1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * drivers/rtc/rtc-pl031.c
5 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
7 * Author: Deepak Saxena <dsaxena@plexity.net>
9 * Copyright 2006 (c) MontaVista Software, Inc.
11 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
12 * Copyright 2010 (c) ST-Ericsson AB
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/amba/bus.h>
20 #include <linux/bcd.h>
21 #include <linux/delay.h>
22 #include <linux/pm_wakeirq.h>
23 #include <linux/slab.h>
26 * Register definitions
28 #define RTC_DR 0x00 /* Data read register */
29 #define RTC_MR 0x04 /* Match register */
30 #define RTC_LR 0x08 /* Data load register */
31 #define RTC_CR 0x0c /* Control register */
32 #define RTC_IMSC 0x10 /* Interrupt mask and set register */
33 #define RTC_RIS 0x14 /* Raw interrupt status register */
34 #define RTC_MIS 0x18 /* Masked interrupt status register */
35 #define RTC_ICR 0x1c /* Interrupt clear register */
36 /* ST variants have additional timer functionality */
37 #define RTC_TDR 0x20 /* Timer data read register */
38 #define RTC_TLR 0x24 /* Timer data load register */
39 #define RTC_TCR 0x28 /* Timer control register */
40 #define RTC_YDR 0x30 /* Year data read register */
41 #define RTC_YMR 0x34 /* Year match register */
42 #define RTC_YLR 0x38 /* Year data load register */
44 #define RTC_CR_EN (1 << 0) /* counter enable bit */
45 #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
47 #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
49 /* Common bit definitions for Interrupt status and control registers */
50 #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
51 #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
53 /* Common bit definations for ST v2 for reading/writing time */
54 #define RTC_SEC_SHIFT 0
55 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
56 #define RTC_MIN_SHIFT 6
57 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
58 #define RTC_HOUR_SHIFT 12
59 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
60 #define RTC_WDAY_SHIFT 17
61 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
62 #define RTC_MDAY_SHIFT 20
63 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
64 #define RTC_MON_SHIFT 25
65 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
67 #define RTC_TIMER_FREQ 32768
70 * struct pl031_vendor_data - per-vendor variations
71 * @ops: the vendor-specific operations used on this silicon version
72 * @clockwatch: if this is an ST Microelectronics silicon version with a
74 * @st_weekday: if this is an ST Microelectronics silicon version that need
76 * @irqflags: special IRQ flags per variant
78 struct pl031_vendor_data {
79 struct rtc_class_ops ops;
82 unsigned long irqflags;
88 struct pl031_vendor_data *vendor;
89 struct rtc_device *rtc;
93 static int pl031_alarm_irq_enable(struct device *dev,
96 struct pl031_local *ldata = dev_get_drvdata(dev);
99 /* Clear any pending alarm interrupts. */
100 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
102 imsc = readl(ldata->base + RTC_IMSC);
105 writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
107 writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
113 * Convert Gregorian date to ST v2 RTC format.
115 static int pl031_stv2_tm_to_time(struct device *dev,
116 struct rtc_time *tm, unsigned long *st_time,
117 unsigned long *bcd_year)
119 int year = tm->tm_year + 1900;
120 int wday = tm->tm_wday;
122 /* wday masking is not working in hardware so wday must be valid */
123 if (wday < -1 || wday > 6) {
124 dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
126 } else if (wday == -1) {
127 /* wday is not provided, calculate it here */
128 struct rtc_time calc_tm;
130 rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm);
131 wday = calc_tm.tm_wday;
134 *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
136 *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
137 | (tm->tm_mday << RTC_MDAY_SHIFT)
138 | ((wday + 1) << RTC_WDAY_SHIFT)
139 | (tm->tm_hour << RTC_HOUR_SHIFT)
140 | (tm->tm_min << RTC_MIN_SHIFT)
141 | (tm->tm_sec << RTC_SEC_SHIFT);
147 * Convert ST v2 RTC format to Gregorian date.
149 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
152 tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
153 tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
154 tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
155 tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
156 tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
157 tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
158 tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
160 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
166 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
168 struct pl031_local *ldata = dev_get_drvdata(dev);
170 pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
171 readl(ldata->base + RTC_YDR), tm);
176 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
179 unsigned long bcd_year;
180 struct pl031_local *ldata = dev_get_drvdata(dev);
183 ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
185 writel(bcd_year, ldata->base + RTC_YLR);
186 writel(time, ldata->base + RTC_LR);
192 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
194 struct pl031_local *ldata = dev_get_drvdata(dev);
197 ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
198 readl(ldata->base + RTC_YMR), &alarm->time);
200 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
201 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
206 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
208 struct pl031_local *ldata = dev_get_drvdata(dev);
210 unsigned long bcd_year;
213 ret = pl031_stv2_tm_to_time(dev, &alarm->time,
216 writel(bcd_year, ldata->base + RTC_YMR);
217 writel(time, ldata->base + RTC_MR);
219 pl031_alarm_irq_enable(dev, alarm->enabled);
225 static irqreturn_t pl031_interrupt(int irq, void *dev_id)
227 struct pl031_local *ldata = dev_id;
228 unsigned long rtcmis;
229 unsigned long events = 0;
231 rtcmis = readl(ldata->base + RTC_MIS);
232 if (rtcmis & RTC_BIT_AI) {
233 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
234 events |= (RTC_AF | RTC_IRQF);
235 rtc_update_irq(ldata->rtc, 1, events);
243 static int pl031_read_time(struct device *dev, struct rtc_time *tm)
245 struct pl031_local *ldata = dev_get_drvdata(dev);
247 rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm);
252 static int pl031_set_time(struct device *dev, struct rtc_time *tm)
254 struct pl031_local *ldata = dev_get_drvdata(dev);
256 writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR);
261 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
263 struct pl031_local *ldata = dev_get_drvdata(dev);
265 rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
267 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
268 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
273 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
275 struct pl031_local *ldata = dev_get_drvdata(dev);
277 writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR);
278 pl031_alarm_irq_enable(dev, alarm->enabled);
283 static void pl031_remove(struct amba_device *adev)
285 struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
287 dev_pm_clear_wake_irq(&adev->dev);
288 device_init_wakeup(&adev->dev, false);
290 free_irq(adev->irq[0], ldata);
291 amba_release_regions(adev);
294 static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
297 struct pl031_local *ldata;
298 struct pl031_vendor_data *vendor = id->data;
299 struct rtc_class_ops *ops;
300 unsigned long time, data;
302 ret = amba_request_regions(adev, NULL);
306 ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
308 ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
310 if (!ldata || !ops) {
315 ldata->vendor = vendor;
316 ldata->base = devm_ioremap(&adev->dev, adev->res.start,
317 resource_size(&adev->res));
323 amba_set_drvdata(adev, ldata);
325 dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
326 dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
328 data = readl(ldata->base + RTC_CR);
329 /* Enable the clockwatch on ST Variants */
330 if (vendor->clockwatch)
334 writel(data, ldata->base + RTC_CR);
337 * On ST PL031 variants, the RTC reset value does not provide correct
338 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
340 if (vendor->st_weekday) {
341 if (readl(ldata->base + RTC_YDR) == 0x2000) {
342 time = readl(ldata->base + RTC_DR);
344 (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
346 time = time | (0x7 << RTC_WDAY_SHIFT);
347 writel(0x2000, ldata->base + RTC_YLR);
348 writel(time, ldata->base + RTC_LR);
353 device_init_wakeup(&adev->dev, true);
354 ldata->rtc = devm_rtc_allocate_device(&adev->dev);
355 if (IS_ERR(ldata->rtc)) {
356 ret = PTR_ERR(ldata->rtc);
361 clear_bit(RTC_FEATURE_ALARM, ldata->rtc->features);
363 ldata->rtc->ops = ops;
364 ldata->rtc->range_min = vendor->range_min;
365 ldata->rtc->range_max = vendor->range_max;
367 ret = devm_rtc_register_device(ldata->rtc);
372 ret = request_irq(adev->irq[0], pl031_interrupt,
373 vendor->irqflags, "rtc-pl031", ldata);
376 dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
381 amba_release_regions(adev);
387 /* Operations for the original ARM version */
388 static struct pl031_vendor_data arm_pl031 = {
390 .read_time = pl031_read_time,
391 .set_time = pl031_set_time,
392 .read_alarm = pl031_read_alarm,
393 .set_alarm = pl031_set_alarm,
394 .alarm_irq_enable = pl031_alarm_irq_enable,
396 .range_max = U32_MAX,
399 /* The First ST derivative */
400 static struct pl031_vendor_data stv1_pl031 = {
402 .read_time = pl031_read_time,
403 .set_time = pl031_set_time,
404 .read_alarm = pl031_read_alarm,
405 .set_alarm = pl031_set_alarm,
406 .alarm_irq_enable = pl031_alarm_irq_enable,
410 .range_max = U32_MAX,
413 /* And the second ST derivative */
414 static struct pl031_vendor_data stv2_pl031 = {
416 .read_time = pl031_stv2_read_time,
417 .set_time = pl031_stv2_set_time,
418 .read_alarm = pl031_stv2_read_alarm,
419 .set_alarm = pl031_stv2_set_alarm,
420 .alarm_irq_enable = pl031_alarm_irq_enable,
425 * This variant shares the IRQ with another block and must not
426 * suspend that IRQ line.
427 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
428 * remove IRQF_COND_SUSPEND
430 .irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
431 .range_min = RTC_TIMESTAMP_BEGIN_0000,
432 .range_max = RTC_TIMESTAMP_END_9999,
435 static const struct amba_id pl031_ids[] = {
441 /* ST Micro variants */
455 MODULE_DEVICE_TABLE(amba, pl031_ids);
457 static struct amba_driver pl031_driver = {
461 .id_table = pl031_ids,
462 .probe = pl031_probe,
463 .remove = pl031_remove,
466 module_amba_driver(pl031_driver);
468 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
469 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
470 MODULE_LICENSE("GPL");