1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * An RTC driver for Allwinner A31/A23
5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
9 * An RTC driver for Allwinner A10/A20
11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/rtc.h>
30 #include <linux/slab.h>
31 #include <linux/types.h>
33 /* Control register */
34 #define SUN6I_LOSC_CTRL 0x0000
35 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
36 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
37 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
38 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
39 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
40 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
41 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
42 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
44 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
47 #define SUN6I_RTC_YMD 0x0010
48 #define SUN6I_RTC_HMS 0x0014
50 /* Alarm 0 (counter) */
51 #define SUN6I_ALRM_COUNTER 0x0020
52 /* This holds the remaining alarm seconds on older SoCs (current value) */
53 #define SUN6I_ALRM_COUNTER_HMS 0x0024
54 #define SUN6I_ALRM_EN 0x0028
55 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
56 #define SUN6I_ALRM_IRQ_EN 0x002c
57 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
58 #define SUN6I_ALRM_IRQ_STA 0x0030
59 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
61 /* Alarm 1 (wall clock) */
62 #define SUN6I_ALRM1_EN 0x0044
63 #define SUN6I_ALRM1_IRQ_EN 0x0048
64 #define SUN6I_ALRM1_IRQ_STA 0x004c
65 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
68 #define SUN6I_ALARM_CONFIG 0x0050
69 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
71 #define SUN6I_LOSC_OUT_GATING 0x0060
72 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
74 /* General-purpose data */
75 #define SUN6I_GP_DATA 0x0100
76 #define SUN6I_GP_DATA_SIZE 0x20
81 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
82 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
83 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
84 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
89 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
90 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
91 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
96 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
97 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
98 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
99 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
104 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
105 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
106 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
109 * The year parameter passed to the driver is usually an offset relative to
110 * the year 1900. This macro is used to convert this offset to another one
111 * relative to the minimum year allowed by the hardware.
113 * The year range is 1970 - 2033. This range is selected to match Allwinner's
114 * driver, even though it is somewhat limited.
116 #define SUN6I_YEAR_MIN 1970
117 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
119 #define SECS_PER_DAY (24 * 3600ULL)
122 * There are other differences between models, including:
124 * - number of GPIO pins that can be configured to hold a certain level
125 * - crypto-key related registers (H5, H6)
126 * - boot process related (super standby, secondary processor entry address)
127 * registers (R40, H6)
128 * - SYS power domain controls (R40)
129 * - DCXO controls (H6)
130 * - RC oscillator calibration (H6)
132 * These functions are not covered by this driver.
134 struct sun6i_rtc_clk_data {
135 unsigned long rc_osc_rate;
136 unsigned int fixed_prescaler : 16;
137 unsigned int has_prescaler : 1;
138 unsigned int has_out_clk : 1;
139 unsigned int export_iosc : 1;
140 unsigned int has_losc_en : 1;
141 unsigned int has_auto_swt : 1;
144 #define RTC_LINEAR_DAY BIT(0)
146 struct sun6i_rtc_dev {
147 struct rtc_device *rtc;
148 const struct sun6i_rtc_clk_data *data;
155 struct clk_hw *int_osc;
157 struct clk *ext_losc;
162 static struct sun6i_rtc_dev *sun6i_rtc;
164 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
165 unsigned long parent_rate)
167 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
170 val = readl(rtc->base + SUN6I_LOSC_CTRL);
171 if (val & SUN6I_LOSC_CTRL_EXT_OSC)
174 if (rtc->data->fixed_prescaler)
175 parent_rate /= rtc->data->fixed_prescaler;
177 if (rtc->data->has_prescaler) {
178 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
179 val &= GENMASK(4, 0);
182 return parent_rate / (val + 1);
185 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
187 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
189 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
192 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
194 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
201 spin_lock_irqsave(&rtc->lock, flags);
202 val = readl(rtc->base + SUN6I_LOSC_CTRL);
203 val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
204 val |= SUN6I_LOSC_CTRL_KEY;
205 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
206 if (rtc->data->has_losc_en) {
207 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
208 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
210 writel(val, rtc->base + SUN6I_LOSC_CTRL);
211 spin_unlock_irqrestore(&rtc->lock, flags);
216 static const struct clk_ops sun6i_rtc_osc_ops = {
217 .recalc_rate = sun6i_rtc_osc_recalc_rate,
219 .get_parent = sun6i_rtc_osc_get_parent,
220 .set_parent = sun6i_rtc_osc_set_parent,
223 static void __init sun6i_rtc_clk_init(struct device_node *node,
224 const struct sun6i_rtc_clk_data *data)
226 struct clk_hw_onecell_data *clk_data;
227 struct sun6i_rtc_dev *rtc;
228 struct clk_init_data init = {
229 .ops = &sun6i_rtc_osc_ops,
232 const char *iosc_name = "rtc-int-osc";
233 const char *clkout_name = "osc32k-out";
234 const char *parents[2];
237 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
242 clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
248 spin_lock_init(&rtc->lock);
250 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
251 if (IS_ERR(rtc->base)) {
252 pr_crit("Can't map RTC registers");
256 reg = SUN6I_LOSC_CTRL_KEY;
257 if (rtc->data->has_auto_swt) {
258 /* Bypass auto-switch to int osc, on ext losc failure */
259 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
260 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
263 /* Switch to the external, more precise, oscillator, if present */
264 if (of_get_property(node, "clocks", NULL)) {
265 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
266 if (rtc->data->has_losc_en)
267 reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
269 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
271 /* Yes, I know, this is ugly. */
274 /* Only read IOSC name from device tree if it is exported */
275 if (rtc->data->export_iosc)
276 of_property_read_string_index(node, "clock-output-names", 2,
279 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
282 rtc->data->rc_osc_rate,
284 if (IS_ERR(rtc->int_osc)) {
285 pr_crit("Couldn't register the internal oscillator\n");
289 parents[0] = clk_hw_get_name(rtc->int_osc);
290 /* If there is no external oscillator, this will be NULL and ... */
291 parents[1] = of_clk_get_parent_name(node, 0);
293 rtc->hw.init = &init;
295 init.parent_names = parents;
296 /* ... number of clock parents will be 1. */
297 init.num_parents = of_clk_get_parent_count(node) + 1;
298 of_property_read_string_index(node, "clock-output-names", 0,
301 rtc->losc = clk_register(NULL, &rtc->hw);
302 if (IS_ERR(rtc->losc)) {
303 pr_crit("Couldn't register the LOSC clock\n");
307 of_property_read_string_index(node, "clock-output-names", 1,
309 rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
310 0, rtc->base + SUN6I_LOSC_OUT_GATING,
311 SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
313 if (IS_ERR(rtc->ext_losc)) {
314 pr_crit("Couldn't register the LOSC external gate\n");
319 clk_data->hws[0] = &rtc->hw;
320 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
321 if (rtc->data->export_iosc) {
322 clk_data->hws[2] = rtc->int_osc;
325 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
329 clk_hw_unregister_fixed_rate(rtc->int_osc);
334 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
335 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
339 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
341 sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
343 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
344 sun6i_a31_rtc_clk_init);
346 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
347 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
352 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
354 sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
356 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
357 sun8i_a23_rtc_clk_init);
359 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
360 .rc_osc_rate = 16000000,
361 .fixed_prescaler = 32,
367 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
369 sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
371 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
372 sun8i_h3_rtc_clk_init);
373 /* As far as we are concerned, clocks for H5 are the same as H3 */
374 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
375 sun8i_h3_rtc_clk_init);
377 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
378 .rc_osc_rate = 16000000,
379 .fixed_prescaler = 32,
387 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
389 sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
391 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
392 sun50i_h6_rtc_clk_init);
395 * The R40 user manual is self-conflicting on whether the prescaler is
396 * fixed or configurable. The clock diagram shows it as fixed, but there
397 * is also a configurable divider in the RTC block.
399 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
400 .rc_osc_rate = 16000000,
401 .fixed_prescaler = 512,
403 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
405 sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
407 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
408 sun8i_r40_rtc_clk_init);
410 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
411 .rc_osc_rate = 32000,
415 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
417 sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
419 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
420 sun8i_v3_rtc_clk_init);
422 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
424 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
425 irqreturn_t ret = IRQ_NONE;
428 spin_lock(&chip->lock);
429 val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
431 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
432 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
433 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
435 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
439 spin_unlock(&chip->lock);
444 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
447 u32 alrm_irq_val = 0;
448 u32 alrm_wake_val = 0;
452 alrm_val = SUN6I_ALRM_EN_CNT_EN;
453 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
454 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
456 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
457 chip->base + SUN6I_ALRM_IRQ_STA);
460 spin_lock_irqsave(&chip->lock, flags);
461 writel(alrm_val, chip->base + SUN6I_ALRM_EN);
462 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
463 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
464 spin_unlock_irqrestore(&chip->lock, flags);
467 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
469 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
473 * read again in case it changes
476 date = readl(chip->base + SUN6I_RTC_YMD);
477 time = readl(chip->base + SUN6I_RTC_HMS);
478 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
479 (time != readl(chip->base + SUN6I_RTC_HMS)));
481 if (chip->flags & RTC_LINEAR_DAY) {
483 * Newer chips store a linear day number, the manual
484 * does not mandate any epoch base. The BSP driver uses
485 * the UNIX epoch, let's just copy that, as it's the
488 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
490 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
491 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date) - 1;
492 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
495 * switch from (data_year->min)-relative offset to
496 * a (1900)-relative one
498 rtc_tm->tm_year += SUN6I_YEAR_OFF;
501 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
502 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
503 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
508 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
510 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
515 spin_lock_irqsave(&chip->lock, flags);
516 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
517 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
518 spin_unlock_irqrestore(&chip->lock, flags);
520 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
521 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
522 rtc_time64_to_tm(chip->alarm, &wkalrm->time);
527 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
529 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
530 struct rtc_time *alrm_tm = &wkalrm->time;
531 struct rtc_time tm_now;
533 u32 counter_val, counter_val_hms;
536 time_set = rtc_tm_to_time64(alrm_tm);
538 if (chip->flags & RTC_LINEAR_DAY) {
540 * The alarm registers hold the actual alarm time, encoded
541 * in the same way (linear day + HMS) as the current time.
543 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec) |
544 SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min) |
545 SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
546 /* The division will cut off the H:M:S part of alrm_tm. */
547 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
549 /* The alarm register holds the number of seconds left. */
552 ret = sun6i_rtc_gettime(dev, &tm_now);
554 dev_err(dev, "Error in getting time\n");
558 time_now = rtc_tm_to_time64(&tm_now);
559 if (time_set <= time_now) {
560 dev_err(dev, "Date to set in the past\n");
563 if ((time_set - time_now) > U32_MAX) {
564 dev_err(dev, "Date too far in the future\n");
568 counter_val = time_set - time_now;
571 sun6i_rtc_setaie(0, chip);
572 writel(0, chip->base + SUN6I_ALRM_COUNTER);
573 if (chip->flags & RTC_LINEAR_DAY)
574 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
575 usleep_range(100, 300);
577 writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
578 if (chip->flags & RTC_LINEAR_DAY)
579 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
580 chip->alarm = time_set;
582 sun6i_rtc_setaie(wkalrm->enabled, chip);
587 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
588 unsigned int mask, unsigned int ms_timeout)
590 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
594 reg = readl(chip->base + offset);
600 } while (time_before(jiffies, timeout));
605 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
607 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
611 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
612 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
613 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
615 if (chip->flags & RTC_LINEAR_DAY) {
616 /* The division will cut off the H:M:S part of rtc_tm. */
617 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
619 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
622 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
623 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
624 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
626 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
627 date |= SUN6I_LEAP_SET_VALUE(1);
630 /* Check whether registers are writable */
631 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
632 SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
633 dev_err(dev, "rtc is still busy.\n");
637 writel(time, chip->base + SUN6I_RTC_HMS);
640 * After writing the RTC HH-MM-SS register, the
641 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
642 * be cleared until the real writing operation is finished
645 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
646 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
647 dev_err(dev, "Failed to set rtc time.\n");
651 writel(date, chip->base + SUN6I_RTC_YMD);
654 * After writing the RTC YY-MM-DD register, the
655 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
656 * be cleared until the real writing operation is finished
659 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
660 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
661 dev_err(dev, "Failed to set rtc time.\n");
668 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
670 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
673 sun6i_rtc_setaie(enabled, chip);
678 static const struct rtc_class_ops sun6i_rtc_ops = {
679 .read_time = sun6i_rtc_gettime,
680 .set_time = sun6i_rtc_settime,
681 .read_alarm = sun6i_rtc_getalarm,
682 .set_alarm = sun6i_rtc_setalarm,
683 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
686 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
688 struct sun6i_rtc_dev *chip = priv;
692 for (i = 0; i < bytes / 4; ++i)
693 val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
698 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
700 struct sun6i_rtc_dev *chip = priv;
704 for (i = 0; i < bytes / 4; ++i)
705 writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
710 static struct nvmem_config sun6i_rtc_nvmem_cfg = {
711 .type = NVMEM_TYPE_BATTERY_BACKED,
712 .reg_read = sun6i_rtc_nvmem_read,
713 .reg_write = sun6i_rtc_nvmem_write,
714 .size = SUN6I_GP_DATA_SIZE,
719 #ifdef CONFIG_PM_SLEEP
720 /* Enable IRQ wake on suspend, to wake up from RTC. */
721 static int sun6i_rtc_suspend(struct device *dev)
723 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
725 if (device_may_wakeup(dev))
726 enable_irq_wake(chip->irq);
731 /* Disable IRQ wake on resume. */
732 static int sun6i_rtc_resume(struct device *dev)
734 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
736 if (device_may_wakeup(dev))
737 disable_irq_wake(chip->irq);
743 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
744 sun6i_rtc_suspend, sun6i_rtc_resume);
746 static void sun6i_rtc_bus_clk_cleanup(void *data)
748 struct clk *bus_clk = data;
750 clk_disable_unprepare(bus_clk);
753 static int sun6i_rtc_probe(struct platform_device *pdev)
755 struct sun6i_rtc_dev *chip = sun6i_rtc;
756 struct device *dev = &pdev->dev;
760 bus_clk = devm_clk_get_optional(dev, "bus");
762 return PTR_ERR(bus_clk);
765 ret = clk_prepare_enable(bus_clk);
769 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
776 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
780 spin_lock_init(&chip->lock);
782 chip->base = devm_platform_ioremap_resource(pdev, 0);
783 if (IS_ERR(chip->base))
784 return PTR_ERR(chip->base);
786 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
787 ret = sun6i_rtc_ccu_probe(dev, chip->base);
793 platform_set_drvdata(pdev, chip);
795 chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
797 chip->irq = platform_get_irq(pdev, 0);
801 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
802 0, dev_name(&pdev->dev), chip);
804 dev_err(&pdev->dev, "Could not request IRQ\n");
808 /* clear the alarm counter value */
809 writel(0, chip->base + SUN6I_ALRM_COUNTER);
811 /* disable counter alarm */
812 writel(0, chip->base + SUN6I_ALRM_EN);
814 /* disable counter alarm interrupt */
815 writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
817 /* disable week alarm */
818 writel(0, chip->base + SUN6I_ALRM1_EN);
820 /* disable week alarm interrupt */
821 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
823 /* clear counter alarm pending interrupts */
824 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
825 chip->base + SUN6I_ALRM_IRQ_STA);
827 /* clear week alarm pending interrupts */
828 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
829 chip->base + SUN6I_ALRM1_IRQ_STA);
831 /* disable alarm wakeup */
832 writel(0, chip->base + SUN6I_ALARM_CONFIG);
834 clk_prepare_enable(chip->losc);
836 device_init_wakeup(&pdev->dev, 1);
838 chip->rtc = devm_rtc_allocate_device(&pdev->dev);
839 if (IS_ERR(chip->rtc))
840 return PTR_ERR(chip->rtc);
842 chip->rtc->ops = &sun6i_rtc_ops;
843 if (chip->flags & RTC_LINEAR_DAY)
844 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
846 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
848 ret = devm_rtc_register_device(chip->rtc);
852 sun6i_rtc_nvmem_cfg.priv = chip;
853 ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
857 dev_info(&pdev->dev, "RTC enabled\n");
863 * As far as RTC functionality goes, all models are the same. The
864 * datasheets claim that different models have different number of
865 * registers available for non-volatile storage, but experiments show
866 * that all SoCs have 16 registers available for this purpose.
868 static const struct of_device_id sun6i_rtc_dt_ids[] = {
869 { .compatible = "allwinner,sun6i-a31-rtc" },
870 { .compatible = "allwinner,sun8i-a23-rtc" },
871 { .compatible = "allwinner,sun8i-h3-rtc" },
872 { .compatible = "allwinner,sun8i-r40-rtc" },
873 { .compatible = "allwinner,sun8i-v3-rtc" },
874 { .compatible = "allwinner,sun50i-h5-rtc" },
875 { .compatible = "allwinner,sun50i-h6-rtc" },
876 { .compatible = "allwinner,sun50i-h616-rtc",
877 .data = (void *)RTC_LINEAR_DAY },
878 { .compatible = "allwinner,sun50i-r329-rtc",
879 .data = (void *)RTC_LINEAR_DAY },
882 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
884 static struct platform_driver sun6i_rtc_driver = {
885 .probe = sun6i_rtc_probe,
888 .of_match_table = sun6i_rtc_dt_ids,
889 .pm = &sun6i_rtc_pm_ops,
892 builtin_platform_driver(sun6i_rtc_driver);