1 // SPDX-License-Identifier: GPL-2.0-only
3 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
5 * Copyright (C) 2008 David Brownell
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/rtc.h>
12 #include <linux/workqueue.h>
14 #include <linux/spi/spi.h>
15 #include <linux/spi/ds1305.h>
16 #include <linux/module.h>
20 * Registers ... mask DS1305_WRITE into register address to write,
21 * otherwise you're reading it. All non-bitmask values are BCD.
23 #define DS1305_WRITE 0x80
26 /* RTC date/time ... the main special cases are that we:
27 * - Need fancy "hours" encoding in 12hour mode
28 * - Don't rely on the "day-of-week" field (or tm_wday)
29 * - Are a 21st-century clock (2000 <= year < 2100)
31 #define DS1305_RTC_LEN 7 /* bytes for RTC regs */
33 #define DS1305_SEC 0x00 /* register addresses */
34 #define DS1305_MIN 0x01
35 #define DS1305_HOUR 0x02
36 # define DS1305_HR_12 0x40 /* set == 12 hr mode */
37 # define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
38 #define DS1305_WDAY 0x03
39 #define DS1305_MDAY 0x04
40 #define DS1305_MON 0x05
41 #define DS1305_YEAR 0x06
44 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
45 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
47 * NOTE that since we don't use WDAY, we limit ourselves to alarms
48 * only one day into the future (vs potentially up to a week).
50 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
51 * don't currently support them. We'd either need to do it only when
52 * no alarm is pending (not the standard model), or to use the second
53 * alarm (implying that this is a DS1305 not DS1306, *and* that either
54 * it's wired up a second IRQ we know, or that INTCN is set)
56 #define DS1305_ALM_LEN 4 /* bytes for ALM regs */
57 #define DS1305_ALM_DISABLE 0x80
59 #define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
60 #define DS1305_ALM1(r) (0x0b + (r))
63 /* three control registers */
64 #define DS1305_CONTROL_LEN 3 /* bytes of control regs */
66 #define DS1305_CONTROL 0x0f /* register addresses */
67 # define DS1305_nEOSC 0x80 /* low enables oscillator */
68 # define DS1305_WP 0x40 /* write protect */
69 # define DS1305_INTCN 0x04 /* clear == only int0 used */
70 # define DS1306_1HZ 0x04 /* enable 1Hz output */
71 # define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
72 # define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
73 #define DS1305_STATUS 0x10
74 /* status has just AEIx bits, mirrored as IRQFx */
75 #define DS1305_TRICKLE 0x11
76 /* trickle bits are defined in <linux/spi/ds1305.h> */
78 /* a bunch of NVRAM */
79 #define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
81 #define DS1305_NVRAM 0x20 /* register addresses */
85 struct spi_device *spi;
86 struct rtc_device *rtc;
88 struct work_struct work;
91 #define FLAG_EXITING 0
94 u8 ctrl[DS1305_CONTROL_LEN];
98 /*----------------------------------------------------------------------*/
101 * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
102 * software (like a bootloader) which may require it.
105 static unsigned bcd2hour(u8 bcd)
107 if (bcd & DS1305_HR_12) {
110 bcd &= ~DS1305_HR_12;
111 if (bcd & DS1305_HR_PM) {
113 bcd &= ~DS1305_HR_PM;
115 hour += bcd2bin(bcd);
121 static u8 hour2bcd(bool hr12, int hour)
126 return DS1305_HR_12 | bin2bcd(hour);
128 return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
130 return bin2bcd(hour);
133 /*----------------------------------------------------------------------*/
136 * Interface to RTC framework
139 static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
141 struct ds1305 *ds1305 = dev_get_drvdata(dev);
145 buf[0] = DS1305_WRITE | DS1305_CONTROL;
146 buf[1] = ds1305->ctrl[0];
149 if (ds1305->ctrl[0] & DS1305_AEI0)
151 buf[1] |= DS1305_AEI0;
153 if (!(buf[1] & DS1305_AEI0))
155 buf[1] &= ~DS1305_AEI0;
157 err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
159 ds1305->ctrl[0] = buf[1];
167 * Get/set of date and time is pretty normal.
170 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
172 struct ds1305 *ds1305 = dev_get_drvdata(dev);
173 u8 addr = DS1305_SEC;
174 u8 buf[DS1305_RTC_LEN];
177 /* Use write-then-read to get all the date/time registers
178 * since dma from stack is nonportable
180 status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
185 dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
187 /* Decode the registers */
188 time->tm_sec = bcd2bin(buf[DS1305_SEC]);
189 time->tm_min = bcd2bin(buf[DS1305_MIN]);
190 time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
191 time->tm_wday = buf[DS1305_WDAY] - 1;
192 time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
193 time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
194 time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
196 dev_vdbg(dev, "%s secs=%d, mins=%d, "
197 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
198 "read", time->tm_sec, time->tm_min,
199 time->tm_hour, time->tm_mday,
200 time->tm_mon, time->tm_year, time->tm_wday);
205 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
207 struct ds1305 *ds1305 = dev_get_drvdata(dev);
208 u8 buf[1 + DS1305_RTC_LEN];
211 dev_vdbg(dev, "%s secs=%d, mins=%d, "
212 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
213 "write", time->tm_sec, time->tm_min,
214 time->tm_hour, time->tm_mday,
215 time->tm_mon, time->tm_year, time->tm_wday);
217 /* Write registers starting at the first time/date address. */
218 *bp++ = DS1305_WRITE | DS1305_SEC;
220 *bp++ = bin2bcd(time->tm_sec);
221 *bp++ = bin2bcd(time->tm_min);
222 *bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
223 *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
224 *bp++ = bin2bcd(time->tm_mday);
225 *bp++ = bin2bcd(time->tm_mon + 1);
226 *bp++ = bin2bcd(time->tm_year - 100);
228 dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
230 /* use write-then-read since dma from stack is nonportable */
231 return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
236 * Get/set of alarm is a bit funky:
238 * - First there's the inherent raciness of getting the (partitioned)
239 * status of an alarm that could trigger while we're reading parts
242 * - Second there's its limited range (we could increase it a bit by
243 * relying on WDAY), which means it will easily roll over.
245 * - Third there's the choice of two alarms and alarm signals.
246 * Here we use ALM0 and expect that nINT0 (open drain) is used;
247 * that's the only real option for DS1306 runtime alarms, and is
250 * - Fourth, there's also ALM1, and a second interrupt signal:
251 * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
252 * + On DS1306 ALM1 only uses INT1 (an active high pulse)
253 * and it won't work when VCC1 is active.
255 * So to be most general, we should probably set both alarms to the
256 * same value, letting ALM1 be the wakeup event source on DS1306
257 * and handling several wiring options on DS1305.
259 * - Fifth, we support the polled mode (as well as possible; why not?)
260 * even when no interrupt line is wired to an IRQ.
264 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
266 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
268 struct ds1305 *ds1305 = dev_get_drvdata(dev);
269 struct spi_device *spi = ds1305->spi;
272 u8 buf[DS1305_ALM_LEN];
274 /* Refresh control register cache BEFORE reading ALM0 registers,
275 * since reading alarm registers acks any pending IRQ. That
276 * makes returning "pending" status a bit of a lie, but that bit
277 * of EFI status is at best fragile anyway (given IRQ handlers).
279 addr = DS1305_CONTROL;
280 status = spi_write_then_read(spi, &addr, sizeof(addr),
281 ds1305->ctrl, sizeof(ds1305->ctrl));
285 alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
286 alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
288 /* get and check ALM0 registers */
289 addr = DS1305_ALM0(DS1305_SEC);
290 status = spi_write_then_read(spi, &addr, sizeof(addr),
295 dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
296 "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
297 buf[DS1305_HOUR], buf[DS1305_WDAY]);
299 if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
300 || (DS1305_ALM_DISABLE & buf[DS1305_MIN])
301 || (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
304 /* Stuff these values into alm->time and let RTC framework code
305 * fill in the rest ... and also handle rollover to tomorrow when
308 alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
309 alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
310 alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
316 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
318 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
320 struct ds1305 *ds1305 = dev_get_drvdata(dev);
321 struct spi_device *spi = ds1305->spi;
322 unsigned long now, later;
325 u8 buf[1 + DS1305_ALM_LEN];
327 /* convert desired alarm to time_t */
328 later = rtc_tm_to_time64(&alm->time);
330 /* Read current time as time_t */
331 status = ds1305_get_time(dev, &tm);
334 now = rtc_tm_to_time64(&tm);
336 /* make sure alarm fires within the next 24 hours */
339 if ((later - now) > ds1305->rtc->alarm_offset_max)
342 /* disable alarm if needed */
343 if (ds1305->ctrl[0] & DS1305_AEI0) {
344 ds1305->ctrl[0] &= ~DS1305_AEI0;
346 buf[0] = DS1305_WRITE | DS1305_CONTROL;
347 buf[1] = ds1305->ctrl[0];
348 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
354 buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
355 buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
356 buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
357 buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
358 buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
360 dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
361 "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
362 buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
364 status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
368 /* enable alarm if requested */
370 ds1305->ctrl[0] |= DS1305_AEI0;
372 buf[0] = DS1305_WRITE | DS1305_CONTROL;
373 buf[1] = ds1305->ctrl[0];
374 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
380 #ifdef CONFIG_PROC_FS
382 static int ds1305_proc(struct device *dev, struct seq_file *seq)
384 struct ds1305 *ds1305 = dev_get_drvdata(dev);
386 char *resistors = "";
388 /* ctrl[2] is treated as read-only; no locking needed */
389 if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
390 switch (ds1305->ctrl[2] & 0x0c) {
391 case DS1305_TRICKLE_DS2:
392 diodes = "2 diodes, ";
394 case DS1305_TRICKLE_DS1:
395 diodes = "1 diode, ";
400 switch (ds1305->ctrl[2] & 0x03) {
401 case DS1305_TRICKLE_2K:
402 resistors = "2k Ohm";
404 case DS1305_TRICKLE_4K:
405 resistors = "4k Ohm";
407 case DS1305_TRICKLE_8K:
408 resistors = "8k Ohm";
417 seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
423 #define ds1305_proc NULL
426 static const struct rtc_class_ops ds1305_ops = {
427 .read_time = ds1305_get_time,
428 .set_time = ds1305_set_time,
429 .read_alarm = ds1305_get_alarm,
430 .set_alarm = ds1305_set_alarm,
432 .alarm_irq_enable = ds1305_alarm_irq_enable,
435 static void ds1305_work(struct work_struct *work)
437 struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
438 struct spi_device *spi = ds1305->spi;
442 /* lock to protect ds1305->ctrl */
443 rtc_lock(ds1305->rtc);
445 /* Disable the IRQ, and clear its status ... for now, we "know"
446 * that if more than one alarm is active, they're in sync.
447 * Note that reading ALM data registers also clears IRQ status.
449 ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
452 buf[0] = DS1305_WRITE | DS1305_CONTROL;
453 buf[1] = ds1305->ctrl[0];
456 status = spi_write_then_read(spi, buf, sizeof(buf),
459 dev_dbg(&spi->dev, "clear irq --> %d\n", status);
461 rtc_unlock(ds1305->rtc);
463 if (!test_bit(FLAG_EXITING, &ds1305->flags))
464 enable_irq(spi->irq);
466 rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
470 * This "real" IRQ handler hands off to a workqueue mostly to allow
471 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
472 * I/O requests in IRQ context (to clear the IRQ status).
474 static irqreturn_t ds1305_irq(int irq, void *p)
476 struct ds1305 *ds1305 = p;
479 schedule_work(&ds1305->work);
483 /*----------------------------------------------------------------------*/
486 * Interface for NVRAM
489 static void msg_init(struct spi_message *m, struct spi_transfer *x,
490 u8 *addr, size_t count, char *tx, char *rx)
493 memset(x, 0, 2 * sizeof(*x));
497 spi_message_add_tail(x, m);
504 spi_message_add_tail(x, m);
507 static int ds1305_nvram_read(void *priv, unsigned int off, void *buf,
510 struct ds1305 *ds1305 = priv;
511 struct spi_device *spi = ds1305->spi;
513 struct spi_message m;
514 struct spi_transfer x[2];
516 addr = DS1305_NVRAM + off;
517 msg_init(&m, x, &addr, count, NULL, buf);
519 return spi_sync(spi, &m);
522 static int ds1305_nvram_write(void *priv, unsigned int off, void *buf,
525 struct ds1305 *ds1305 = priv;
526 struct spi_device *spi = ds1305->spi;
528 struct spi_message m;
529 struct spi_transfer x[2];
531 addr = (DS1305_WRITE | DS1305_NVRAM) + off;
532 msg_init(&m, x, &addr, count, buf, NULL);
534 return spi_sync(spi, &m);
537 /*----------------------------------------------------------------------*/
540 * Interface to SPI stack
543 static int ds1305_probe(struct spi_device *spi)
545 struct ds1305 *ds1305;
548 struct ds1305_platform_data *pdata = dev_get_platdata(&spi->dev);
549 bool write_ctrl = false;
550 struct nvmem_config ds1305_nvmem_cfg = {
551 .name = "ds1305_nvram",
554 .size = DS1305_NVRAM_LEN,
555 .reg_read = ds1305_nvram_read,
556 .reg_write = ds1305_nvram_write,
559 /* Sanity check board setup data. This may be hooked up
560 * in 3wire mode, but we don't care. Note that unless
561 * there's an inverter in place, this needs SPI_CS_HIGH!
563 if ((spi->bits_per_word && spi->bits_per_word != 8)
564 || (spi->max_speed_hz > 2000000)
565 || !(spi->mode & SPI_CPHA))
568 /* set up driver data */
569 ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
573 spi_set_drvdata(spi, ds1305);
575 /* read and cache control registers */
576 addr = DS1305_CONTROL;
577 status = spi_write_then_read(spi, &addr, sizeof(addr),
578 ds1305->ctrl, sizeof(ds1305->ctrl));
580 dev_dbg(&spi->dev, "can't %s, %d\n",
585 dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
587 /* Sanity check register values ... partially compensating for the
588 * fact that SPI has no device handshake. A pullup on MISO would
589 * make these tests fail; but not all systems will have one. If
590 * some register is neither 0x00 nor 0xff, a chip is likely there.
592 if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
593 dev_dbg(&spi->dev, "RTC chip is not present\n");
596 if (ds1305->ctrl[2] == 0)
597 dev_dbg(&spi->dev, "chip may not be present\n");
599 /* enable writes if needed ... if we were paranoid it would
600 * make sense to enable them only when absolutely necessary.
602 if (ds1305->ctrl[0] & DS1305_WP) {
605 ds1305->ctrl[0] &= ~DS1305_WP;
607 buf[0] = DS1305_WRITE | DS1305_CONTROL;
608 buf[1] = ds1305->ctrl[0];
609 status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
611 dev_dbg(&spi->dev, "clear WP --> %d\n", status);
616 /* on DS1305, maybe start oscillator; like most low power
617 * oscillators, it may take a second to stabilize
619 if (ds1305->ctrl[0] & DS1305_nEOSC) {
620 ds1305->ctrl[0] &= ~DS1305_nEOSC;
622 dev_warn(&spi->dev, "SET TIME!\n");
625 /* ack any pending IRQs */
626 if (ds1305->ctrl[1]) {
631 /* this may need one-time (re)init */
633 /* maybe enable trickle charge */
634 if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
635 ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
640 /* on DS1306, configure 1 Hz signal */
641 if (pdata->is_ds1306) {
643 if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
644 ds1305->ctrl[0] |= DS1306_1HZ;
648 if (ds1305->ctrl[0] & DS1306_1HZ) {
649 ds1305->ctrl[0] &= ~DS1306_1HZ;
659 buf[0] = DS1305_WRITE | DS1305_CONTROL;
660 buf[1] = ds1305->ctrl[0];
661 buf[2] = ds1305->ctrl[1];
662 buf[3] = ds1305->ctrl[2];
663 status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
665 dev_dbg(&spi->dev, "can't %s, %d\n",
670 dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
673 /* see if non-Linux software set up AM/PM mode */
675 status = spi_write_then_read(spi, &addr, sizeof(addr),
676 &value, sizeof(value));
678 dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
682 ds1305->hr12 = (DS1305_HR_12 & value) != 0;
684 dev_dbg(&spi->dev, "AM/PM\n");
686 /* register RTC ... from here on, ds1305->ctrl needs locking */
687 ds1305->rtc = devm_rtc_allocate_device(&spi->dev);
688 if (IS_ERR(ds1305->rtc))
689 return PTR_ERR(ds1305->rtc);
691 ds1305->rtc->ops = &ds1305_ops;
692 ds1305->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
693 ds1305->rtc->range_max = RTC_TIMESTAMP_END_2099;
694 ds1305->rtc->alarm_offset_max = 24 * 60 * 60;
696 ds1305_nvmem_cfg.priv = ds1305;
697 status = devm_rtc_register_device(ds1305->rtc);
701 devm_rtc_nvmem_register(ds1305->rtc, &ds1305_nvmem_cfg);
703 /* Maybe set up alarm IRQ; be ready to handle it triggering right
704 * away. NOTE that we don't share this. The signal is active low,
705 * and we can't ack it before a SPI message delay. We temporarily
706 * disable the IRQ until it's acked, which lets us work with more
707 * IRQ trigger modes (not all IRQ controllers can do falling edge).
710 INIT_WORK(&ds1305->work, ds1305_work);
711 status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
712 0, dev_name(&ds1305->rtc->dev), ds1305);
714 dev_err(&spi->dev, "request_irq %d --> %d\n",
717 device_set_wakeup_capable(&spi->dev, 1);
724 static void ds1305_remove(struct spi_device *spi)
726 struct ds1305 *ds1305 = spi_get_drvdata(spi);
728 /* carefully shut down irq and workqueue, if present */
730 set_bit(FLAG_EXITING, &ds1305->flags);
731 devm_free_irq(&spi->dev, spi->irq, ds1305);
732 cancel_work_sync(&ds1305->work);
736 static struct spi_driver ds1305_driver = {
737 .driver.name = "rtc-ds1305",
738 .probe = ds1305_probe,
739 .remove = ds1305_remove,
740 /* REVISIT add suspend/resume */
743 module_spi_driver(ds1305_driver);
745 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
746 MODULE_LICENSE("GPL");
747 MODULE_ALIAS("spi:rtc-ds1305");