1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * An RTC driver for Allwinner A31/A23
5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
9 * An RTC driver for Allwinner A10/A20
11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
26 #include <linux/of_address.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
32 /* Control register */
33 #define SUN6I_LOSC_CTRL 0x0000
34 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
43 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
46 #define SUN6I_RTC_YMD 0x0010
47 #define SUN6I_RTC_HMS 0x0014
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER 0x0020
51 /* This holds the remaining alarm seconds on older SoCs (current value) */
52 #define SUN6I_ALRM_COUNTER_HMS 0x0024
53 #define SUN6I_ALRM_EN 0x0028
54 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
55 #define SUN6I_ALRM_IRQ_EN 0x002c
56 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
57 #define SUN6I_ALRM_IRQ_STA 0x0030
58 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
60 /* Alarm 1 (wall clock) */
61 #define SUN6I_ALRM1_EN 0x0044
62 #define SUN6I_ALRM1_IRQ_EN 0x0048
63 #define SUN6I_ALRM1_IRQ_STA 0x004c
64 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
67 #define SUN6I_ALARM_CONFIG 0x0050
68 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
70 #define SUN6I_LOSC_OUT_GATING 0x0060
71 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
73 /* General-purpose data */
74 #define SUN6I_GP_DATA 0x0100
75 #define SUN6I_GP_DATA_SIZE 0x20
80 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
81 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
82 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
83 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
88 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
89 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
90 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
95 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
96 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
97 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
98 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
103 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
104 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
105 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
108 * The year parameter passed to the driver is usually an offset relative to
109 * the year 1900. This macro is used to convert this offset to another one
110 * relative to the minimum year allowed by the hardware.
112 * The year range is 1970 - 2033. This range is selected to match Allwinner's
113 * driver, even though it is somewhat limited.
115 #define SUN6I_YEAR_MIN 1970
116 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
118 #define SECS_PER_DAY (24 * 3600ULL)
121 * There are other differences between models, including:
123 * - number of GPIO pins that can be configured to hold a certain level
124 * - crypto-key related registers (H5, H6)
125 * - boot process related (super standby, secondary processor entry address)
126 * registers (R40, H6)
127 * - SYS power domain controls (R40)
128 * - DCXO controls (H6)
129 * - RC oscillator calibration (H6)
131 * These functions are not covered by this driver.
133 struct sun6i_rtc_clk_data {
134 unsigned long rc_osc_rate;
135 unsigned int fixed_prescaler : 16;
136 unsigned int has_prescaler : 1;
137 unsigned int has_out_clk : 1;
138 unsigned int has_losc_en : 1;
139 unsigned int has_auto_swt : 1;
142 #define RTC_LINEAR_DAY BIT(0)
144 struct sun6i_rtc_dev {
145 struct rtc_device *rtc;
146 const struct sun6i_rtc_clk_data *data;
153 struct clk_hw *int_osc;
155 struct clk *ext_losc;
160 static struct sun6i_rtc_dev *sun6i_rtc;
162 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
163 unsigned long parent_rate)
165 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
168 val = readl(rtc->base + SUN6I_LOSC_CTRL);
169 if (val & SUN6I_LOSC_CTRL_EXT_OSC)
172 if (rtc->data->fixed_prescaler)
173 parent_rate /= rtc->data->fixed_prescaler;
175 if (rtc->data->has_prescaler) {
176 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
177 val &= GENMASK(4, 0);
180 return parent_rate / (val + 1);
183 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
185 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
187 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
190 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
192 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
199 spin_lock_irqsave(&rtc->lock, flags);
200 val = readl(rtc->base + SUN6I_LOSC_CTRL);
201 val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
202 val |= SUN6I_LOSC_CTRL_KEY;
203 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
204 if (rtc->data->has_losc_en) {
205 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
206 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
208 writel(val, rtc->base + SUN6I_LOSC_CTRL);
209 spin_unlock_irqrestore(&rtc->lock, flags);
214 static const struct clk_ops sun6i_rtc_osc_ops = {
215 .recalc_rate = sun6i_rtc_osc_recalc_rate,
216 .determine_rate = clk_hw_determine_rate_no_reparent,
218 .get_parent = sun6i_rtc_osc_get_parent,
219 .set_parent = sun6i_rtc_osc_set_parent,
222 static void __init sun6i_rtc_clk_init(struct device_node *node,
223 const struct sun6i_rtc_clk_data *data)
225 struct clk_hw_onecell_data *clk_data;
226 struct sun6i_rtc_dev *rtc;
227 struct clk_init_data init = {
228 .ops = &sun6i_rtc_osc_ops,
231 const char *iosc_name = "rtc-int-osc";
232 const char *clkout_name = "osc32k-out";
233 const char *parents[2];
236 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
241 clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
247 spin_lock_init(&rtc->lock);
249 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
250 if (IS_ERR(rtc->base)) {
251 pr_crit("Can't map RTC registers");
255 reg = SUN6I_LOSC_CTRL_KEY;
256 if (rtc->data->has_auto_swt) {
257 /* Bypass auto-switch to int osc, on ext losc failure */
258 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
259 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
262 /* Switch to the external, more precise, oscillator, if present */
263 if (of_property_present(node, "clocks")) {
264 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
265 if (rtc->data->has_losc_en)
266 reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
268 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
270 /* Yes, I know, this is ugly. */
273 of_property_read_string_index(node, "clock-output-names", 2,
276 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
279 rtc->data->rc_osc_rate,
281 if (IS_ERR(rtc->int_osc)) {
282 pr_crit("Couldn't register the internal oscillator\n");
286 parents[0] = clk_hw_get_name(rtc->int_osc);
287 /* If there is no external oscillator, this will be NULL and ... */
288 parents[1] = of_clk_get_parent_name(node, 0);
290 rtc->hw.init = &init;
292 init.parent_names = parents;
293 /* ... number of clock parents will be 1. */
294 init.num_parents = of_clk_get_parent_count(node) + 1;
295 of_property_read_string_index(node, "clock-output-names", 0,
298 rtc->losc = clk_register(NULL, &rtc->hw);
299 if (IS_ERR(rtc->losc)) {
300 pr_crit("Couldn't register the LOSC clock\n");
304 of_property_read_string_index(node, "clock-output-names", 1,
306 rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
307 0, rtc->base + SUN6I_LOSC_OUT_GATING,
308 SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
310 if (IS_ERR(rtc->ext_losc)) {
311 pr_crit("Couldn't register the LOSC external gate\n");
316 clk_data->hws[0] = &rtc->hw;
317 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
318 clk_data->hws[2] = rtc->int_osc;
319 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
323 clk_hw_unregister_fixed_rate(rtc->int_osc);
328 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
329 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
333 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
335 sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
337 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
338 sun6i_a31_rtc_clk_init);
340 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
341 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
346 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
348 sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
350 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
351 sun8i_a23_rtc_clk_init);
353 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
354 .rc_osc_rate = 16000000,
355 .fixed_prescaler = 32,
360 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
362 sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
364 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
365 sun8i_h3_rtc_clk_init);
366 /* As far as we are concerned, clocks for H5 are the same as H3 */
367 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
368 sun8i_h3_rtc_clk_init);
370 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
371 .rc_osc_rate = 16000000,
372 .fixed_prescaler = 32,
379 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
381 sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
383 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
384 sun50i_h6_rtc_clk_init);
387 * The R40 user manual is self-conflicting on whether the prescaler is
388 * fixed or configurable. The clock diagram shows it as fixed, but there
389 * is also a configurable divider in the RTC block.
391 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
392 .rc_osc_rate = 16000000,
393 .fixed_prescaler = 512,
395 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
397 sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
399 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
400 sun8i_r40_rtc_clk_init);
402 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
403 .rc_osc_rate = 32000,
407 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
409 sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
411 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
412 sun8i_v3_rtc_clk_init);
414 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
416 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
417 irqreturn_t ret = IRQ_NONE;
420 spin_lock(&chip->lock);
421 val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
423 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
424 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
425 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
427 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
431 spin_unlock(&chip->lock);
436 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
439 u32 alrm_irq_val = 0;
440 u32 alrm_wake_val = 0;
444 alrm_val = SUN6I_ALRM_EN_CNT_EN;
445 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
446 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
448 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
449 chip->base + SUN6I_ALRM_IRQ_STA);
452 spin_lock_irqsave(&chip->lock, flags);
453 writel(alrm_val, chip->base + SUN6I_ALRM_EN);
454 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
455 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
456 spin_unlock_irqrestore(&chip->lock, flags);
459 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
461 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
465 * read again in case it changes
468 date = readl(chip->base + SUN6I_RTC_YMD);
469 time = readl(chip->base + SUN6I_RTC_HMS);
470 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
471 (time != readl(chip->base + SUN6I_RTC_HMS)));
473 if (chip->flags & RTC_LINEAR_DAY) {
475 * Newer chips store a linear day number, the manual
476 * does not mandate any epoch base. The BSP driver uses
477 * the UNIX epoch, let's just copy that, as it's the
480 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
482 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
483 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date) - 1;
484 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
487 * switch from (data_year->min)-relative offset to
488 * a (1900)-relative one
490 rtc_tm->tm_year += SUN6I_YEAR_OFF;
493 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
494 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
495 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
500 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
502 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
507 spin_lock_irqsave(&chip->lock, flags);
508 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
509 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
510 spin_unlock_irqrestore(&chip->lock, flags);
512 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
513 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
514 rtc_time64_to_tm(chip->alarm, &wkalrm->time);
519 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
521 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
522 struct rtc_time *alrm_tm = &wkalrm->time;
523 struct rtc_time tm_now;
525 u32 counter_val, counter_val_hms;
528 time_set = rtc_tm_to_time64(alrm_tm);
530 if (chip->flags & RTC_LINEAR_DAY) {
532 * The alarm registers hold the actual alarm time, encoded
533 * in the same way (linear day + HMS) as the current time.
535 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec) |
536 SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min) |
537 SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
538 /* The division will cut off the H:M:S part of alrm_tm. */
539 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
541 /* The alarm register holds the number of seconds left. */
544 ret = sun6i_rtc_gettime(dev, &tm_now);
546 dev_err(dev, "Error in getting time\n");
550 time_now = rtc_tm_to_time64(&tm_now);
551 if (time_set <= time_now) {
552 dev_err(dev, "Date to set in the past\n");
555 if ((time_set - time_now) > U32_MAX) {
556 dev_err(dev, "Date too far in the future\n");
560 counter_val = time_set - time_now;
563 sun6i_rtc_setaie(0, chip);
564 writel(0, chip->base + SUN6I_ALRM_COUNTER);
565 if (chip->flags & RTC_LINEAR_DAY)
566 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
567 usleep_range(100, 300);
569 writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
570 if (chip->flags & RTC_LINEAR_DAY)
571 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
572 chip->alarm = time_set;
574 sun6i_rtc_setaie(wkalrm->enabled, chip);
579 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
580 unsigned int mask, unsigned int ms_timeout)
582 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
586 reg = readl(chip->base + offset);
592 } while (time_before(jiffies, timeout));
597 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
599 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
603 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
604 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
605 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
607 if (chip->flags & RTC_LINEAR_DAY) {
608 /* The division will cut off the H:M:S part of rtc_tm. */
609 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
611 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
614 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
615 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
616 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
618 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
619 date |= SUN6I_LEAP_SET_VALUE(1);
622 /* Check whether registers are writable */
623 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
624 SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
625 dev_err(dev, "rtc is still busy.\n");
629 writel(time, chip->base + SUN6I_RTC_HMS);
632 * After writing the RTC HH-MM-SS register, the
633 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
634 * be cleared until the real writing operation is finished
637 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
638 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
639 dev_err(dev, "Failed to set rtc time.\n");
643 writel(date, chip->base + SUN6I_RTC_YMD);
646 * After writing the RTC YY-MM-DD register, the
647 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
648 * be cleared until the real writing operation is finished
651 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
652 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
653 dev_err(dev, "Failed to set rtc time.\n");
660 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
662 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
665 sun6i_rtc_setaie(enabled, chip);
670 static const struct rtc_class_ops sun6i_rtc_ops = {
671 .read_time = sun6i_rtc_gettime,
672 .set_time = sun6i_rtc_settime,
673 .read_alarm = sun6i_rtc_getalarm,
674 .set_alarm = sun6i_rtc_setalarm,
675 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
678 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
680 struct sun6i_rtc_dev *chip = priv;
684 for (i = 0; i < bytes / 4; ++i)
685 val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
690 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
692 struct sun6i_rtc_dev *chip = priv;
696 for (i = 0; i < bytes / 4; ++i)
697 writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
702 static struct nvmem_config sun6i_rtc_nvmem_cfg = {
703 .type = NVMEM_TYPE_BATTERY_BACKED,
704 .reg_read = sun6i_rtc_nvmem_read,
705 .reg_write = sun6i_rtc_nvmem_write,
706 .size = SUN6I_GP_DATA_SIZE,
711 #ifdef CONFIG_PM_SLEEP
712 /* Enable IRQ wake on suspend, to wake up from RTC. */
713 static int sun6i_rtc_suspend(struct device *dev)
715 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
717 if (device_may_wakeup(dev))
718 enable_irq_wake(chip->irq);
723 /* Disable IRQ wake on resume. */
724 static int sun6i_rtc_resume(struct device *dev)
726 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
728 if (device_may_wakeup(dev))
729 disable_irq_wake(chip->irq);
735 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
736 sun6i_rtc_suspend, sun6i_rtc_resume);
738 static void sun6i_rtc_bus_clk_cleanup(void *data)
740 struct clk *bus_clk = data;
742 clk_disable_unprepare(bus_clk);
745 static int sun6i_rtc_probe(struct platform_device *pdev)
747 struct sun6i_rtc_dev *chip = sun6i_rtc;
748 struct device *dev = &pdev->dev;
752 bus_clk = devm_clk_get_optional(dev, "bus");
754 return PTR_ERR(bus_clk);
757 ret = clk_prepare_enable(bus_clk);
761 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
768 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
772 spin_lock_init(&chip->lock);
774 chip->base = devm_platform_ioremap_resource(pdev, 0);
775 if (IS_ERR(chip->base))
776 return PTR_ERR(chip->base);
778 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
779 ret = sun6i_rtc_ccu_probe(dev, chip->base);
785 platform_set_drvdata(pdev, chip);
787 chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
789 chip->irq = platform_get_irq(pdev, 0);
793 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
794 0, dev_name(&pdev->dev), chip);
796 dev_err(&pdev->dev, "Could not request IRQ\n");
800 /* clear the alarm counter value */
801 writel(0, chip->base + SUN6I_ALRM_COUNTER);
803 /* disable counter alarm */
804 writel(0, chip->base + SUN6I_ALRM_EN);
806 /* disable counter alarm interrupt */
807 writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
809 /* disable week alarm */
810 writel(0, chip->base + SUN6I_ALRM1_EN);
812 /* disable week alarm interrupt */
813 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
815 /* clear counter alarm pending interrupts */
816 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
817 chip->base + SUN6I_ALRM_IRQ_STA);
819 /* clear week alarm pending interrupts */
820 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
821 chip->base + SUN6I_ALRM1_IRQ_STA);
823 /* disable alarm wakeup */
824 writel(0, chip->base + SUN6I_ALARM_CONFIG);
826 clk_prepare_enable(chip->losc);
828 device_init_wakeup(&pdev->dev, 1);
830 chip->rtc = devm_rtc_allocate_device(&pdev->dev);
831 if (IS_ERR(chip->rtc))
832 return PTR_ERR(chip->rtc);
834 chip->rtc->ops = &sun6i_rtc_ops;
835 if (chip->flags & RTC_LINEAR_DAY)
836 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
838 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
840 ret = devm_rtc_register_device(chip->rtc);
844 sun6i_rtc_nvmem_cfg.priv = chip;
845 ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
853 * As far as RTC functionality goes, all models are the same. The
854 * datasheets claim that different models have different number of
855 * registers available for non-volatile storage, but experiments show
856 * that all SoCs have 16 registers available for this purpose.
858 static const struct of_device_id sun6i_rtc_dt_ids[] = {
859 { .compatible = "allwinner,sun6i-a31-rtc" },
860 { .compatible = "allwinner,sun8i-a23-rtc" },
861 { .compatible = "allwinner,sun8i-h3-rtc" },
862 { .compatible = "allwinner,sun8i-r40-rtc" },
863 { .compatible = "allwinner,sun8i-v3-rtc" },
864 { .compatible = "allwinner,sun50i-h5-rtc" },
865 { .compatible = "allwinner,sun50i-h6-rtc" },
866 { .compatible = "allwinner,sun50i-h616-rtc",
867 .data = (void *)RTC_LINEAR_DAY },
868 { .compatible = "allwinner,sun50i-r329-rtc",
869 .data = (void *)RTC_LINEAR_DAY },
872 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
874 static struct platform_driver sun6i_rtc_driver = {
875 .probe = sun6i_rtc_probe,
878 .of_match_table = sun6i_rtc_dt_ids,
879 .pm = &sun6i_rtc_pm_ops,
882 builtin_platform_driver(sun6i_rtc_driver);