2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
20 #include <linux/of_device.h>
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
42 #define RTC_ENABLE_BIT (1 << 7)
45 #define MAX_PIE_FREQ 512
47 #define MXC_RTC_TIME 0
48 #define MXC_RTC_ALARM 1
50 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
51 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
52 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
53 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
54 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
55 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
56 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
57 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
58 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
59 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
60 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
61 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
62 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
69 struct rtc_plat_data {
70 struct rtc_device *rtc;
75 struct rtc_time g_rtc_alarm;
76 enum imx_rtc_type devtype;
79 static const struct platform_device_id imx_rtc_devtype[] = {
82 .driver_data = IMX1_RTC,
85 .driver_data = IMX21_RTC,
90 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
93 static const struct of_device_id imx_rtc_dt_ids[] = {
94 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
95 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
98 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
101 static inline int is_imx1_rtc(struct rtc_plat_data *data)
103 return data->devtype == IMX1_RTC;
107 * This function is used to obtain the RTC time or the alarm value in
110 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
112 struct platform_device *pdev = to_platform_device(dev);
113 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114 void __iomem *ioaddr = pdata->ioaddr;
115 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
117 switch (time_alarm) {
119 day = readw(ioaddr + RTC_DAYR);
120 hr_min = readw(ioaddr + RTC_HOURMIN);
121 sec = readw(ioaddr + RTC_SECOND);
124 day = readw(ioaddr + RTC_DAYALARM);
125 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126 sec = readw(ioaddr + RTC_ALRM_SEC);
133 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
137 * This function sets the RTC alarm value or the time value.
139 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
141 u32 tod, day, hr, min, sec, temp;
142 struct platform_device *pdev = to_platform_device(dev);
143 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144 void __iomem *ioaddr = pdata->ioaddr;
146 day = div_s64_rem(time, 86400, &tod);
148 /* time is within a day now */
152 /* time is within an hour now */
154 sec = tod - min * 60;
156 temp = (hr << 8) + min;
158 switch (time_alarm) {
160 writew(day, ioaddr + RTC_DAYR);
161 writew(sec, ioaddr + RTC_SECOND);
162 writew(temp, ioaddr + RTC_HOURMIN);
165 writew(day, ioaddr + RTC_DAYALARM);
166 writew(sec, ioaddr + RTC_ALRM_SEC);
167 writew(temp, ioaddr + RTC_ALRM_HM);
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
176 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
179 struct platform_device *pdev = to_platform_device(dev);
180 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181 void __iomem *ioaddr = pdata->ioaddr;
183 time = rtc_tm_to_time64(alrm);
185 /* clear all the interrupt status bits */
186 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
190 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191 unsigned int enabled)
193 struct platform_device *pdev = to_platform_device(dev);
194 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195 void __iomem *ioaddr = pdata->ioaddr;
198 spin_lock_irq(&pdata->rtc->irq_lock);
199 reg = readw(ioaddr + RTC_RTCIENR);
206 writew(reg, ioaddr + RTC_RTCIENR);
207 spin_unlock_irq(&pdata->rtc->irq_lock);
210 /* This function is the RTC interrupt service routine. */
211 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
213 struct platform_device *pdev = dev_id;
214 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215 void __iomem *ioaddr = pdata->ioaddr;
220 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222 /* clear interrupt sources */
223 writew(status, ioaddr + RTC_RTCISR);
225 /* update irq data & counter */
226 if (status & RTC_ALM_BIT) {
227 events |= (RTC_AF | RTC_IRQF);
228 /* RTC alarm should be one-shot */
229 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
232 if (status & PIT_ALL_ON)
233 events |= (RTC_PF | RTC_IRQF);
235 rtc_update_irq(pdata->rtc, 1, events);
236 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
241 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
243 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
248 * This function reads the current RTC time into tm in Gregorian date.
250 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
254 /* Avoid roll-over from reading the different registers */
256 val = get_alarm_or_time(dev, MXC_RTC_TIME);
257 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
259 rtc_time64_to_tm(val, tm);
265 * This function sets the internal RTC time based on tm in Gregorian date.
267 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
269 struct platform_device *pdev = to_platform_device(dev);
270 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
273 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
275 if (is_imx1_rtc(pdata)) {
278 rtc_time64_to_tm(time, &tm);
280 time = rtc_tm_to_time64(&tm);
283 /* Avoid roll-over from reading the different registers */
285 set_alarm_or_time(dev, MXC_RTC_TIME, time);
286 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
296 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
298 struct platform_device *pdev = to_platform_device(dev);
299 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300 void __iomem *ioaddr = pdata->ioaddr;
302 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
309 * This function sets the RTC alarm based on passed in alrm.
311 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
313 struct platform_device *pdev = to_platform_device(dev);
314 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
316 rtc_update_alarm(dev, &alrm->time);
318 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
325 static const struct rtc_class_ops mxc_rtc_ops = {
326 .read_time = mxc_rtc_read_time,
327 .set_mmss64 = mxc_rtc_set_mmss,
328 .read_alarm = mxc_rtc_read_alarm,
329 .set_alarm = mxc_rtc_set_alarm,
330 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
333 static int mxc_rtc_probe(struct platform_device *pdev)
335 struct resource *res;
336 struct rtc_device *rtc;
337 struct rtc_plat_data *pdata = NULL;
341 const struct of_device_id *of_id;
343 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
347 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
349 pdata->devtype = (enum imx_rtc_type)of_id->data;
351 pdata->devtype = pdev->id_entry->driver_data;
353 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355 if (IS_ERR(pdata->ioaddr))
356 return PTR_ERR(pdata->ioaddr);
358 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
359 if (IS_ERR(pdata->clk_ipg)) {
360 dev_err(&pdev->dev, "unable to get ipg clock!\n");
361 return PTR_ERR(pdata->clk_ipg);
364 ret = clk_prepare_enable(pdata->clk_ipg);
368 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369 if (IS_ERR(pdata->clk_ref)) {
370 dev_err(&pdev->dev, "unable to get ref clock!\n");
371 ret = PTR_ERR(pdata->clk_ref);
372 goto exit_put_clk_ipg;
375 ret = clk_prepare_enable(pdata->clk_ref);
377 goto exit_put_clk_ipg;
379 rate = clk_get_rate(pdata->clk_ref);
382 reg = RTC_INPUT_CLK_32768HZ;
383 else if (rate == 32000)
384 reg = RTC_INPUT_CLK_32000HZ;
385 else if (rate == 38400)
386 reg = RTC_INPUT_CLK_38400HZ;
388 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
390 goto exit_put_clk_ref;
393 reg |= RTC_ENABLE_BIT;
394 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
398 goto exit_put_clk_ref;
401 platform_set_drvdata(pdev, pdata);
403 /* Configure and enable the RTC */
404 pdata->irq = platform_get_irq(pdev, 0);
406 if (pdata->irq >= 0 &&
407 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408 IRQF_SHARED, pdev->name, pdev) < 0) {
409 dev_warn(&pdev->dev, "interrupt not available.\n");
414 device_init_wakeup(&pdev->dev, 1);
416 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
420 goto exit_put_clk_ref;
428 clk_disable_unprepare(pdata->clk_ref);
430 clk_disable_unprepare(pdata->clk_ipg);
435 static int mxc_rtc_remove(struct platform_device *pdev)
437 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
439 clk_disable_unprepare(pdata->clk_ref);
440 clk_disable_unprepare(pdata->clk_ipg);
445 #ifdef CONFIG_PM_SLEEP
446 static int mxc_rtc_suspend(struct device *dev)
448 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
450 if (device_may_wakeup(dev))
451 enable_irq_wake(pdata->irq);
456 static int mxc_rtc_resume(struct device *dev)
458 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
460 if (device_may_wakeup(dev))
461 disable_irq_wake(pdata->irq);
467 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
469 static struct platform_driver mxc_rtc_driver = {
472 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473 .pm = &mxc_rtc_pm_ops,
475 .id_table = imx_rtc_devtype,
476 .probe = mxc_rtc_probe,
477 .remove = mxc_rtc_remove,
480 module_platform_driver(mxc_rtc_driver)
482 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484 MODULE_LICENSE("GPL");