1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * An RTC driver for Allwinner A31/A23
5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
9 * An RTC driver for Allwinner A10/A20
11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/rtc.h>
30 #include <linux/slab.h>
31 #include <linux/types.h>
33 /* Control register */
34 #define SUN6I_LOSC_CTRL 0x0000
35 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
36 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
37 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
38 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
39 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
40 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
41 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
42 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
44 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
47 #define SUN6I_RTC_YMD 0x0010
48 #define SUN6I_RTC_HMS 0x0014
50 /* Alarm 0 (counter) */
51 #define SUN6I_ALRM_COUNTER 0x0020
52 /* This holds the remaining alarm seconds on older SoCs (current value) */
53 #define SUN6I_ALRM_COUNTER_HMS 0x0024
54 #define SUN6I_ALRM_EN 0x0028
55 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
56 #define SUN6I_ALRM_IRQ_EN 0x002c
57 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
58 #define SUN6I_ALRM_IRQ_STA 0x0030
59 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
61 /* Alarm 1 (wall clock) */
62 #define SUN6I_ALRM1_EN 0x0044
63 #define SUN6I_ALRM1_IRQ_EN 0x0048
64 #define SUN6I_ALRM1_IRQ_STA 0x004c
65 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
68 #define SUN6I_ALARM_CONFIG 0x0050
69 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
71 #define SUN6I_LOSC_OUT_GATING 0x0060
72 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
74 /* General-purpose data */
75 #define SUN6I_GP_DATA 0x0100
76 #define SUN6I_GP_DATA_SIZE 0x20
81 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
82 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
83 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
84 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
89 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
90 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
91 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
96 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
97 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
98 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
99 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
104 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
105 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
106 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
109 * The year parameter passed to the driver is usually an offset relative to
110 * the year 1900. This macro is used to convert this offset to another one
111 * relative to the minimum year allowed by the hardware.
113 * The year range is 1970 - 2033. This range is selected to match Allwinner's
114 * driver, even though it is somewhat limited.
116 #define SUN6I_YEAR_MIN 1970
117 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
119 #define SECS_PER_DAY (24 * 3600ULL)
122 * There are other differences between models, including:
124 * - number of GPIO pins that can be configured to hold a certain level
125 * - crypto-key related registers (H5, H6)
126 * - boot process related (super standby, secondary processor entry address)
127 * registers (R40, H6)
128 * - SYS power domain controls (R40)
129 * - DCXO controls (H6)
130 * - RC oscillator calibration (H6)
132 * These functions are not covered by this driver.
134 struct sun6i_rtc_clk_data {
135 unsigned long rc_osc_rate;
136 unsigned int fixed_prescaler : 16;
137 unsigned int has_prescaler : 1;
138 unsigned int has_out_clk : 1;
139 unsigned int has_losc_en : 1;
140 unsigned int has_auto_swt : 1;
143 #define RTC_LINEAR_DAY BIT(0)
145 struct sun6i_rtc_dev {
146 struct rtc_device *rtc;
147 const struct sun6i_rtc_clk_data *data;
154 struct clk_hw *int_osc;
156 struct clk *ext_losc;
161 static struct sun6i_rtc_dev *sun6i_rtc;
163 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
164 unsigned long parent_rate)
166 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
169 val = readl(rtc->base + SUN6I_LOSC_CTRL);
170 if (val & SUN6I_LOSC_CTRL_EXT_OSC)
173 if (rtc->data->fixed_prescaler)
174 parent_rate /= rtc->data->fixed_prescaler;
176 if (rtc->data->has_prescaler) {
177 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
178 val &= GENMASK(4, 0);
181 return parent_rate / (val + 1);
184 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
186 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
188 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
191 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
193 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
200 spin_lock_irqsave(&rtc->lock, flags);
201 val = readl(rtc->base + SUN6I_LOSC_CTRL);
202 val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
203 val |= SUN6I_LOSC_CTRL_KEY;
204 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
205 if (rtc->data->has_losc_en) {
206 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
207 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
209 writel(val, rtc->base + SUN6I_LOSC_CTRL);
210 spin_unlock_irqrestore(&rtc->lock, flags);
215 static const struct clk_ops sun6i_rtc_osc_ops = {
216 .recalc_rate = sun6i_rtc_osc_recalc_rate,
217 .determine_rate = clk_hw_determine_rate_no_reparent,
219 .get_parent = sun6i_rtc_osc_get_parent,
220 .set_parent = sun6i_rtc_osc_set_parent,
223 static void __init sun6i_rtc_clk_init(struct device_node *node,
224 const struct sun6i_rtc_clk_data *data)
226 struct clk_hw_onecell_data *clk_data;
227 struct sun6i_rtc_dev *rtc;
228 struct clk_init_data init = {
229 .ops = &sun6i_rtc_osc_ops,
232 const char *iosc_name = "rtc-int-osc";
233 const char *clkout_name = "osc32k-out";
234 const char *parents[2];
237 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
242 clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
248 spin_lock_init(&rtc->lock);
250 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
251 if (IS_ERR(rtc->base)) {
252 pr_crit("Can't map RTC registers");
256 reg = SUN6I_LOSC_CTRL_KEY;
257 if (rtc->data->has_auto_swt) {
258 /* Bypass auto-switch to int osc, on ext losc failure */
259 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
260 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
263 /* Switch to the external, more precise, oscillator, if present */
264 if (of_property_present(node, "clocks")) {
265 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
266 if (rtc->data->has_losc_en)
267 reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
269 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
271 /* Yes, I know, this is ugly. */
274 of_property_read_string_index(node, "clock-output-names", 2,
277 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
280 rtc->data->rc_osc_rate,
282 if (IS_ERR(rtc->int_osc)) {
283 pr_crit("Couldn't register the internal oscillator\n");
287 parents[0] = clk_hw_get_name(rtc->int_osc);
288 /* If there is no external oscillator, this will be NULL and ... */
289 parents[1] = of_clk_get_parent_name(node, 0);
291 rtc->hw.init = &init;
293 init.parent_names = parents;
294 /* ... number of clock parents will be 1. */
295 init.num_parents = of_clk_get_parent_count(node) + 1;
296 of_property_read_string_index(node, "clock-output-names", 0,
299 rtc->losc = clk_register(NULL, &rtc->hw);
300 if (IS_ERR(rtc->losc)) {
301 pr_crit("Couldn't register the LOSC clock\n");
305 of_property_read_string_index(node, "clock-output-names", 1,
307 rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
308 0, rtc->base + SUN6I_LOSC_OUT_GATING,
309 SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
311 if (IS_ERR(rtc->ext_losc)) {
312 pr_crit("Couldn't register the LOSC external gate\n");
317 clk_data->hws[0] = &rtc->hw;
318 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
319 clk_data->hws[2] = rtc->int_osc;
320 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
324 clk_hw_unregister_fixed_rate(rtc->int_osc);
329 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
330 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
334 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
336 sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
338 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
339 sun6i_a31_rtc_clk_init);
341 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
342 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
347 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
349 sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
351 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
352 sun8i_a23_rtc_clk_init);
354 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
355 .rc_osc_rate = 16000000,
356 .fixed_prescaler = 32,
361 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
363 sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
365 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
366 sun8i_h3_rtc_clk_init);
367 /* As far as we are concerned, clocks for H5 are the same as H3 */
368 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
369 sun8i_h3_rtc_clk_init);
371 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
372 .rc_osc_rate = 16000000,
373 .fixed_prescaler = 32,
380 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
382 sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
384 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
385 sun50i_h6_rtc_clk_init);
388 * The R40 user manual is self-conflicting on whether the prescaler is
389 * fixed or configurable. The clock diagram shows it as fixed, but there
390 * is also a configurable divider in the RTC block.
392 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
393 .rc_osc_rate = 16000000,
394 .fixed_prescaler = 512,
396 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
398 sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
400 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
401 sun8i_r40_rtc_clk_init);
403 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
404 .rc_osc_rate = 32000,
408 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
410 sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
412 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
413 sun8i_v3_rtc_clk_init);
415 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
417 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
418 irqreturn_t ret = IRQ_NONE;
421 spin_lock(&chip->lock);
422 val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
424 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
425 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
426 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
428 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
432 spin_unlock(&chip->lock);
437 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
440 u32 alrm_irq_val = 0;
441 u32 alrm_wake_val = 0;
445 alrm_val = SUN6I_ALRM_EN_CNT_EN;
446 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
447 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
449 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
450 chip->base + SUN6I_ALRM_IRQ_STA);
453 spin_lock_irqsave(&chip->lock, flags);
454 writel(alrm_val, chip->base + SUN6I_ALRM_EN);
455 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
456 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
457 spin_unlock_irqrestore(&chip->lock, flags);
460 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
462 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
466 * read again in case it changes
469 date = readl(chip->base + SUN6I_RTC_YMD);
470 time = readl(chip->base + SUN6I_RTC_HMS);
471 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
472 (time != readl(chip->base + SUN6I_RTC_HMS)));
474 if (chip->flags & RTC_LINEAR_DAY) {
476 * Newer chips store a linear day number, the manual
477 * does not mandate any epoch base. The BSP driver uses
478 * the UNIX epoch, let's just copy that, as it's the
481 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
483 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
484 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date) - 1;
485 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
488 * switch from (data_year->min)-relative offset to
489 * a (1900)-relative one
491 rtc_tm->tm_year += SUN6I_YEAR_OFF;
494 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
495 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
496 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
501 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
508 spin_lock_irqsave(&chip->lock, flags);
509 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
510 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
511 spin_unlock_irqrestore(&chip->lock, flags);
513 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
514 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
515 rtc_time64_to_tm(chip->alarm, &wkalrm->time);
520 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
522 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
523 struct rtc_time *alrm_tm = &wkalrm->time;
524 struct rtc_time tm_now;
526 u32 counter_val, counter_val_hms;
529 time_set = rtc_tm_to_time64(alrm_tm);
531 if (chip->flags & RTC_LINEAR_DAY) {
533 * The alarm registers hold the actual alarm time, encoded
534 * in the same way (linear day + HMS) as the current time.
536 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec) |
537 SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min) |
538 SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
539 /* The division will cut off the H:M:S part of alrm_tm. */
540 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
542 /* The alarm register holds the number of seconds left. */
545 ret = sun6i_rtc_gettime(dev, &tm_now);
547 dev_err(dev, "Error in getting time\n");
551 time_now = rtc_tm_to_time64(&tm_now);
552 if (time_set <= time_now) {
553 dev_err(dev, "Date to set in the past\n");
556 if ((time_set - time_now) > U32_MAX) {
557 dev_err(dev, "Date too far in the future\n");
561 counter_val = time_set - time_now;
564 sun6i_rtc_setaie(0, chip);
565 writel(0, chip->base + SUN6I_ALRM_COUNTER);
566 if (chip->flags & RTC_LINEAR_DAY)
567 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
568 usleep_range(100, 300);
570 writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
571 if (chip->flags & RTC_LINEAR_DAY)
572 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
573 chip->alarm = time_set;
575 sun6i_rtc_setaie(wkalrm->enabled, chip);
580 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
581 unsigned int mask, unsigned int ms_timeout)
583 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
587 reg = readl(chip->base + offset);
593 } while (time_before(jiffies, timeout));
598 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
600 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
604 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
605 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
606 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
608 if (chip->flags & RTC_LINEAR_DAY) {
609 /* The division will cut off the H:M:S part of rtc_tm. */
610 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
612 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
615 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
616 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
617 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
619 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
620 date |= SUN6I_LEAP_SET_VALUE(1);
623 /* Check whether registers are writable */
624 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
625 SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
626 dev_err(dev, "rtc is still busy.\n");
630 writel(time, chip->base + SUN6I_RTC_HMS);
633 * After writing the RTC HH-MM-SS register, the
634 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
635 * be cleared until the real writing operation is finished
638 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
639 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
640 dev_err(dev, "Failed to set rtc time.\n");
644 writel(date, chip->base + SUN6I_RTC_YMD);
647 * After writing the RTC YY-MM-DD register, the
648 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
649 * be cleared until the real writing operation is finished
652 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
653 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
654 dev_err(dev, "Failed to set rtc time.\n");
661 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
663 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
666 sun6i_rtc_setaie(enabled, chip);
671 static const struct rtc_class_ops sun6i_rtc_ops = {
672 .read_time = sun6i_rtc_gettime,
673 .set_time = sun6i_rtc_settime,
674 .read_alarm = sun6i_rtc_getalarm,
675 .set_alarm = sun6i_rtc_setalarm,
676 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
679 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
681 struct sun6i_rtc_dev *chip = priv;
685 for (i = 0; i < bytes / 4; ++i)
686 val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
691 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
693 struct sun6i_rtc_dev *chip = priv;
697 for (i = 0; i < bytes / 4; ++i)
698 writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
703 static struct nvmem_config sun6i_rtc_nvmem_cfg = {
704 .type = NVMEM_TYPE_BATTERY_BACKED,
705 .reg_read = sun6i_rtc_nvmem_read,
706 .reg_write = sun6i_rtc_nvmem_write,
707 .size = SUN6I_GP_DATA_SIZE,
712 #ifdef CONFIG_PM_SLEEP
713 /* Enable IRQ wake on suspend, to wake up from RTC. */
714 static int sun6i_rtc_suspend(struct device *dev)
716 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
718 if (device_may_wakeup(dev))
719 enable_irq_wake(chip->irq);
724 /* Disable IRQ wake on resume. */
725 static int sun6i_rtc_resume(struct device *dev)
727 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
729 if (device_may_wakeup(dev))
730 disable_irq_wake(chip->irq);
736 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
737 sun6i_rtc_suspend, sun6i_rtc_resume);
739 static void sun6i_rtc_bus_clk_cleanup(void *data)
741 struct clk *bus_clk = data;
743 clk_disable_unprepare(bus_clk);
746 static int sun6i_rtc_probe(struct platform_device *pdev)
748 struct sun6i_rtc_dev *chip = sun6i_rtc;
749 struct device *dev = &pdev->dev;
753 bus_clk = devm_clk_get_optional(dev, "bus");
755 return PTR_ERR(bus_clk);
758 ret = clk_prepare_enable(bus_clk);
762 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
769 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
773 spin_lock_init(&chip->lock);
775 chip->base = devm_platform_ioremap_resource(pdev, 0);
776 if (IS_ERR(chip->base))
777 return PTR_ERR(chip->base);
779 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
780 ret = sun6i_rtc_ccu_probe(dev, chip->base);
786 platform_set_drvdata(pdev, chip);
788 chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
790 chip->irq = platform_get_irq(pdev, 0);
794 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
795 0, dev_name(&pdev->dev), chip);
797 dev_err(&pdev->dev, "Could not request IRQ\n");
801 /* clear the alarm counter value */
802 writel(0, chip->base + SUN6I_ALRM_COUNTER);
804 /* disable counter alarm */
805 writel(0, chip->base + SUN6I_ALRM_EN);
807 /* disable counter alarm interrupt */
808 writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
810 /* disable week alarm */
811 writel(0, chip->base + SUN6I_ALRM1_EN);
813 /* disable week alarm interrupt */
814 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
816 /* clear counter alarm pending interrupts */
817 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
818 chip->base + SUN6I_ALRM_IRQ_STA);
820 /* clear week alarm pending interrupts */
821 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
822 chip->base + SUN6I_ALRM1_IRQ_STA);
824 /* disable alarm wakeup */
825 writel(0, chip->base + SUN6I_ALARM_CONFIG);
827 clk_prepare_enable(chip->losc);
829 device_init_wakeup(&pdev->dev, 1);
831 chip->rtc = devm_rtc_allocate_device(&pdev->dev);
832 if (IS_ERR(chip->rtc))
833 return PTR_ERR(chip->rtc);
835 chip->rtc->ops = &sun6i_rtc_ops;
836 if (chip->flags & RTC_LINEAR_DAY)
837 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
839 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
841 ret = devm_rtc_register_device(chip->rtc);
845 sun6i_rtc_nvmem_cfg.priv = chip;
846 ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
850 dev_info(&pdev->dev, "RTC enabled\n");
856 * As far as RTC functionality goes, all models are the same. The
857 * datasheets claim that different models have different number of
858 * registers available for non-volatile storage, but experiments show
859 * that all SoCs have 16 registers available for this purpose.
861 static const struct of_device_id sun6i_rtc_dt_ids[] = {
862 { .compatible = "allwinner,sun6i-a31-rtc" },
863 { .compatible = "allwinner,sun8i-a23-rtc" },
864 { .compatible = "allwinner,sun8i-h3-rtc" },
865 { .compatible = "allwinner,sun8i-r40-rtc" },
866 { .compatible = "allwinner,sun8i-v3-rtc" },
867 { .compatible = "allwinner,sun50i-h5-rtc" },
868 { .compatible = "allwinner,sun50i-h6-rtc" },
869 { .compatible = "allwinner,sun50i-h616-rtc",
870 .data = (void *)RTC_LINEAR_DAY },
871 { .compatible = "allwinner,sun50i-r329-rtc",
872 .data = (void *)RTC_LINEAR_DAY },
875 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
877 static struct platform_driver sun6i_rtc_driver = {
878 .probe = sun6i_rtc_probe,
881 .of_match_table = sun6i_rtc_dt_ids,
882 .pm = &sun6i_rtc_pm_ops,
885 builtin_platform_driver(sun6i_rtc_driver);