Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / rtc / rtc-cmos.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
61 static inline int cmos_use_acpi_alarm(void)
62 {
63         return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
67 static inline int cmos_use_acpi_alarm(void)
68 {
69         return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74         struct rtc_device       *rtc;
75         struct device           *dev;
76         int                     irq;
77         struct resource         *iomem;
78         time64_t                alarm_expires;
79
80         void                    (*wake_on)(struct device *);
81         void                    (*wake_off)(struct device *);
82
83         u8                      enabled_wake;
84         u8                      suspend_ctrl;
85
86         /* newer hardware extends the original register set */
87         u8                      day_alrm;
88         u8                      mon_alrm;
89         u8                      century;
90
91         struct rtc_wkalrm       saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)         ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
104
105 static inline int is_intr(u8 rtc_intr)
106 {
107         if (!(rtc_intr & RTC_IRQF))
108                 return 0;
109         return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
128 static inline int is_hpet_enabled(void)
129 {
130         return 0;
131 }
132
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135         return 0;
136 }
137
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140         return 0;
141 }
142
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146         return 0;
147 }
148
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151         return 0;
152 }
153
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156         return 0;
157 }
158
159 static inline int hpet_rtc_timer_init(void)
160 {
161         return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168         return 0;
169 }
170
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173         return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181         return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2       true
193
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196         outb(addr, RTC_PORT(2));
197         return inb(RTC_PORT(3));
198 }
199
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202         outb(addr, RTC_PORT(2));
203         outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2       false
209
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212         return 0;
213 }
214
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225         int ret;
226
227         /*
228          * If pm_trace abused the RTC for storage, set the timespec to 0,
229          * which tells the caller that this RTC value is unusable.
230          */
231         if (!pm_trace_rtc_valid())
232                 return -EIO;
233
234         ret = mc146818_get_time(t);
235         if (ret < 0) {
236                 dev_err_ratelimited(dev, "unable to read current time\n");
237                 return ret;
238         }
239
240         return 0;
241 }
242
243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245         /* NOTE: this ignores the issue whereby updating the seconds
246          * takes effect exactly 500ms after we write the register.
247          * (Also queueing and other delays before we get this far.)
248          */
249         return mc146818_set_time(t);
250 }
251
252 struct cmos_read_alarm_callback_param {
253         struct cmos_rtc *cmos;
254         struct rtc_time *time;
255         unsigned char   rtc_control;
256 };
257
258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259                                      void *param_in)
260 {
261         struct cmos_read_alarm_callback_param *p =
262                 (struct cmos_read_alarm_callback_param *)param_in;
263         struct rtc_time *time = p->time;
264
265         time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266         time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267         time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269         if (p->cmos->day_alrm) {
270                 /* ignore upper bits on readback per ACPI spec */
271                 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272                 if (!time->tm_mday)
273                         time->tm_mday = -1;
274
275                 if (p->cmos->mon_alrm) {
276                         time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277                         if (!time->tm_mon)
278                                 time->tm_mon = -1;
279                 }
280         }
281
282         p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284
285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287         struct cmos_rtc *cmos = dev_get_drvdata(dev);
288         struct cmos_read_alarm_callback_param p = {
289                 .cmos = cmos,
290                 .time = &t->time,
291         };
292
293         /* This not only a rtc_op, but also called directly */
294         if (!is_valid_irq(cmos->irq))
295                 return -EIO;
296
297         /* Basic alarms only support hour, minute, and seconds fields.
298          * Some also support day and month, for alarms up to a year in
299          * the future.
300          */
301
302         /* Some Intel chipsets disconnect the alarm registers when the clock
303          * update is in progress - during this time reads return bogus values
304          * and writes may fail silently. See for example "7th Generation Intel®
305          * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306          * 27.7.1
307          *
308          * Use the mc146818_avoid_UIP() function to avoid this.
309          */
310         if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
311                 return -EIO;
312
313         if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314                 if (((unsigned)t->time.tm_sec) < 0x60)
315                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
316                 else
317                         t->time.tm_sec = -1;
318                 if (((unsigned)t->time.tm_min) < 0x60)
319                         t->time.tm_min = bcd2bin(t->time.tm_min);
320                 else
321                         t->time.tm_min = -1;
322                 if (((unsigned)t->time.tm_hour) < 0x24)
323                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
324                 else
325                         t->time.tm_hour = -1;
326
327                 if (cmos->day_alrm) {
328                         if (((unsigned)t->time.tm_mday) <= 0x31)
329                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
330                         else
331                                 t->time.tm_mday = -1;
332
333                         if (cmos->mon_alrm) {
334                                 if (((unsigned)t->time.tm_mon) <= 0x12)
335                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336                                 else
337                                         t->time.tm_mon = -1;
338                         }
339                 }
340         }
341
342         t->enabled = !!(p.rtc_control & RTC_AIE);
343         t->pending = 0;
344
345         return 0;
346 }
347
348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350         unsigned char   rtc_intr;
351
352         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353          * allegedly some older rtcs need that to handle irqs properly
354          */
355         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357         if (use_hpet_alarm())
358                 return;
359
360         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361         if (is_intr(rtc_intr))
362                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364
365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367         unsigned char   rtc_control;
368
369         /* flush any pending IRQ status, notably for update irqs,
370          * before we enable new IRQs
371          */
372         rtc_control = CMOS_READ(RTC_CONTROL);
373         cmos_checkintr(cmos, rtc_control);
374
375         rtc_control |= mask;
376         CMOS_WRITE(rtc_control, RTC_CONTROL);
377         if (use_hpet_alarm())
378                 hpet_set_rtc_irq_bit(mask);
379
380         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381                 if (cmos->wake_on)
382                         cmos->wake_on(cmos->dev);
383         }
384
385         cmos_checkintr(cmos, rtc_control);
386 }
387
388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390         unsigned char   rtc_control;
391
392         rtc_control = CMOS_READ(RTC_CONTROL);
393         rtc_control &= ~mask;
394         CMOS_WRITE(rtc_control, RTC_CONTROL);
395         if (use_hpet_alarm())
396                 hpet_mask_rtc_irq_bit(mask);
397
398         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399                 if (cmos->wake_off)
400                         cmos->wake_off(cmos->dev);
401         }
402
403         cmos_checkintr(cmos, rtc_control);
404 }
405
406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408         struct cmos_rtc *cmos = dev_get_drvdata(dev);
409         struct rtc_time now;
410
411         cmos_read_time(dev, &now);
412
413         if (!cmos->day_alrm) {
414                 time64_t t_max_date;
415                 time64_t t_alrm;
416
417                 t_max_date = rtc_tm_to_time64(&now);
418                 t_max_date += 24 * 60 * 60 - 1;
419                 t_alrm = rtc_tm_to_time64(&t->time);
420                 if (t_alrm > t_max_date) {
421                         dev_err(dev,
422                                 "Alarms can be up to one day in the future\n");
423                         return -EINVAL;
424                 }
425         } else if (!cmos->mon_alrm) {
426                 struct rtc_time max_date = now;
427                 time64_t t_max_date;
428                 time64_t t_alrm;
429                 int max_mday;
430
431                 if (max_date.tm_mon == 11) {
432                         max_date.tm_mon = 0;
433                         max_date.tm_year += 1;
434                 } else {
435                         max_date.tm_mon += 1;
436                 }
437                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438                 if (max_date.tm_mday > max_mday)
439                         max_date.tm_mday = max_mday;
440
441                 t_max_date = rtc_tm_to_time64(&max_date);
442                 t_max_date -= 1;
443                 t_alrm = rtc_tm_to_time64(&t->time);
444                 if (t_alrm > t_max_date) {
445                         dev_err(dev,
446                                 "Alarms can be up to one month in the future\n");
447                         return -EINVAL;
448                 }
449         } else {
450                 struct rtc_time max_date = now;
451                 time64_t t_max_date;
452                 time64_t t_alrm;
453                 int max_mday;
454
455                 max_date.tm_year += 1;
456                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457                 if (max_date.tm_mday > max_mday)
458                         max_date.tm_mday = max_mday;
459
460                 t_max_date = rtc_tm_to_time64(&max_date);
461                 t_max_date -= 1;
462                 t_alrm = rtc_tm_to_time64(&t->time);
463                 if (t_alrm > t_max_date) {
464                         dev_err(dev,
465                                 "Alarms can be up to one year in the future\n");
466                         return -EINVAL;
467                 }
468         }
469
470         return 0;
471 }
472
473 struct cmos_set_alarm_callback_param {
474         struct cmos_rtc *cmos;
475         unsigned char mon, mday, hrs, min, sec;
476         struct rtc_wkalrm *t;
477 };
478
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480  *       once
481  */
482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483                                     void *param_in)
484 {
485         struct cmos_set_alarm_callback_param *p =
486                 (struct cmos_set_alarm_callback_param *)param_in;
487
488         /* next rtc irq must not be from previous alarm setting */
489         cmos_irq_disable(p->cmos, RTC_AIE);
490
491         /* update alarm */
492         CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493         CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494         CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496         /* the system may support an "enhanced" alarm */
497         if (p->cmos->day_alrm) {
498                 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499                 if (p->cmos->mon_alrm)
500                         CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501         }
502
503         if (use_hpet_alarm()) {
504                 /*
505                  * FIXME the HPET alarm glue currently ignores day_alrm
506                  * and mon_alrm ...
507                  */
508                 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509                                     p->t->time.tm_sec);
510         }
511
512         if (p->t->enabled)
513                 cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515
516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518         struct cmos_rtc *cmos = dev_get_drvdata(dev);
519         struct cmos_set_alarm_callback_param p = {
520                 .cmos = cmos,
521                 .t = t
522         };
523         unsigned char rtc_control;
524         int ret;
525
526         /* This not only a rtc_op, but also called directly */
527         if (!is_valid_irq(cmos->irq))
528                 return -EIO;
529
530         ret = cmos_validate_alarm(dev, t);
531         if (ret < 0)
532                 return ret;
533
534         p.mon = t->time.tm_mon + 1;
535         p.mday = t->time.tm_mday;
536         p.hrs = t->time.tm_hour;
537         p.min = t->time.tm_min;
538         p.sec = t->time.tm_sec;
539
540         spin_lock_irq(&rtc_lock);
541         rtc_control = CMOS_READ(RTC_CONTROL);
542         spin_unlock_irq(&rtc_lock);
543
544         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545                 /* Writing 0xff means "don't care" or "match all".  */
546                 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547                 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548                 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549                 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550                 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551         }
552
553         /*
554          * Some Intel chipsets disconnect the alarm registers when the clock
555          * update is in progress - during this time writes fail silently.
556          *
557          * Use mc146818_avoid_UIP() to avoid this.
558          */
559         if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
560                 return -EIO;
561
562         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563
564         return 0;
565 }
566
567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569         struct cmos_rtc *cmos = dev_get_drvdata(dev);
570         unsigned long   flags;
571
572         spin_lock_irqsave(&rtc_lock, flags);
573
574         if (enabled)
575                 cmos_irq_enable(cmos, RTC_AIE);
576         else
577                 cmos_irq_disable(cmos, RTC_AIE);
578
579         spin_unlock_irqrestore(&rtc_lock, flags);
580         return 0;
581 }
582
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587         struct cmos_rtc *cmos = dev_get_drvdata(dev);
588         unsigned char   rtc_control, valid;
589
590         spin_lock_irq(&rtc_lock);
591         rtc_control = CMOS_READ(RTC_CONTROL);
592         valid = CMOS_READ(RTC_VALID);
593         spin_unlock_irq(&rtc_lock);
594
595         /* NOTE:  at least ICH6 reports battery status using a different
596          * (non-RTC) bit; and SQWE is ignored on many current systems.
597          */
598         seq_printf(seq,
599                    "periodic_IRQ\t: %s\n"
600                    "update_IRQ\t: %s\n"
601                    "HPET_emulated\t: %s\n"
602                    // "square_wave\t: %s\n"
603                    "BCD\t\t: %s\n"
604                    "DST_enable\t: %s\n"
605                    "periodic_freq\t: %d\n"
606                    "batt_status\t: %s\n",
607                    (rtc_control & RTC_PIE) ? "yes" : "no",
608                    (rtc_control & RTC_UIE) ? "yes" : "no",
609                    use_hpet_alarm() ? "yes" : "no",
610                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
611                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
613                    cmos->rtc->irq_freq,
614                    (valid & RTC_VRT) ? "okay" : "dead");
615
616         return 0;
617 }
618
619 #else
620 #define cmos_procfs     NULL
621 #endif
622
623 static const struct rtc_class_ops cmos_rtc_ops = {
624         .read_time              = cmos_read_time,
625         .set_time               = cmos_set_time,
626         .read_alarm             = cmos_read_alarm,
627         .set_alarm              = cmos_set_alarm,
628         .proc                   = cmos_procfs,
629         .alarm_irq_enable       = cmos_alarm_irq_enable,
630 };
631
632 /*----------------------------------------------------------------*/
633
634 /*
635  * All these chips have at least 64 bytes of address space, shared by
636  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
637  * by boot firmware.  Modern chips have 128 or 256 bytes.
638  */
639
640 #define NVRAM_OFFSET    (RTC_REG_D + 1)
641
642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643                            size_t count)
644 {
645         unsigned char *buf = val;
646         int     retval;
647
648         off += NVRAM_OFFSET;
649         spin_lock_irq(&rtc_lock);
650         for (retval = 0; count; count--, off++, retval++) {
651                 if (off < 128)
652                         *buf++ = CMOS_READ(off);
653                 else if (can_bank2)
654                         *buf++ = cmos_read_bank2(off);
655                 else
656                         break;
657         }
658         spin_unlock_irq(&rtc_lock);
659
660         return retval;
661 }
662
663 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
664                             size_t count)
665 {
666         struct cmos_rtc *cmos = priv;
667         unsigned char   *buf = val;
668         int             retval;
669
670         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
671          * checksum on part of the NVRAM data.  That's currently ignored
672          * here.  If userspace is smart enough to know what fields of
673          * NVRAM to update, updating checksums is also part of its job.
674          */
675         off += NVRAM_OFFSET;
676         spin_lock_irq(&rtc_lock);
677         for (retval = 0; count; count--, off++, retval++) {
678                 /* don't trash RTC registers */
679                 if (off == cmos->day_alrm
680                                 || off == cmos->mon_alrm
681                                 || off == cmos->century)
682                         buf++;
683                 else if (off < 128)
684                         CMOS_WRITE(*buf++, off);
685                 else if (can_bank2)
686                         cmos_write_bank2(*buf++, off);
687                 else
688                         break;
689         }
690         spin_unlock_irq(&rtc_lock);
691
692         return retval;
693 }
694
695 /*----------------------------------------------------------------*/
696
697 static struct cmos_rtc  cmos_rtc;
698
699 static irqreturn_t cmos_interrupt(int irq, void *p)
700 {
701         u8              irqstat;
702         u8              rtc_control;
703
704         spin_lock(&rtc_lock);
705
706         /* When the HPET interrupt handler calls us, the interrupt
707          * status is passed as arg1 instead of the irq number.  But
708          * always clear irq status, even when HPET is in the way.
709          *
710          * Note that HPET and RTC are almost certainly out of phase,
711          * giving different IRQ status ...
712          */
713         irqstat = CMOS_READ(RTC_INTR_FLAGS);
714         rtc_control = CMOS_READ(RTC_CONTROL);
715         if (use_hpet_alarm())
716                 irqstat = (unsigned long)irq & 0xF0;
717
718         /* If we were suspended, RTC_CONTROL may not be accurate since the
719          * bios may have cleared it.
720          */
721         if (!cmos_rtc.suspend_ctrl)
722                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
723         else
724                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
725
726         /* All Linux RTC alarms should be treated as if they were oneshot.
727          * Similar code may be needed in system wakeup paths, in case the
728          * alarm woke the system.
729          */
730         if (irqstat & RTC_AIE) {
731                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
732                 rtc_control &= ~RTC_AIE;
733                 CMOS_WRITE(rtc_control, RTC_CONTROL);
734                 if (use_hpet_alarm())
735                         hpet_mask_rtc_irq_bit(RTC_AIE);
736                 CMOS_READ(RTC_INTR_FLAGS);
737         }
738         spin_unlock(&rtc_lock);
739
740         if (is_intr(irqstat)) {
741                 rtc_update_irq(p, 1, irqstat);
742                 return IRQ_HANDLED;
743         } else
744                 return IRQ_NONE;
745 }
746
747 #ifdef  CONFIG_ACPI
748
749 #include <linux/acpi.h>
750
751 static u32 rtc_handler(void *context)
752 {
753         struct device *dev = context;
754         struct cmos_rtc *cmos = dev_get_drvdata(dev);
755         unsigned char rtc_control = 0;
756         unsigned char rtc_intr;
757         unsigned long flags;
758
759
760         /*
761          * Always update rtc irq when ACPI is used as RTC Alarm.
762          * Or else, ACPI SCI is enabled during suspend/resume only,
763          * update rtc irq in that case.
764          */
765         if (cmos_use_acpi_alarm())
766                 cmos_interrupt(0, (void *)cmos->rtc);
767         else {
768                 /* Fix me: can we use cmos_interrupt() here as well? */
769                 spin_lock_irqsave(&rtc_lock, flags);
770                 if (cmos_rtc.suspend_ctrl)
771                         rtc_control = CMOS_READ(RTC_CONTROL);
772                 if (rtc_control & RTC_AIE) {
773                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
774                         CMOS_WRITE(rtc_control, RTC_CONTROL);
775                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
776                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
777                 }
778                 spin_unlock_irqrestore(&rtc_lock, flags);
779         }
780
781         pm_wakeup_hard_event(dev);
782         acpi_clear_event(ACPI_EVENT_RTC);
783         acpi_disable_event(ACPI_EVENT_RTC, 0);
784         return ACPI_INTERRUPT_HANDLED;
785 }
786
787 static void acpi_rtc_event_setup(struct device *dev)
788 {
789         if (acpi_disabled)
790                 return;
791
792         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
793         /*
794          * After the RTC handler is installed, the Fixed_RTC event should
795          * be disabled. Only when the RTC alarm is set will it be enabled.
796          */
797         acpi_clear_event(ACPI_EVENT_RTC);
798         acpi_disable_event(ACPI_EVENT_RTC, 0);
799 }
800
801 static void acpi_rtc_event_cleanup(void)
802 {
803         if (acpi_disabled)
804                 return;
805
806         acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
807 }
808
809 static void rtc_wake_on(struct device *dev)
810 {
811         acpi_clear_event(ACPI_EVENT_RTC);
812         acpi_enable_event(ACPI_EVENT_RTC, 0);
813 }
814
815 static void rtc_wake_off(struct device *dev)
816 {
817         acpi_disable_event(ACPI_EVENT_RTC, 0);
818 }
819
820 #ifdef CONFIG_X86
821 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
822 static void use_acpi_alarm_quirks(void)
823 {
824         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
825                 return;
826
827         if (!is_hpet_enabled())
828                 return;
829
830         if (dmi_get_bios_year() < 2015)
831                 return;
832
833         use_acpi_alarm = true;
834 }
835 #else
836 static inline void use_acpi_alarm_quirks(void) { }
837 #endif
838
839 static void acpi_cmos_wake_setup(struct device *dev)
840 {
841         if (acpi_disabled)
842                 return;
843
844         use_acpi_alarm_quirks();
845
846         cmos_rtc.wake_on = rtc_wake_on;
847         cmos_rtc.wake_off = rtc_wake_off;
848
849         /* ACPI tables bug workaround. */
850         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
851                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
852                         acpi_gbl_FADT.month_alarm);
853                 acpi_gbl_FADT.month_alarm = 0;
854         }
855
856         cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
857         cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
858         cmos_rtc.century = acpi_gbl_FADT.century;
859
860         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
861                 dev_info(dev, "RTC can wake from S4\n");
862
863         /* RTC always wakes from S1/S2/S3, and often S4/STD */
864         device_init_wakeup(dev, 1);
865 }
866
867 static void cmos_check_acpi_rtc_status(struct device *dev,
868                                               unsigned char *rtc_control)
869 {
870         struct cmos_rtc *cmos = dev_get_drvdata(dev);
871         acpi_event_status rtc_status;
872         acpi_status status;
873
874         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
875                 return;
876
877         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
878         if (ACPI_FAILURE(status)) {
879                 dev_err(dev, "Could not get RTC status\n");
880         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
881                 unsigned char mask;
882                 *rtc_control &= ~RTC_AIE;
883                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
884                 mask = CMOS_READ(RTC_INTR_FLAGS);
885                 rtc_update_irq(cmos->rtc, 1, mask);
886         }
887 }
888
889 #else /* !CONFIG_ACPI */
890
891 static inline void acpi_rtc_event_setup(struct device *dev)
892 {
893 }
894
895 static inline void acpi_rtc_event_cleanup(void)
896 {
897 }
898
899 static inline void acpi_cmos_wake_setup(struct device *dev)
900 {
901 }
902
903 static inline void cmos_check_acpi_rtc_status(struct device *dev,
904                                               unsigned char *rtc_control)
905 {
906 }
907 #endif /* CONFIG_ACPI */
908
909 #ifdef  CONFIG_PNP
910 #define INITSECTION
911
912 #else
913 #define INITSECTION     __init
914 #endif
915
916 static int INITSECTION
917 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
918 {
919         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
920         int                             retval = 0;
921         unsigned char                   rtc_control;
922         unsigned                        address_space;
923         u32                             flags = 0;
924         struct nvmem_config nvmem_cfg = {
925                 .name = "cmos_nvram",
926                 .word_size = 1,
927                 .stride = 1,
928                 .reg_read = cmos_nvram_read,
929                 .reg_write = cmos_nvram_write,
930                 .priv = &cmos_rtc,
931         };
932
933         /* there can be only one ... */
934         if (cmos_rtc.dev)
935                 return -EBUSY;
936
937         if (!ports)
938                 return -ENODEV;
939
940         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
941          *
942          * REVISIT non-x86 systems may instead use memory space resources
943          * (needing ioremap etc), not i/o space resources like this ...
944          */
945         if (RTC_IOMAPPED)
946                 ports = request_region(ports->start, resource_size(ports),
947                                        driver_name);
948         else
949                 ports = request_mem_region(ports->start, resource_size(ports),
950                                            driver_name);
951         if (!ports) {
952                 dev_dbg(dev, "i/o registers already in use\n");
953                 return -EBUSY;
954         }
955
956         cmos_rtc.irq = rtc_irq;
957         cmos_rtc.iomem = ports;
958
959         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
960          * driver did, but don't reject unknown configs.   Old hardware
961          * won't address 128 bytes.  Newer chips have multiple banks,
962          * though they may not be listed in one I/O resource.
963          */
964 #if     defined(CONFIG_ATARI)
965         address_space = 64;
966 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
967                         || defined(__sparc__) || defined(__mips__) \
968                         || defined(__powerpc__)
969         address_space = 128;
970 #else
971 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
972         address_space = 128;
973 #endif
974         if (can_bank2 && ports->end > (ports->start + 1))
975                 address_space = 256;
976
977         /* For ACPI systems extension info comes from the FADT.  On others,
978          * board specific setup provides it as appropriate.  Systems where
979          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
980          * some almost-clones) can provide hooks to make that behave.
981          *
982          * Note that ACPI doesn't preclude putting these registers into
983          * "extended" areas of the chip, including some that we won't yet
984          * expect CMOS_READ and friends to handle.
985          */
986         if (info) {
987                 if (info->flags)
988                         flags = info->flags;
989                 if (info->address_space)
990                         address_space = info->address_space;
991
992                 cmos_rtc.day_alrm = info->rtc_day_alarm;
993                 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
994                 cmos_rtc.century = info->rtc_century;
995
996                 if (info->wake_on && info->wake_off) {
997                         cmos_rtc.wake_on = info->wake_on;
998                         cmos_rtc.wake_off = info->wake_off;
999                 }
1000         } else {
1001                 acpi_cmos_wake_setup(dev);
1002         }
1003
1004         if (cmos_rtc.day_alrm >= 128)
1005                 cmos_rtc.day_alrm = 0;
1006
1007         if (cmos_rtc.mon_alrm >= 128)
1008                 cmos_rtc.mon_alrm = 0;
1009
1010         if (cmos_rtc.century >= 128)
1011                 cmos_rtc.century = 0;
1012
1013         cmos_rtc.dev = dev;
1014         dev_set_drvdata(dev, &cmos_rtc);
1015
1016         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1017         if (IS_ERR(cmos_rtc.rtc)) {
1018                 retval = PTR_ERR(cmos_rtc.rtc);
1019                 goto cleanup0;
1020         }
1021
1022         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1023
1024         if (!mc146818_does_rtc_work()) {
1025                 dev_warn(dev, "broken or not accessible\n");
1026                 retval = -ENXIO;
1027                 goto cleanup1;
1028         }
1029
1030         spin_lock_irq(&rtc_lock);
1031
1032         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1033                 /* force periodic irq to CMOS reset default of 1024Hz;
1034                  *
1035                  * REVISIT it's been reported that at least one x86_64 ALI
1036                  * mobo doesn't use 32KHz here ... for portability we might
1037                  * need to do something about other clock frequencies.
1038                  */
1039                 cmos_rtc.rtc->irq_freq = 1024;
1040                 if (use_hpet_alarm())
1041                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1042                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1043         }
1044
1045         /* disable irqs */
1046         if (is_valid_irq(rtc_irq))
1047                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1048
1049         rtc_control = CMOS_READ(RTC_CONTROL);
1050
1051         spin_unlock_irq(&rtc_lock);
1052
1053         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1054                 dev_warn(dev, "only 24-hr supported\n");
1055                 retval = -ENXIO;
1056                 goto cleanup1;
1057         }
1058
1059         if (use_hpet_alarm())
1060                 hpet_rtc_timer_init();
1061
1062         if (is_valid_irq(rtc_irq)) {
1063                 irq_handler_t rtc_cmos_int_handler;
1064
1065                 if (use_hpet_alarm()) {
1066                         rtc_cmos_int_handler = hpet_rtc_interrupt;
1067                         retval = hpet_register_irq_handler(cmos_interrupt);
1068                         if (retval) {
1069                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1070                                 dev_warn(dev, "hpet_register_irq_handler "
1071                                                 " failed in rtc_init().");
1072                                 goto cleanup1;
1073                         }
1074                 } else
1075                         rtc_cmos_int_handler = cmos_interrupt;
1076
1077                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1078                                 0, dev_name(&cmos_rtc.rtc->dev),
1079                                 cmos_rtc.rtc);
1080                 if (retval < 0) {
1081                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1082                         goto cleanup1;
1083                 }
1084         } else {
1085                 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1086         }
1087
1088         cmos_rtc.rtc->ops = &cmos_rtc_ops;
1089
1090         retval = devm_rtc_register_device(cmos_rtc.rtc);
1091         if (retval)
1092                 goto cleanup2;
1093
1094         /* Set the sync offset for the periodic 11min update correct */
1095         cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1096
1097         /* export at least the first block of NVRAM */
1098         nvmem_cfg.size = address_space - NVRAM_OFFSET;
1099         devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1100
1101         /*
1102          * Everything has gone well so far, so by default register a handler for
1103          * the ACPI RTC fixed event.
1104          */
1105         if (!info)
1106                 acpi_rtc_event_setup(dev);
1107
1108         dev_info(dev, "%s%s, %d bytes nvram%s\n",
1109                  !is_valid_irq(rtc_irq) ? "no alarms" :
1110                  cmos_rtc.mon_alrm ? "alarms up to one year" :
1111                  cmos_rtc.day_alrm ? "alarms up to one month" :
1112                  "alarms up to one day",
1113                  cmos_rtc.century ? ", y3k" : "",
1114                  nvmem_cfg.size,
1115                  use_hpet_alarm() ? ", hpet irqs" : "");
1116
1117         return 0;
1118
1119 cleanup2:
1120         if (is_valid_irq(rtc_irq))
1121                 free_irq(rtc_irq, cmos_rtc.rtc);
1122 cleanup1:
1123         cmos_rtc.dev = NULL;
1124 cleanup0:
1125         if (RTC_IOMAPPED)
1126                 release_region(ports->start, resource_size(ports));
1127         else
1128                 release_mem_region(ports->start, resource_size(ports));
1129         return retval;
1130 }
1131
1132 static void cmos_do_shutdown(int rtc_irq)
1133 {
1134         spin_lock_irq(&rtc_lock);
1135         if (is_valid_irq(rtc_irq))
1136                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1137         spin_unlock_irq(&rtc_lock);
1138 }
1139
1140 static void cmos_do_remove(struct device *dev)
1141 {
1142         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1143         struct resource *ports;
1144
1145         cmos_do_shutdown(cmos->irq);
1146
1147         if (is_valid_irq(cmos->irq)) {
1148                 free_irq(cmos->irq, cmos->rtc);
1149                 if (use_hpet_alarm())
1150                         hpet_unregister_irq_handler(cmos_interrupt);
1151         }
1152
1153         if (!dev_get_platdata(dev))
1154                 acpi_rtc_event_cleanup();
1155
1156         cmos->rtc = NULL;
1157
1158         ports = cmos->iomem;
1159         if (RTC_IOMAPPED)
1160                 release_region(ports->start, resource_size(ports));
1161         else
1162                 release_mem_region(ports->start, resource_size(ports));
1163         cmos->iomem = NULL;
1164
1165         cmos->dev = NULL;
1166 }
1167
1168 static int cmos_aie_poweroff(struct device *dev)
1169 {
1170         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1171         struct rtc_time now;
1172         time64_t t_now;
1173         int retval = 0;
1174         unsigned char rtc_control;
1175
1176         if (!cmos->alarm_expires)
1177                 return -EINVAL;
1178
1179         spin_lock_irq(&rtc_lock);
1180         rtc_control = CMOS_READ(RTC_CONTROL);
1181         spin_unlock_irq(&rtc_lock);
1182
1183         /* We only care about the situation where AIE is disabled. */
1184         if (rtc_control & RTC_AIE)
1185                 return -EBUSY;
1186
1187         cmos_read_time(dev, &now);
1188         t_now = rtc_tm_to_time64(&now);
1189
1190         /*
1191          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1192          * automatically right after shutdown on some buggy boxes.
1193          * This automatic rebooting issue won't happen when the alarm
1194          * time is larger than now+1 seconds.
1195          *
1196          * If the alarm time is equal to now+1 seconds, the issue can be
1197          * prevented by cancelling the alarm.
1198          */
1199         if (cmos->alarm_expires == t_now + 1) {
1200                 struct rtc_wkalrm alarm;
1201
1202                 /* Cancel the AIE timer by configuring the past time. */
1203                 rtc_time64_to_tm(t_now - 1, &alarm.time);
1204                 alarm.enabled = 0;
1205                 retval = cmos_set_alarm(dev, &alarm);
1206         } else if (cmos->alarm_expires > t_now + 1) {
1207                 retval = -EBUSY;
1208         }
1209
1210         return retval;
1211 }
1212
1213 static int cmos_suspend(struct device *dev)
1214 {
1215         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1216         unsigned char   tmp;
1217
1218         /* only the alarm might be a wakeup event source */
1219         spin_lock_irq(&rtc_lock);
1220         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1221         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1222                 unsigned char   mask;
1223
1224                 if (device_may_wakeup(dev))
1225                         mask = RTC_IRQMASK & ~RTC_AIE;
1226                 else
1227                         mask = RTC_IRQMASK;
1228                 tmp &= ~mask;
1229                 CMOS_WRITE(tmp, RTC_CONTROL);
1230                 if (use_hpet_alarm())
1231                         hpet_mask_rtc_irq_bit(mask);
1232                 cmos_checkintr(cmos, tmp);
1233         }
1234         spin_unlock_irq(&rtc_lock);
1235
1236         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1237                 cmos->enabled_wake = 1;
1238                 if (cmos->wake_on)
1239                         cmos->wake_on(dev);
1240                 else
1241                         enable_irq_wake(cmos->irq);
1242         }
1243
1244         memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1245         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1246
1247         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1248                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1249                         tmp);
1250
1251         return 0;
1252 }
1253
1254 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1255  * after a detour through G3 "mechanical off", although the ACPI spec
1256  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1257  * distinctions between S4 and S5 are pointless.  So when the hardware
1258  * allows, don't draw that distinction.
1259  */
1260 static inline int cmos_poweroff(struct device *dev)
1261 {
1262         if (!IS_ENABLED(CONFIG_PM))
1263                 return -ENOSYS;
1264
1265         return cmos_suspend(dev);
1266 }
1267
1268 static void cmos_check_wkalrm(struct device *dev)
1269 {
1270         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1271         struct rtc_wkalrm current_alarm;
1272         time64_t t_now;
1273         time64_t t_current_expires;
1274         time64_t t_saved_expires;
1275         struct rtc_time now;
1276
1277         /* Check if we have RTC Alarm armed */
1278         if (!(cmos->suspend_ctrl & RTC_AIE))
1279                 return;
1280
1281         cmos_read_time(dev, &now);
1282         t_now = rtc_tm_to_time64(&now);
1283
1284         /*
1285          * ACPI RTC wake event is cleared after resume from STR,
1286          * ACK the rtc irq here
1287          */
1288         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1289                 local_irq_disable();
1290                 cmos_interrupt(0, (void *)cmos->rtc);
1291                 local_irq_enable();
1292                 return;
1293         }
1294
1295         memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1296         cmos_read_alarm(dev, &current_alarm);
1297         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1298         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1299         if (t_current_expires != t_saved_expires ||
1300             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1301                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1302         }
1303 }
1304
1305 static int __maybe_unused cmos_resume(struct device *dev)
1306 {
1307         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1308         unsigned char tmp;
1309
1310         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1311                 if (cmos->wake_off)
1312                         cmos->wake_off(dev);
1313                 else
1314                         disable_irq_wake(cmos->irq);
1315                 cmos->enabled_wake = 0;
1316         }
1317
1318         /* The BIOS might have changed the alarm, restore it */
1319         cmos_check_wkalrm(dev);
1320
1321         spin_lock_irq(&rtc_lock);
1322         tmp = cmos->suspend_ctrl;
1323         cmos->suspend_ctrl = 0;
1324         /* re-enable any irqs previously active */
1325         if (tmp & RTC_IRQMASK) {
1326                 unsigned char   mask;
1327
1328                 if (device_may_wakeup(dev) && use_hpet_alarm())
1329                         hpet_rtc_timer_init();
1330
1331                 do {
1332                         CMOS_WRITE(tmp, RTC_CONTROL);
1333                         if (use_hpet_alarm())
1334                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1335
1336                         mask = CMOS_READ(RTC_INTR_FLAGS);
1337                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1338                         if (!use_hpet_alarm() || !is_intr(mask))
1339                                 break;
1340
1341                         /* force one-shot behavior if HPET blocked
1342                          * the wake alarm's irq
1343                          */
1344                         rtc_update_irq(cmos->rtc, 1, mask);
1345                         tmp &= ~RTC_AIE;
1346                         hpet_mask_rtc_irq_bit(RTC_AIE);
1347                 } while (mask & RTC_AIE);
1348
1349                 if (tmp & RTC_AIE)
1350                         cmos_check_acpi_rtc_status(dev, &tmp);
1351         }
1352         spin_unlock_irq(&rtc_lock);
1353
1354         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1355
1356         return 0;
1357 }
1358
1359 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1360
1361 /*----------------------------------------------------------------*/
1362
1363 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1364  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1365  * probably list them in similar PNPBIOS tables; so PNP is more common.
1366  *
1367  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1368  * predate even PNPBIOS should set up platform_bus devices.
1369  */
1370
1371 #ifdef  CONFIG_PNP
1372
1373 #include <linux/pnp.h>
1374
1375 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1376 {
1377         int irq;
1378
1379         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1380                 irq = 0;
1381 #ifdef CONFIG_X86
1382                 /* Some machines contain a PNP entry for the RTC, but
1383                  * don't define the IRQ. It should always be safe to
1384                  * hardcode it on systems with a legacy PIC.
1385                  */
1386                 if (nr_legacy_irqs())
1387                         irq = RTC_IRQ;
1388 #endif
1389         } else {
1390                 irq = pnp_irq(pnp, 0);
1391         }
1392
1393         return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1394 }
1395
1396 static void cmos_pnp_remove(struct pnp_dev *pnp)
1397 {
1398         cmos_do_remove(&pnp->dev);
1399 }
1400
1401 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1402 {
1403         struct device *dev = &pnp->dev;
1404         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1405
1406         if (system_state == SYSTEM_POWER_OFF) {
1407                 int retval = cmos_poweroff(dev);
1408
1409                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1410                         return;
1411         }
1412
1413         cmos_do_shutdown(cmos->irq);
1414 }
1415
1416 static const struct pnp_device_id rtc_ids[] = {
1417         { .id = "PNP0b00", },
1418         { .id = "PNP0b01", },
1419         { .id = "PNP0b02", },
1420         { },
1421 };
1422 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1423
1424 static struct pnp_driver cmos_pnp_driver = {
1425         .name           = driver_name,
1426         .id_table       = rtc_ids,
1427         .probe          = cmos_pnp_probe,
1428         .remove         = cmos_pnp_remove,
1429         .shutdown       = cmos_pnp_shutdown,
1430
1431         /* flag ensures resume() gets called, and stops syslog spam */
1432         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1433         .driver         = {
1434                         .pm = &cmos_pm_ops,
1435         },
1436 };
1437
1438 #endif  /* CONFIG_PNP */
1439
1440 #ifdef CONFIG_OF
1441 static const struct of_device_id of_cmos_match[] = {
1442         {
1443                 .compatible = "motorola,mc146818",
1444         },
1445         { },
1446 };
1447 MODULE_DEVICE_TABLE(of, of_cmos_match);
1448
1449 static __init void cmos_of_init(struct platform_device *pdev)
1450 {
1451         struct device_node *node = pdev->dev.of_node;
1452         const __be32 *val;
1453
1454         if (!node)
1455                 return;
1456
1457         val = of_get_property(node, "ctrl-reg", NULL);
1458         if (val)
1459                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1460
1461         val = of_get_property(node, "freq-reg", NULL);
1462         if (val)
1463                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1464 }
1465 #else
1466 static inline void cmos_of_init(struct platform_device *pdev) {}
1467 #endif
1468 /*----------------------------------------------------------------*/
1469
1470 /* Platform setup should have set up an RTC device, when PNP is
1471  * unavailable ... this could happen even on (older) PCs.
1472  */
1473
1474 static int __init cmos_platform_probe(struct platform_device *pdev)
1475 {
1476         struct resource *resource;
1477         int irq;
1478
1479         cmos_of_init(pdev);
1480
1481         if (RTC_IOMAPPED)
1482                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1483         else
1484                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485         irq = platform_get_irq(pdev, 0);
1486         if (irq < 0)
1487                 irq = -1;
1488
1489         return cmos_do_probe(&pdev->dev, resource, irq);
1490 }
1491
1492 static void cmos_platform_remove(struct platform_device *pdev)
1493 {
1494         cmos_do_remove(&pdev->dev);
1495 }
1496
1497 static void cmos_platform_shutdown(struct platform_device *pdev)
1498 {
1499         struct device *dev = &pdev->dev;
1500         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1501
1502         if (system_state == SYSTEM_POWER_OFF) {
1503                 int retval = cmos_poweroff(dev);
1504
1505                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1506                         return;
1507         }
1508
1509         cmos_do_shutdown(cmos->irq);
1510 }
1511
1512 /* work with hotplug and coldplug */
1513 MODULE_ALIAS("platform:rtc_cmos");
1514
1515 static struct platform_driver cmos_platform_driver = {
1516         .remove_new     = cmos_platform_remove,
1517         .shutdown       = cmos_platform_shutdown,
1518         .driver = {
1519                 .name           = driver_name,
1520                 .pm             = &cmos_pm_ops,
1521                 .of_match_table = of_match_ptr(of_cmos_match),
1522         }
1523 };
1524
1525 #ifdef CONFIG_PNP
1526 static bool pnp_driver_registered;
1527 #endif
1528 static bool platform_driver_registered;
1529
1530 static int __init cmos_init(void)
1531 {
1532         int retval = 0;
1533
1534 #ifdef  CONFIG_PNP
1535         retval = pnp_register_driver(&cmos_pnp_driver);
1536         if (retval == 0)
1537                 pnp_driver_registered = true;
1538 #endif
1539
1540         if (!cmos_rtc.dev) {
1541                 retval = platform_driver_probe(&cmos_platform_driver,
1542                                                cmos_platform_probe);
1543                 if (retval == 0)
1544                         platform_driver_registered = true;
1545         }
1546
1547         if (retval == 0)
1548                 return 0;
1549
1550 #ifdef  CONFIG_PNP
1551         if (pnp_driver_registered)
1552                 pnp_unregister_driver(&cmos_pnp_driver);
1553 #endif
1554         return retval;
1555 }
1556 module_init(cmos_init);
1557
1558 static void __exit cmos_exit(void)
1559 {
1560 #ifdef  CONFIG_PNP
1561         if (pnp_driver_registered)
1562                 pnp_unregister_driver(&cmos_pnp_driver);
1563 #endif
1564         if (platform_driver_registered)
1565                 platform_driver_unregister(&cmos_platform_driver);
1566 }
1567 module_exit(cmos_exit);
1568
1569
1570 MODULE_AUTHOR("David Brownell");
1571 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1572 MODULE_LICENSE("GPL");