Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / rtc / rtc-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/rtc.h>
30 #include <linux/slab.h>
31 #include <linux/types.h>
32
33 /* Control register */
34 #define SUN6I_LOSC_CTRL                         0x0000
35 #define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
36 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
37 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
38 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
39 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
40 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
41 #define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
42 #define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
43
44 #define SUN6I_LOSC_CLK_PRESCAL                  0x0008
45
46 /* RTC */
47 #define SUN6I_RTC_YMD                           0x0010
48 #define SUN6I_RTC_HMS                           0x0014
49
50 /* Alarm 0 (counter) */
51 #define SUN6I_ALRM_COUNTER                      0x0020
52 /* This holds the remaining alarm seconds on older SoCs (current value) */
53 #define SUN6I_ALRM_COUNTER_HMS                  0x0024
54 #define SUN6I_ALRM_EN                           0x0028
55 #define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
56 #define SUN6I_ALRM_IRQ_EN                       0x002c
57 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
58 #define SUN6I_ALRM_IRQ_STA                      0x0030
59 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
60
61 /* Alarm 1 (wall clock) */
62 #define SUN6I_ALRM1_EN                          0x0044
63 #define SUN6I_ALRM1_IRQ_EN                      0x0048
64 #define SUN6I_ALRM1_IRQ_STA                     0x004c
65 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
66
67 /* Alarm config */
68 #define SUN6I_ALARM_CONFIG                      0x0050
69 #define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
70
71 #define SUN6I_LOSC_OUT_GATING                   0x0060
72 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
73
74 /* General-purpose data */
75 #define SUN6I_GP_DATA                           0x0100
76 #define SUN6I_GP_DATA_SIZE                      0x20
77
78 /*
79  * Get date values
80  */
81 #define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
82 #define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
83 #define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
84 #define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
85
86 /*
87  * Get time values
88  */
89 #define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
90 #define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
91 #define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
92
93 /*
94  * Set date values
95  */
96 #define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
97 #define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
98 #define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
99 #define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
100
101 /*
102  * Set time values
103  */
104 #define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
105 #define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
106 #define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
107
108 /*
109  * The year parameter passed to the driver is usually an offset relative to
110  * the year 1900. This macro is used to convert this offset to another one
111  * relative to the minimum year allowed by the hardware.
112  *
113  * The year range is 1970 - 2033. This range is selected to match Allwinner's
114  * driver, even though it is somewhat limited.
115  */
116 #define SUN6I_YEAR_MIN                          1970
117 #define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
118
119 #define SECS_PER_DAY                            (24 * 3600ULL)
120
121 /*
122  * There are other differences between models, including:
123  *
124  *   - number of GPIO pins that can be configured to hold a certain level
125  *   - crypto-key related registers (H5, H6)
126  *   - boot process related (super standby, secondary processor entry address)
127  *     registers (R40, H6)
128  *   - SYS power domain controls (R40)
129  *   - DCXO controls (H6)
130  *   - RC oscillator calibration (H6)
131  *
132  * These functions are not covered by this driver.
133  */
134 struct sun6i_rtc_clk_data {
135         unsigned long rc_osc_rate;
136         unsigned int fixed_prescaler : 16;
137         unsigned int has_prescaler : 1;
138         unsigned int has_out_clk : 1;
139         unsigned int has_losc_en : 1;
140         unsigned int has_auto_swt : 1;
141 };
142
143 #define RTC_LINEAR_DAY  BIT(0)
144
145 struct sun6i_rtc_dev {
146         struct rtc_device *rtc;
147         const struct sun6i_rtc_clk_data *data;
148         void __iomem *base;
149         int irq;
150         time64_t alarm;
151         unsigned long flags;
152
153         struct clk_hw hw;
154         struct clk_hw *int_osc;
155         struct clk *losc;
156         struct clk *ext_losc;
157
158         spinlock_t lock;
159 };
160
161 static struct sun6i_rtc_dev *sun6i_rtc;
162
163 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
164                                                unsigned long parent_rate)
165 {
166         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
167         u32 val = 0;
168
169         val = readl(rtc->base + SUN6I_LOSC_CTRL);
170         if (val & SUN6I_LOSC_CTRL_EXT_OSC)
171                 return parent_rate;
172
173         if (rtc->data->fixed_prescaler)
174                 parent_rate /= rtc->data->fixed_prescaler;
175
176         if (rtc->data->has_prescaler) {
177                 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
178                 val &= GENMASK(4, 0);
179         }
180
181         return parent_rate / (val + 1);
182 }
183
184 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
185 {
186         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
187
188         return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
189 }
190
191 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
192 {
193         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
194         unsigned long flags;
195         u32 val;
196
197         if (index > 1)
198                 return -EINVAL;
199
200         spin_lock_irqsave(&rtc->lock, flags);
201         val = readl(rtc->base + SUN6I_LOSC_CTRL);
202         val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
203         val |= SUN6I_LOSC_CTRL_KEY;
204         val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
205         if (rtc->data->has_losc_en) {
206                 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
207                 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
208         }
209         writel(val, rtc->base + SUN6I_LOSC_CTRL);
210         spin_unlock_irqrestore(&rtc->lock, flags);
211
212         return 0;
213 }
214
215 static const struct clk_ops sun6i_rtc_osc_ops = {
216         .recalc_rate    = sun6i_rtc_osc_recalc_rate,
217         .determine_rate = clk_hw_determine_rate_no_reparent,
218
219         .get_parent     = sun6i_rtc_osc_get_parent,
220         .set_parent     = sun6i_rtc_osc_set_parent,
221 };
222
223 static void __init sun6i_rtc_clk_init(struct device_node *node,
224                                       const struct sun6i_rtc_clk_data *data)
225 {
226         struct clk_hw_onecell_data *clk_data;
227         struct sun6i_rtc_dev *rtc;
228         struct clk_init_data init = {
229                 .ops            = &sun6i_rtc_osc_ops,
230                 .name           = "losc",
231         };
232         const char *iosc_name = "rtc-int-osc";
233         const char *clkout_name = "osc32k-out";
234         const char *parents[2];
235         u32 reg;
236
237         rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
238         if (!rtc)
239                 return;
240
241         rtc->data = data;
242         clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
243         if (!clk_data) {
244                 kfree(rtc);
245                 return;
246         }
247
248         spin_lock_init(&rtc->lock);
249
250         rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
251         if (IS_ERR(rtc->base)) {
252                 pr_crit("Can't map RTC registers");
253                 goto err;
254         }
255
256         reg = SUN6I_LOSC_CTRL_KEY;
257         if (rtc->data->has_auto_swt) {
258                 /* Bypass auto-switch to int osc, on ext losc failure */
259                 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
260                 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
261         }
262
263         /* Switch to the external, more precise, oscillator, if present */
264         if (of_property_present(node, "clocks")) {
265                 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
266                 if (rtc->data->has_losc_en)
267                         reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
268         }
269         writel(reg, rtc->base + SUN6I_LOSC_CTRL);
270
271         /* Yes, I know, this is ugly. */
272         sun6i_rtc = rtc;
273
274         of_property_read_string_index(node, "clock-output-names", 2,
275                                       &iosc_name);
276
277         rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
278                                                                 iosc_name,
279                                                                 NULL, 0,
280                                                                 rtc->data->rc_osc_rate,
281                                                                 300000000);
282         if (IS_ERR(rtc->int_osc)) {
283                 pr_crit("Couldn't register the internal oscillator\n");
284                 goto err;
285         }
286
287         parents[0] = clk_hw_get_name(rtc->int_osc);
288         /* If there is no external oscillator, this will be NULL and ... */
289         parents[1] = of_clk_get_parent_name(node, 0);
290
291         rtc->hw.init = &init;
292
293         init.parent_names = parents;
294         /* ... number of clock parents will be 1. */
295         init.num_parents = of_clk_get_parent_count(node) + 1;
296         of_property_read_string_index(node, "clock-output-names", 0,
297                                       &init.name);
298
299         rtc->losc = clk_register(NULL, &rtc->hw);
300         if (IS_ERR(rtc->losc)) {
301                 pr_crit("Couldn't register the LOSC clock\n");
302                 goto err_register;
303         }
304
305         of_property_read_string_index(node, "clock-output-names", 1,
306                                       &clkout_name);
307         rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
308                                           0, rtc->base + SUN6I_LOSC_OUT_GATING,
309                                           SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
310                                           &rtc->lock);
311         if (IS_ERR(rtc->ext_losc)) {
312                 pr_crit("Couldn't register the LOSC external gate\n");
313                 goto err_register;
314         }
315
316         clk_data->num = 3;
317         clk_data->hws[0] = &rtc->hw;
318         clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
319         clk_data->hws[2] = rtc->int_osc;
320         of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
321         return;
322
323 err_register:
324         clk_hw_unregister_fixed_rate(rtc->int_osc);
325 err:
326         kfree(clk_data);
327 }
328
329 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
330         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
331         .has_prescaler = 1,
332 };
333
334 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
335 {
336         sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
337 }
338 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
339                       sun6i_a31_rtc_clk_init);
340
341 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
342         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
343         .has_prescaler = 1,
344         .has_out_clk = 1,
345 };
346
347 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
348 {
349         sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
350 }
351 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
352                       sun8i_a23_rtc_clk_init);
353
354 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
355         .rc_osc_rate = 16000000,
356         .fixed_prescaler = 32,
357         .has_prescaler = 1,
358         .has_out_clk = 1,
359 };
360
361 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
362 {
363         sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
364 }
365 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
366                       sun8i_h3_rtc_clk_init);
367 /* As far as we are concerned, clocks for H5 are the same as H3 */
368 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
369                       sun8i_h3_rtc_clk_init);
370
371 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
372         .rc_osc_rate = 16000000,
373         .fixed_prescaler = 32,
374         .has_prescaler = 1,
375         .has_out_clk = 1,
376         .has_losc_en = 1,
377         .has_auto_swt = 1,
378 };
379
380 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
381 {
382         sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
383 }
384 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
385                       sun50i_h6_rtc_clk_init);
386
387 /*
388  * The R40 user manual is self-conflicting on whether the prescaler is
389  * fixed or configurable. The clock diagram shows it as fixed, but there
390  * is also a configurable divider in the RTC block.
391  */
392 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
393         .rc_osc_rate = 16000000,
394         .fixed_prescaler = 512,
395 };
396 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
397 {
398         sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
399 }
400 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
401                       sun8i_r40_rtc_clk_init);
402
403 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
404         .rc_osc_rate = 32000,
405         .has_out_clk = 1,
406 };
407
408 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
409 {
410         sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
411 }
412 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
413                       sun8i_v3_rtc_clk_init);
414
415 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
416 {
417         struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
418         irqreturn_t ret = IRQ_NONE;
419         u32 val;
420
421         spin_lock(&chip->lock);
422         val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
423
424         if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
425                 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
426                 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
427
428                 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
429
430                 ret = IRQ_HANDLED;
431         }
432         spin_unlock(&chip->lock);
433
434         return ret;
435 }
436
437 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
438 {
439         u32 alrm_val = 0;
440         u32 alrm_irq_val = 0;
441         u32 alrm_wake_val = 0;
442         unsigned long flags;
443
444         if (to) {
445                 alrm_val = SUN6I_ALRM_EN_CNT_EN;
446                 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
447                 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
448         } else {
449                 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
450                        chip->base + SUN6I_ALRM_IRQ_STA);
451         }
452
453         spin_lock_irqsave(&chip->lock, flags);
454         writel(alrm_val, chip->base + SUN6I_ALRM_EN);
455         writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
456         writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
457         spin_unlock_irqrestore(&chip->lock, flags);
458 }
459
460 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
461 {
462         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
463         u32 date, time;
464
465         /*
466          * read again in case it changes
467          */
468         do {
469                 date = readl(chip->base + SUN6I_RTC_YMD);
470                 time = readl(chip->base + SUN6I_RTC_HMS);
471         } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
472                  (time != readl(chip->base + SUN6I_RTC_HMS)));
473
474         if (chip->flags & RTC_LINEAR_DAY) {
475                 /*
476                  * Newer chips store a linear day number, the manual
477                  * does not mandate any epoch base. The BSP driver uses
478                  * the UNIX epoch, let's just copy that, as it's the
479                  * easiest anyway.
480                  */
481                 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
482         } else {
483                 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
484                 rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
485                 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
486
487                 /*
488                  * switch from (data_year->min)-relative offset to
489                  * a (1900)-relative one
490                  */
491                 rtc_tm->tm_year += SUN6I_YEAR_OFF;
492         }
493
494         rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
495         rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
496         rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
497
498         return 0;
499 }
500
501 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
502 {
503         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
504         unsigned long flags;
505         u32 alrm_st;
506         u32 alrm_en;
507
508         spin_lock_irqsave(&chip->lock, flags);
509         alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
510         alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
511         spin_unlock_irqrestore(&chip->lock, flags);
512
513         wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
514         wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
515         rtc_time64_to_tm(chip->alarm, &wkalrm->time);
516
517         return 0;
518 }
519
520 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
521 {
522         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
523         struct rtc_time *alrm_tm = &wkalrm->time;
524         struct rtc_time tm_now;
525         time64_t time_set;
526         u32 counter_val, counter_val_hms;
527         int ret;
528
529         time_set = rtc_tm_to_time64(alrm_tm);
530
531         if (chip->flags & RTC_LINEAR_DAY) {
532                 /*
533                  * The alarm registers hold the actual alarm time, encoded
534                  * in the same way (linear day + HMS) as the current time.
535                  */
536                 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
537                                   SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
538                                   SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
539                 /* The division will cut off the H:M:S part of alrm_tm. */
540                 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
541         } else {
542                 /* The alarm register holds the number of seconds left. */
543                 time64_t time_now;
544
545                 ret = sun6i_rtc_gettime(dev, &tm_now);
546                 if (ret < 0) {
547                         dev_err(dev, "Error in getting time\n");
548                         return -EINVAL;
549                 }
550
551                 time_now = rtc_tm_to_time64(&tm_now);
552                 if (time_set <= time_now) {
553                         dev_err(dev, "Date to set in the past\n");
554                         return -EINVAL;
555                 }
556                 if ((time_set - time_now) > U32_MAX) {
557                         dev_err(dev, "Date too far in the future\n");
558                         return -EINVAL;
559                 }
560
561                 counter_val = time_set - time_now;
562         }
563
564         sun6i_rtc_setaie(0, chip);
565         writel(0, chip->base + SUN6I_ALRM_COUNTER);
566         if (chip->flags & RTC_LINEAR_DAY)
567                 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
568         usleep_range(100, 300);
569
570         writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
571         if (chip->flags & RTC_LINEAR_DAY)
572                 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
573         chip->alarm = time_set;
574
575         sun6i_rtc_setaie(wkalrm->enabled, chip);
576
577         return 0;
578 }
579
580 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
581                           unsigned int mask, unsigned int ms_timeout)
582 {
583         const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
584         u32 reg;
585
586         do {
587                 reg = readl(chip->base + offset);
588                 reg &= mask;
589
590                 if (!reg)
591                         return 0;
592
593         } while (time_before(jiffies, timeout));
594
595         return -ETIMEDOUT;
596 }
597
598 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
599 {
600         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
601         u32 date = 0;
602         u32 time = 0;
603
604         time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
605                 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
606                 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
607
608         if (chip->flags & RTC_LINEAR_DAY) {
609                 /* The division will cut off the H:M:S part of rtc_tm. */
610                 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
611         } else {
612                 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
613                 rtc_tm->tm_mon += 1;
614
615                 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
616                         SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
617                         SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
618
619                 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
620                         date |= SUN6I_LEAP_SET_VALUE(1);
621         }
622
623         /* Check whether registers are writable */
624         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
625                            SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
626                 dev_err(dev, "rtc is still busy.\n");
627                 return -EBUSY;
628         }
629
630         writel(time, chip->base + SUN6I_RTC_HMS);
631
632         /*
633          * After writing the RTC HH-MM-SS register, the
634          * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
635          * be cleared until the real writing operation is finished
636          */
637
638         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
639                            SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
640                 dev_err(dev, "Failed to set rtc time.\n");
641                 return -ETIMEDOUT;
642         }
643
644         writel(date, chip->base + SUN6I_RTC_YMD);
645
646         /*
647          * After writing the RTC YY-MM-DD register, the
648          * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
649          * be cleared until the real writing operation is finished
650          */
651
652         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
653                            SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
654                 dev_err(dev, "Failed to set rtc time.\n");
655                 return -ETIMEDOUT;
656         }
657
658         return 0;
659 }
660
661 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
662 {
663         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
664
665         if (!enabled)
666                 sun6i_rtc_setaie(enabled, chip);
667
668         return 0;
669 }
670
671 static const struct rtc_class_ops sun6i_rtc_ops = {
672         .read_time              = sun6i_rtc_gettime,
673         .set_time               = sun6i_rtc_settime,
674         .read_alarm             = sun6i_rtc_getalarm,
675         .set_alarm              = sun6i_rtc_setalarm,
676         .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
677 };
678
679 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
680 {
681         struct sun6i_rtc_dev *chip = priv;
682         u32 *val = _val;
683         int i;
684
685         for (i = 0; i < bytes / 4; ++i)
686                 val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
687
688         return 0;
689 }
690
691 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
692 {
693         struct sun6i_rtc_dev *chip = priv;
694         u32 *val = _val;
695         int i;
696
697         for (i = 0; i < bytes / 4; ++i)
698                 writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
699
700         return 0;
701 }
702
703 static struct nvmem_config sun6i_rtc_nvmem_cfg = {
704         .type           = NVMEM_TYPE_BATTERY_BACKED,
705         .reg_read       = sun6i_rtc_nvmem_read,
706         .reg_write      = sun6i_rtc_nvmem_write,
707         .size           = SUN6I_GP_DATA_SIZE,
708         .word_size      = 4,
709         .stride         = 4,
710 };
711
712 #ifdef CONFIG_PM_SLEEP
713 /* Enable IRQ wake on suspend, to wake up from RTC. */
714 static int sun6i_rtc_suspend(struct device *dev)
715 {
716         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
717
718         if (device_may_wakeup(dev))
719                 enable_irq_wake(chip->irq);
720
721         return 0;
722 }
723
724 /* Disable IRQ wake on resume. */
725 static int sun6i_rtc_resume(struct device *dev)
726 {
727         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
728
729         if (device_may_wakeup(dev))
730                 disable_irq_wake(chip->irq);
731
732         return 0;
733 }
734 #endif
735
736 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
737         sun6i_rtc_suspend, sun6i_rtc_resume);
738
739 static void sun6i_rtc_bus_clk_cleanup(void *data)
740 {
741         struct clk *bus_clk = data;
742
743         clk_disable_unprepare(bus_clk);
744 }
745
746 static int sun6i_rtc_probe(struct platform_device *pdev)
747 {
748         struct sun6i_rtc_dev *chip = sun6i_rtc;
749         struct device *dev = &pdev->dev;
750         struct clk *bus_clk;
751         int ret;
752
753         bus_clk = devm_clk_get_optional(dev, "bus");
754         if (IS_ERR(bus_clk))
755                 return PTR_ERR(bus_clk);
756
757         if (bus_clk) {
758                 ret = clk_prepare_enable(bus_clk);
759                 if (ret)
760                         return ret;
761
762                 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
763                                                bus_clk);
764                 if (ret)
765                         return ret;
766         }
767
768         if (!chip) {
769                 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
770                 if (!chip)
771                         return -ENOMEM;
772
773                 spin_lock_init(&chip->lock);
774
775                 chip->base = devm_platform_ioremap_resource(pdev, 0);
776                 if (IS_ERR(chip->base))
777                         return PTR_ERR(chip->base);
778
779                 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
780                         ret = sun6i_rtc_ccu_probe(dev, chip->base);
781                         if (ret)
782                                 return ret;
783                 }
784         }
785
786         platform_set_drvdata(pdev, chip);
787
788         chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
789
790         chip->irq = platform_get_irq(pdev, 0);
791         if (chip->irq < 0)
792                 return chip->irq;
793
794         ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
795                                0, dev_name(&pdev->dev), chip);
796         if (ret) {
797                 dev_err(&pdev->dev, "Could not request IRQ\n");
798                 return ret;
799         }
800
801         /* clear the alarm counter value */
802         writel(0, chip->base + SUN6I_ALRM_COUNTER);
803
804         /* disable counter alarm */
805         writel(0, chip->base + SUN6I_ALRM_EN);
806
807         /* disable counter alarm interrupt */
808         writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
809
810         /* disable week alarm */
811         writel(0, chip->base + SUN6I_ALRM1_EN);
812
813         /* disable week alarm interrupt */
814         writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
815
816         /* clear counter alarm pending interrupts */
817         writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
818                chip->base + SUN6I_ALRM_IRQ_STA);
819
820         /* clear week alarm pending interrupts */
821         writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
822                chip->base + SUN6I_ALRM1_IRQ_STA);
823
824         /* disable alarm wakeup */
825         writel(0, chip->base + SUN6I_ALARM_CONFIG);
826
827         clk_prepare_enable(chip->losc);
828
829         device_init_wakeup(&pdev->dev, 1);
830
831         chip->rtc = devm_rtc_allocate_device(&pdev->dev);
832         if (IS_ERR(chip->rtc))
833                 return PTR_ERR(chip->rtc);
834
835         chip->rtc->ops = &sun6i_rtc_ops;
836         if (chip->flags & RTC_LINEAR_DAY)
837                 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
838         else
839                 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
840
841         ret = devm_rtc_register_device(chip->rtc);
842         if (ret)
843                 return ret;
844
845         sun6i_rtc_nvmem_cfg.priv = chip;
846         ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
847         if (ret)
848                 return ret;
849
850         dev_info(&pdev->dev, "RTC enabled\n");
851
852         return 0;
853 }
854
855 /*
856  * As far as RTC functionality goes, all models are the same. The
857  * datasheets claim that different models have different number of
858  * registers available for non-volatile storage, but experiments show
859  * that all SoCs have 16 registers available for this purpose.
860  */
861 static const struct of_device_id sun6i_rtc_dt_ids[] = {
862         { .compatible = "allwinner,sun6i-a31-rtc" },
863         { .compatible = "allwinner,sun8i-a23-rtc" },
864         { .compatible = "allwinner,sun8i-h3-rtc" },
865         { .compatible = "allwinner,sun8i-r40-rtc" },
866         { .compatible = "allwinner,sun8i-v3-rtc" },
867         { .compatible = "allwinner,sun50i-h5-rtc" },
868         { .compatible = "allwinner,sun50i-h6-rtc" },
869         { .compatible = "allwinner,sun50i-h616-rtc",
870                 .data = (void *)RTC_LINEAR_DAY },
871         { .compatible = "allwinner,sun50i-r329-rtc",
872                 .data = (void *)RTC_LINEAR_DAY },
873         { /* sentinel */ },
874 };
875 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
876
877 static struct platform_driver sun6i_rtc_driver = {
878         .probe          = sun6i_rtc_probe,
879         .driver         = {
880                 .name           = "sun6i-rtc",
881                 .of_match_table = sun6i_rtc_dt_ids,
882                 .pm = &sun6i_rtc_pm_ops,
883         },
884 };
885 builtin_platform_driver(sun6i_rtc_driver);