t bytes)
488 {
489         struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data;
490
491         return regmap_bulk_read(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4);
492 }
493
494 static int ti_k3_rtc_scratch_write(void *priv_data, unsigned int offset,
495                                    void *val, size_t bytes)
496 {
497         struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data;
498         int ret;
499
500         ret = regmap_bulk_write(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4);
501         if (ret)
502                 return ret;
503
504         return k3rtc_fence(priv);
505 }
506
507 static struct nvmem_config ti_k3_rtc_nvmem_config = {
508         .name = "ti_k3_rtc_scratch",
509         .word_size = 4,
510         .stride = 4,
511         .size = REG_K3RTC_SCRATCH7 - REG_K3RTC_SCRATCH0 + 4,
512         .reg_read = ti_k3_rtc_scratch_read,
513         .reg_write = ti_k3_rtc_scratch_write,
514 };
515
516 static int k3rtc_get_32kclk(struct device *dev, struct ti_k3_rtc *priv)
517 {
518         struct clk *clk;
519
520         clk = devm_clk_get_enabled(dev, "osc32k");
521         if (IS_ERR(clk))
522                 return PTR_ERR(clk);
523
524         priv->rate_32k = clk_get_rate(clk);
525
526         /* Make sure we are exact 32k clock. Else, try to compensate delay */
527         if (priv->rate_32k != 32768)
528                 dev_warn(dev, "Clock rate %ld is not 32768! Could misbehave!\n",
529                          priv->rate_32k);
530
531         /*
532          * Sync timeout should be two 32k clk sync cycles = ~61uS. We double
533          * it to comprehend intermediate bus segment and cpu frequency
534          * deltas
535          */
536         priv->sync_timeout_us = (u32)(DIV_ROUND_UP_ULL(1000000, priv->rate_32k) * 4);
537
538         return 0;
539 }
540
541 static int k3rtc_get_vbusclk(struct device *dev, struct ti_k3_rtc *priv)
542 {
543         struct clk *clk;
544
545         /* Note: VBUS isn't a context clock, it is needed for hardware operation */
546         clk = devm_clk_get_enabled(dev, "vbus");
547         if (IS_ERR(clk))
548                 return PTR_ERR(clk);
549
550         return 0;
551 }
552
553 static int ti_k3_rtc_probe(struct platform_device *pdev)
554 {
555         struct device *dev = &pdev->dev;
556         struct ti_k3_rtc *priv;
557         void __iomem *rtc_base;
558         int ret;
559
560         priv = devm_kzalloc(dev, sizeof(struct ti_k3_rtc), GFP_KERNEL);
561         if (!priv)
562                 return -ENOMEM;
563
564         rtc_base = devm_platform_ioremap_resource(pdev, 0);
565         if (IS_ERR(rtc_base))
566                 return PTR_ERR(rtc_base);
567
568         priv->regmap = devm_regmap_init_mmio(dev, rtc_base, &ti_k3_rtc_regmap_config);
569         if (IS_ERR(priv->regmap))
570                 return PTR_ERR(priv->regmap);
571
572         ret = devm_regmap_field_bulk_alloc(dev, priv->regmap, priv->r_fields,
573                                            ti_rtc_reg_fields, K3_RTC_MAX_FIELDS);
574         if (ret)
575                 return ret;
576
577         ret = k3rtc_get_32kclk(dev, priv);
578         if (ret)
579                 return ret;
580         ret = k3rtc_get_vbusclk(dev, priv);
581         if (ret)
582                 return ret;
583
584         ret = platform_get_irq(pdev, 0);
585         if (ret < 0)
586                 return ret;
587         priv->irq = (unsigned int)ret;
588
589         priv->rtc_dev = devm_rtc_allocate_device(dev);
590         if (IS_ERR(priv->rtc_dev))
591                 return PTR_ERR(priv->rtc_dev);
592
593         priv->rtc_dev->ops = &ti_k3_rtc_ops;
594         priv->rtc_dev->range_max = (1ULL << 48) - 1;    /* 48Bit seconds */
595         ti_k3_rtc_nvmem_config.priv = priv;
596
597         ret = devm_request_threaded_irq(dev, priv->irq, NULL,
598                                         ti_k3_rtc_interrupt,
599                                         IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
600                                         dev_name(dev), dev);
601         if (ret) {
602                 dev_err(dev, "Could not request IRQ: %d\n", ret);
603                 return ret;
604         }
605
606         platform_set_drvdata(pdev, priv);
607
608         ret = k3rtc_configure(dev);
609         if (ret)
610                 return ret;
611
612         if (device_property_present(dev, "wakeup-source"))
613                 device_init_wakeup(dev, true);
614         else
615                 device_set_wakeup_capable(dev, true);
616
617         ret = devm_rtc_register_device(priv->rtc_dev);
618         if (ret)
619                 return ret;
620
621         return devm_rtc_nvmem_register(priv->rtc_dev, &ti_k3_rtc_nvmem_config);
622 }
623
624 static const struct of_device_id ti_k3_rtc_of_match_table[] = {
625         {.compatible = "ti,am62-rtc" },
626         {}
627 };
628 MODULE_DEVICE_TABLE(of, ti_k3_rtc_of_match_table);
629
630 static int __maybe_unused ti_k3_rtc_suspend(struct device *dev)
631 {
632         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
633
634         if (device_may_wakeup(dev))
635                 return enable_irq_wake(priv->irq);
636
637         return 0;
638 }
639
640 static int __maybe_unused ti_k3_rtc_resume(struct device *dev)
641 {
642         struct ti_k3_rtc *priv = dev_get_drvdata(dev);
643
644         if (device_may_wakeup(dev))
645                 disable_irq_wake(priv->irq);
646         return 0;
647 }
648
649 static SIMPLE_DEV_PM_OPS(ti_k3_rtc_pm_ops, ti_k3_rtc_suspend, ti_k3_rtc_resume);
650
651 static struct platform_driver ti_k3_rtc_driver = {
652         .probe = ti_k3_rtc_probe,
653         .driver = {
654                    .name = "rtc-ti-k3",
655                    .of_match_table = ti_k3_rtc_of_match_table,
656                    .pm = &ti_k3_rtc_pm_ops,
657         },
658 };
659 module_platform_driver(ti_k3_rtc_driver);
660
661 MODULE_LICENSE("GPL");
662 MODULE_DESCRIPTION("TI K3 RTC driver");
663 MODULE_AUTHOR("Nishanth Menon");