Merge remote-tracking branch 'stable/linux-5.15.y' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / rtc / rtc-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31
32 /* Control register */
33 #define SUN6I_LOSC_CTRL                         0x0000
34 #define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
42
43 #define SUN6I_LOSC_CLK_PRESCAL                  0x0008
44
45 /* RTC */
46 #define SUN6I_RTC_YMD                           0x0010
47 #define SUN6I_RTC_HMS                           0x0014
48
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER                      0x0020
51 #define SUN6I_ALRM_CUR_VAL                      0x0024
52 #define SUN6I_ALRM_EN                           0x0028
53 #define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
54 #define SUN6I_ALRM_IRQ_EN                       0x002c
55 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
56 #define SUN6I_ALRM_IRQ_STA                      0x0030
57 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
58
59 /* Alarm 1 (wall clock) */
60 #define SUN6I_ALRM1_EN                          0x0044
61 #define SUN6I_ALRM1_IRQ_EN                      0x0048
62 #define SUN6I_ALRM1_IRQ_STA                     0x004c
63 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
64
65 /* Alarm config */
66 #define SUN6I_ALARM_CONFIG                      0x0050
67 #define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
68
69 #define SUN6I_LOSC_OUT_GATING                   0x0060
70 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
71
72 /*
73  * Get date values
74  */
75 #define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
76 #define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
77 #define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
78 #define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
79
80 /*
81  * Get time values
82  */
83 #define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
84 #define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
85 #define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
86
87 /*
88  * Set date values
89  */
90 #define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
91 #define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
92 #define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
93 #define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
94
95 /*
96  * Set time values
97  */
98 #define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
99 #define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
100 #define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
101
102 /*
103  * The year parameter passed to the driver is usually an offset relative to
104  * the year 1900. This macro is used to convert this offset to another one
105  * relative to the minimum year allowed by the hardware.
106  *
107  * The year range is 1970 - 2033. This range is selected to match Allwinner's
108  * driver, even though it is somewhat limited.
109  */
110 #define SUN6I_YEAR_MIN                          1970
111 #define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
112
113 /*
114  * There are other differences between models, including:
115  *
116  *   - number of GPIO pins that can be configured to hold a certain level
117  *   - crypto-key related registers (H5, H6)
118  *   - boot process related (super standby, secondary processor entry address)
119  *     registers (R40, H6)
120  *   - SYS power domain controls (R40)
121  *   - DCXO controls (H6)
122  *   - RC oscillator calibration (H6)
123  *
124  * These functions are not covered by this driver.
125  */
126 struct sun6i_rtc_clk_data {
127         unsigned long rc_osc_rate;
128         unsigned int fixed_prescaler : 16;
129         unsigned int has_prescaler : 1;
130         unsigned int has_out_clk : 1;
131         unsigned int export_iosc : 1;
132         unsigned int has_losc_en : 1;
133         unsigned int has_auto_swt : 1;
134 };
135
136 struct sun6i_rtc_dev {
137         struct rtc_device *rtc;
138         const struct sun6i_rtc_clk_data *data;
139         void __iomem *base;
140         int irq;
141         time64_t alarm;
142
143         struct clk_hw hw;
144         struct clk_hw *int_osc;
145         struct clk *losc;
146         struct clk *ext_losc;
147
148         spinlock_t lock;
149 };
150
151 static struct sun6i_rtc_dev *sun6i_rtc;
152
153 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
154                                                unsigned long parent_rate)
155 {
156         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
157         u32 val = 0;
158
159         val = readl(rtc->base + SUN6I_LOSC_CTRL);
160         if (val & SUN6I_LOSC_CTRL_EXT_OSC)
161                 return parent_rate;
162
163         if (rtc->data->fixed_prescaler)
164                 parent_rate /= rtc->data->fixed_prescaler;
165
166         if (rtc->data->has_prescaler) {
167                 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
168                 val &= GENMASK(4, 0);
169         }
170
171         return parent_rate / (val + 1);
172 }
173
174 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
175 {
176         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
177
178         return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
179 }
180
181 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
182 {
183         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
184         unsigned long flags;
185         u32 val;
186
187         if (index > 1)
188                 return -EINVAL;
189
190         spin_lock_irqsave(&rtc->lock, flags);
191         val = readl(rtc->base + SUN6I_LOSC_CTRL);
192         val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
193         val |= SUN6I_LOSC_CTRL_KEY;
194         val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
195         if (rtc->data->has_losc_en) {
196                 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
197                 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
198         }
199         writel(val, rtc->base + SUN6I_LOSC_CTRL);
200         spin_unlock_irqrestore(&rtc->lock, flags);
201
202         return 0;
203 }
204
205 static const struct clk_ops sun6i_rtc_osc_ops = {
206         .recalc_rate    = sun6i_rtc_osc_recalc_rate,
207
208         .get_parent     = sun6i_rtc_osc_get_parent,
209         .set_parent     = sun6i_rtc_osc_set_parent,
210 };
211
212 static void __init sun6i_rtc_clk_init(struct device_node *node,
213                                       const struct sun6i_rtc_clk_data *data)
214 {
215         struct clk_hw_onecell_data *clk_data;
216         struct sun6i_rtc_dev *rtc;
217         struct clk_init_data init = {
218                 .ops            = &sun6i_rtc_osc_ops,
219                 .name           = "losc",
220         };
221         const char *iosc_name = "rtc-int-osc";
222         const char *clkout_name = "osc32k-out";
223         const char *parents[2];
224         u32 reg;
225
226         rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
227         if (!rtc)
228                 return;
229
230         rtc->data = data;
231         clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
232         if (!clk_data) {
233                 kfree(rtc);
234                 return;
235         }
236
237         spin_lock_init(&rtc->lock);
238
239         rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
240         if (IS_ERR(rtc->base)) {
241                 pr_crit("Can't map RTC registers");
242                 goto err;
243         }
244
245         reg = SUN6I_LOSC_CTRL_KEY;
246         if (rtc->data->has_auto_swt) {
247                 /* Bypass auto-switch to int osc, on ext losc failure */
248                 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
249                 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
250         }
251
252         /* Switch to the external, more precise, oscillator, if present */
253         if (of_get_property(node, "clocks", NULL)) {
254                 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
255                 if (rtc->data->has_losc_en)
256                         reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
257         }
258         writel(reg, rtc->base + SUN6I_LOSC_CTRL);
259
260         /* Yes, I know, this is ugly. */
261         sun6i_rtc = rtc;
262
263         /* Only read IOSC name from device tree if it is exported */
264         if (rtc->data->export_iosc)
265                 of_property_read_string_index(node, "clock-output-names", 2,
266                                               &iosc_name);
267
268         rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
269                                                                 iosc_name,
270                                                                 NULL, 0,
271                                                                 rtc->data->rc_osc_rate,
272                                                                 300000000);
273         if (IS_ERR(rtc->int_osc)) {
274                 pr_crit("Couldn't register the internal oscillator\n");
275                 goto err;
276         }
277
278         parents[0] = clk_hw_get_name(rtc->int_osc);
279         /* If there is no external oscillator, this will be NULL and ... */
280         parents[1] = of_clk_get_parent_name(node, 0);
281
282         rtc->hw.init = &init;
283
284         init.parent_names = parents;
285         /* ... number of clock parents will be 1. */
286         init.num_parents = of_clk_get_parent_count(node) + 1;
287         of_property_read_string_index(node, "clock-output-names", 0,
288                                       &init.name);
289
290         rtc->losc = clk_register(NULL, &rtc->hw);
291         if (IS_ERR(rtc->losc)) {
292                 pr_crit("Couldn't register the LOSC clock\n");
293                 goto err_register;
294         }
295
296         of_property_read_string_index(node, "clock-output-names", 1,
297                                       &clkout_name);
298         rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
299                                           0, rtc->base + SUN6I_LOSC_OUT_GATING,
300                                           SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
301                                           &rtc->lock);
302         if (IS_ERR(rtc->ext_losc)) {
303                 pr_crit("Couldn't register the LOSC external gate\n");
304                 goto err_register;
305         }
306
307         clk_data->num = 2;
308         clk_data->hws[0] = &rtc->hw;
309         clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
310         if (rtc->data->export_iosc) {
311                 clk_data->hws[2] = rtc->int_osc;
312                 clk_data->num = 3;
313         }
314         of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
315         return;
316
317 err_register:
318         clk_hw_unregister_fixed_rate(rtc->int_osc);
319 err:
320         kfree(clk_data);
321 }
322
323 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
324         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
325         .has_prescaler = 1,
326 };
327
328 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
329 {
330         sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
331 }
332 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
333                       sun6i_a31_rtc_clk_init);
334
335 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
336         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
337         .has_prescaler = 1,
338         .has_out_clk = 1,
339 };
340
341 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
342 {
343         sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
344 }
345 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
346                       sun8i_a23_rtc_clk_init);
347
348 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
349         .rc_osc_rate = 16000000,
350         .fixed_prescaler = 32,
351         .has_prescaler = 1,
352         .has_out_clk = 1,
353         .export_iosc = 1,
354 };
355
356 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
357 {
358         sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
359 }
360 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
361                       sun8i_h3_rtc_clk_init);
362 /* As far as we are concerned, clocks for H5 are the same as H3 */
363 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
364                       sun8i_h3_rtc_clk_init);
365
366 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
367         .rc_osc_rate = 16000000,
368         .fixed_prescaler = 32,
369         .has_prescaler = 1,
370         .has_out_clk = 1,
371         .export_iosc = 1,
372         .has_losc_en = 1,
373         .has_auto_swt = 1,
374 };
375
376 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
377 {
378         sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
379 }
380 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
381                       sun50i_h6_rtc_clk_init);
382
383 /*
384  * The R40 user manual is self-conflicting on whether the prescaler is
385  * fixed or configurable. The clock diagram shows it as fixed, but there
386  * is also a configurable divider in the RTC block.
387  */
388 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
389         .rc_osc_rate = 16000000,
390         .fixed_prescaler = 512,
391 };
392 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
393 {
394         sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
395 }
396 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
397                       sun8i_r40_rtc_clk_init);
398
399 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
400         .rc_osc_rate = 32000,
401         .has_out_clk = 1,
402 };
403
404 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
405 {
406         sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
407 }
408 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
409                       sun8i_v3_rtc_clk_init);
410
411 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
412 {
413         struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
414         irqreturn_t ret = IRQ_NONE;
415         u32 val;
416
417         spin_lock(&chip->lock);
418         val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
419
420         if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
421                 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
422                 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
423
424                 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
425
426                 ret = IRQ_HANDLED;
427         }
428         spin_unlock(&chip->lock);
429
430         return ret;
431 }
432
433 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
434 {
435         u32 alrm_val = 0;
436         u32 alrm_irq_val = 0;
437         u32 alrm_wake_val = 0;
438         unsigned long flags;
439
440         if (to) {
441                 alrm_val = SUN6I_ALRM_EN_CNT_EN;
442                 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
443                 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
444         } else {
445                 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
446                        chip->base + SUN6I_ALRM_IRQ_STA);
447         }
448
449         spin_lock_irqsave(&chip->lock, flags);
450         writel(alrm_val, chip->base + SUN6I_ALRM_EN);
451         writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
452         writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
453         spin_unlock_irqrestore(&chip->lock, flags);
454 }
455
456 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
457 {
458         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
459         u32 date, time;
460
461         /*
462          * read again in case it changes
463          */
464         do {
465                 date = readl(chip->base + SUN6I_RTC_YMD);
466                 time = readl(chip->base + SUN6I_RTC_HMS);
467         } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
468                  (time != readl(chip->base + SUN6I_RTC_HMS)));
469
470         rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
471         rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
472         rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
473
474         rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
475         rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date);
476         rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
477
478         rtc_tm->tm_mon  -= 1;
479
480         /*
481          * switch from (data_year->min)-relative offset to
482          * a (1900)-relative one
483          */
484         rtc_tm->tm_year += SUN6I_YEAR_OFF;
485
486         return 0;
487 }
488
489 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
490 {
491         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
492         unsigned long flags;
493         u32 alrm_st;
494         u32 alrm_en;
495
496         spin_lock_irqsave(&chip->lock, flags);
497         alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
498         alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
499         spin_unlock_irqrestore(&chip->lock, flags);
500
501         wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
502         wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
503         rtc_time64_to_tm(chip->alarm, &wkalrm->time);
504
505         return 0;
506 }
507
508 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
509 {
510         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
511         struct rtc_time *alrm_tm = &wkalrm->time;
512         struct rtc_time tm_now;
513         time64_t time_now, time_set;
514         int ret;
515
516         ret = sun6i_rtc_gettime(dev, &tm_now);
517         if (ret < 0) {
518                 dev_err(dev, "Error in getting time\n");
519                 return -EINVAL;
520         }
521
522         time_set = rtc_tm_to_time64(alrm_tm);
523         time_now = rtc_tm_to_time64(&tm_now);
524         if (time_set <= time_now) {
525                 dev_err(dev, "Date to set in the past\n");
526                 return -EINVAL;
527         }
528
529         if ((time_set - time_now) > U32_MAX) {
530                 dev_err(dev, "Date too far in the future\n");
531                 return -EINVAL;
532         }
533
534         sun6i_rtc_setaie(0, chip);
535         writel(0, chip->base + SUN6I_ALRM_COUNTER);
536         usleep_range(100, 300);
537
538         writel(time_set - time_now, chip->base + SUN6I_ALRM_COUNTER);
539         chip->alarm = time_set;
540
541         sun6i_rtc_setaie(wkalrm->enabled, chip);
542
543         return 0;
544 }
545
546 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
547                           unsigned int mask, unsigned int ms_timeout)
548 {
549         const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
550         u32 reg;
551
552         do {
553                 reg = readl(chip->base + offset);
554                 reg &= mask;
555
556                 if (!reg)
557                         return 0;
558
559         } while (time_before(jiffies, timeout));
560
561         return -ETIMEDOUT;
562 }
563
564 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
565 {
566         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
567         u32 date = 0;
568         u32 time = 0;
569
570         rtc_tm->tm_year -= SUN6I_YEAR_OFF;
571         rtc_tm->tm_mon += 1;
572
573         date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
574                 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
575                 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
576
577         if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
578                 date |= SUN6I_LEAP_SET_VALUE(1);
579
580         time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
581                 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
582                 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
583
584         /* Check whether registers are writable */
585         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
586                            SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
587                 dev_err(dev, "rtc is still busy.\n");
588                 return -EBUSY;
589         }
590
591         writel(time, chip->base + SUN6I_RTC_HMS);
592
593         /*
594          * After writing the RTC HH-MM-SS register, the
595          * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
596          * be cleared until the real writing operation is finished
597          */
598
599         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
600                            SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
601                 dev_err(dev, "Failed to set rtc time.\n");
602                 return -ETIMEDOUT;
603         }
604
605         writel(date, chip->base + SUN6I_RTC_YMD);
606
607         /*
608          * After writing the RTC YY-MM-DD register, the
609          * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
610          * be cleared until the real writing operation is finished
611          */
612
613         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
614                            SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
615                 dev_err(dev, "Failed to set rtc time.\n");
616                 return -ETIMEDOUT;
617         }
618
619         return 0;
620 }
621
622 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
623 {
624         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
625
626         if (!enabled)
627                 sun6i_rtc_setaie(enabled, chip);
628
629         return 0;
630 }
631
632 static const struct rtc_class_ops sun6i_rtc_ops = {
633         .read_time              = sun6i_rtc_gettime,
634         .set_time               = sun6i_rtc_settime,
635         .read_alarm             = sun6i_rtc_getalarm,
636         .set_alarm              = sun6i_rtc_setalarm,
637         .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
638 };
639
640 #ifdef CONFIG_PM_SLEEP
641 /* Enable IRQ wake on suspend, to wake up from RTC. */
642 static int sun6i_rtc_suspend(struct device *dev)
643 {
644         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
645
646         if (device_may_wakeup(dev))
647                 enable_irq_wake(chip->irq);
648
649         return 0;
650 }
651
652 /* Disable IRQ wake on resume. */
653 static int sun6i_rtc_resume(struct device *dev)
654 {
655         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
656
657         if (device_may_wakeup(dev))
658                 disable_irq_wake(chip->irq);
659
660         return 0;
661 }
662 #endif
663
664 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
665         sun6i_rtc_suspend, sun6i_rtc_resume);
666
667 static int sun6i_rtc_probe(struct platform_device *pdev)
668 {
669         struct sun6i_rtc_dev *chip = sun6i_rtc;
670         int ret;
671
672         if (!chip)
673                 return -ENODEV;
674
675         platform_set_drvdata(pdev, chip);
676
677         chip->irq = platform_get_irq(pdev, 0);
678         if (chip->irq < 0)
679                 return chip->irq;
680
681         ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
682                                0, dev_name(&pdev->dev), chip);
683         if (ret) {
684                 dev_err(&pdev->dev, "Could not request IRQ\n");
685                 return ret;
686         }
687
688         /* clear the alarm counter value */
689         writel(0, chip->base + SUN6I_ALRM_COUNTER);
690
691         /* disable counter alarm */
692         writel(0, chip->base + SUN6I_ALRM_EN);
693
694         /* disable counter alarm interrupt */
695         writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
696
697         /* disable week alarm */
698         writel(0, chip->base + SUN6I_ALRM1_EN);
699
700         /* disable week alarm interrupt */
701         writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
702
703         /* clear counter alarm pending interrupts */
704         writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
705                chip->base + SUN6I_ALRM_IRQ_STA);
706
707         /* clear week alarm pending interrupts */
708         writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
709                chip->base + SUN6I_ALRM1_IRQ_STA);
710
711         /* disable alarm wakeup */
712         writel(0, chip->base + SUN6I_ALARM_CONFIG);
713
714         clk_prepare_enable(chip->losc);
715
716         device_init_wakeup(&pdev->dev, 1);
717
718         chip->rtc = devm_rtc_allocate_device(&pdev->dev);
719         if (IS_ERR(chip->rtc))
720                 return PTR_ERR(chip->rtc);
721
722         chip->rtc->ops = &sun6i_rtc_ops;
723         chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
724
725         ret = devm_rtc_register_device(chip->rtc);
726         if (ret)
727                 return ret;
728
729         dev_info(&pdev->dev, "RTC enabled\n");
730
731         return 0;
732 }
733
734 /*
735  * As far as RTC functionality goes, all models are the same. The
736  * datasheets claim that different models have different number of
737  * registers available for non-volatile storage, but experiments show
738  * that all SoCs have 16 registers available for this purpose.
739  */
740 static const struct of_device_id sun6i_rtc_dt_ids[] = {
741         { .compatible = "allwinner,sun6i-a31-rtc" },
742         { .compatible = "allwinner,sun8i-a23-rtc" },
743         { .compatible = "allwinner,sun8i-h3-rtc" },
744         { .compatible = "allwinner,sun8i-r40-rtc" },
745         { .compatible = "allwinner,sun8i-v3-rtc" },
746         { .compatible = "allwinner,sun50i-h5-rtc" },
747         { .compatible = "allwinner,sun50i-h6-rtc" },
748         { /* sentinel */ },
749 };
750 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
751
752 static struct platform_driver sun6i_rtc_driver = {
753         .probe          = sun6i_rtc_probe,
754         .driver         = {
755                 .name           = "sun6i-rtc",
756                 .of_match_table = sun6i_rtc_dt_ids,
757                 .pm = &sun6i_rtc_pm_ops,
758         },
759 };
760 builtin_platform_driver(sun6i_rtc_driver);