1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
39 #include <linux/of_platform.h>
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
61 static inline int cmos_use_acpi_alarm(void)
63 return use_acpi_alarm;
65 #else /* !CONFIG_ACPI */
67 static inline int cmos_use_acpi_alarm(void)
74 struct rtc_device *rtc;
77 struct resource *iomem;
78 time64_t alarm_expires;
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
86 /* newer hardware extends the original register set */
91 struct rtc_wkalrm saved_wkalrm;
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
97 static const char driver_name[] = "rtc_cmos";
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
105 static inline int is_intr(u8 rtc_intr)
107 if (!(rtc_intr & RTC_IRQF))
109 return rtc_intr & RTC_IRQMASK;
112 /*----------------------------------------------------------------*/
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
128 static inline int is_hpet_enabled(void)
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 static inline int hpet_set_periodic_freq(unsigned long freq)
154 static inline int hpet_rtc_dropped_irq(void)
159 static inline int hpet_rtc_timer_init(void)
164 extern irq_handler_t hpet_rtc_interrupt;
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
184 /*----------------------------------------------------------------*/
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
192 #define can_bank2 true
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
208 #define can_bank2 false
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
221 /*----------------------------------------------------------------*/
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 * which tells the caller that this RTC value is unusable.
231 if (!pm_trace_rtc_valid())
234 ret = mc146818_get_time(t);
236 dev_err_ratelimited(dev, "unable to read current time\n");
243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 /* NOTE: this ignores the issue whereby updating the seconds
246 * takes effect exactly 500ms after we write the register.
247 * (Also queueing and other delays before we get this far.)
249 return mc146818_set_time(t);
252 struct cmos_read_alarm_callback_param {
253 struct cmos_rtc *cmos;
254 struct rtc_time *time;
255 unsigned char rtc_control;
258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
261 struct cmos_read_alarm_callback_param *p =
262 (struct cmos_read_alarm_callback_param *)param_in;
263 struct rtc_time *time = p->time;
265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269 if (p->cmos->day_alrm) {
270 /* ignore upper bits on readback per ACPI spec */
271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
275 if (p->cmos->mon_alrm) {
276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
282 p->rtc_control = CMOS_READ(RTC_CONTROL);
285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
288 struct cmos_read_alarm_callback_param p = {
293 /* This not only a rtc_op, but also called directly */
294 if (!is_valid_irq(cmos->irq))
297 /* Basic alarms only support hour, minute, and seconds fields.
298 * Some also support day and month, for alarms up to a year in
302 /* Some Intel chipsets disconnect the alarm registers when the clock
303 * update is in progress - during this time reads return bogus values
304 * and writes may fail silently. See for example "7th Generation Intel®
305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
308 * Use the mc146818_avoid_UIP() function to avoid this.
310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 if (((unsigned)t->time.tm_sec) < 0x60)
315 t->time.tm_sec = bcd2bin(t->time.tm_sec);
318 if (((unsigned)t->time.tm_min) < 0x60)
319 t->time.tm_min = bcd2bin(t->time.tm_min);
322 if (((unsigned)t->time.tm_hour) < 0x24)
323 t->time.tm_hour = bcd2bin(t->time.tm_hour);
325 t->time.tm_hour = -1;
327 if (cmos->day_alrm) {
328 if (((unsigned)t->time.tm_mday) <= 0x31)
329 t->time.tm_mday = bcd2bin(t->time.tm_mday);
331 t->time.tm_mday = -1;
333 if (cmos->mon_alrm) {
334 if (((unsigned)t->time.tm_mon) <= 0x12)
335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
342 t->enabled = !!(p.rtc_control & RTC_AIE);
348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
350 unsigned char rtc_intr;
352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 * allegedly some older rtcs need that to handle irqs properly
355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
357 if (use_hpet_alarm())
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(cmos->rtc, 1, rtc_intr);
365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
367 unsigned char rtc_control;
369 /* flush any pending IRQ status, notably for update irqs,
370 * before we enable new IRQs
372 rtc_control = CMOS_READ(RTC_CONTROL);
373 cmos_checkintr(cmos, rtc_control);
376 CMOS_WRITE(rtc_control, RTC_CONTROL);
377 if (use_hpet_alarm())
378 hpet_set_rtc_irq_bit(mask);
380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
382 cmos->wake_on(cmos->dev);
385 cmos_checkintr(cmos, rtc_control);
388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
390 unsigned char rtc_control;
392 rtc_control = CMOS_READ(RTC_CONTROL);
393 rtc_control &= ~mask;
394 CMOS_WRITE(rtc_control, RTC_CONTROL);
395 if (use_hpet_alarm())
396 hpet_mask_rtc_irq_bit(mask);
398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
400 cmos->wake_off(cmos->dev);
403 cmos_checkintr(cmos, rtc_control);
406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
411 cmos_read_time(dev, &now);
413 if (!cmos->day_alrm) {
417 t_max_date = rtc_tm_to_time64(&now);
418 t_max_date += 24 * 60 * 60 - 1;
419 t_alrm = rtc_tm_to_time64(&t->time);
420 if (t_alrm > t_max_date) {
422 "Alarms can be up to one day in the future\n");
425 } else if (!cmos->mon_alrm) {
426 struct rtc_time max_date = now;
431 if (max_date.tm_mon == 11) {
433 max_date.tm_year += 1;
435 max_date.tm_mon += 1;
437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 if (max_date.tm_mday > max_mday)
439 max_date.tm_mday = max_mday;
441 t_max_date = rtc_tm_to_time64(&max_date);
443 t_alrm = rtc_tm_to_time64(&t->time);
444 if (t_alrm > t_max_date) {
446 "Alarms can be up to one month in the future\n");
450 struct rtc_time max_date = now;
455 max_date.tm_year += 1;
456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 if (max_date.tm_mday > max_mday)
458 max_date.tm_mday = max_mday;
460 t_max_date = rtc_tm_to_time64(&max_date);
462 t_alrm = rtc_tm_to_time64(&t->time);
463 if (t_alrm > t_max_date) {
465 "Alarms can be up to one year in the future\n");
473 struct cmos_set_alarm_callback_param {
474 struct cmos_rtc *cmos;
475 unsigned char mon, mday, hrs, min, sec;
476 struct rtc_wkalrm *t;
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
485 struct cmos_set_alarm_callback_param *p =
486 (struct cmos_set_alarm_callback_param *)param_in;
488 /* next rtc irq must not be from previous alarm setting */
489 cmos_irq_disable(p->cmos, RTC_AIE);
492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
496 /* the system may support an "enhanced" alarm */
497 if (p->cmos->day_alrm) {
498 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 if (p->cmos->mon_alrm)
500 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
503 if (use_hpet_alarm()) {
505 * FIXME the HPET alarm glue currently ignores day_alrm
508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
513 cmos_irq_enable(p->cmos, RTC_AIE);
516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 struct cmos_set_alarm_callback_param p = {
523 unsigned char rtc_control;
526 /* This not only a rtc_op, but also called directly */
527 if (!is_valid_irq(cmos->irq))
530 ret = cmos_validate_alarm(dev, t);
534 p.mon = t->time.tm_mon + 1;
535 p.mday = t->time.tm_mday;
536 p.hrs = t->time.tm_hour;
537 p.min = t->time.tm_min;
538 p.sec = t->time.tm_sec;
540 spin_lock_irq(&rtc_lock);
541 rtc_control = CMOS_READ(RTC_CONTROL);
542 spin_unlock_irq(&rtc_lock);
544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 /* Writing 0xff means "don't care" or "match all". */
546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
554 * Some Intel chipsets disconnect the alarm registers when the clock
555 * update is in progress - during this time writes fail silently.
557 * Use mc146818_avoid_UIP() to avoid this.
559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
562 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
569 struct cmos_rtc *cmos = dev_get_drvdata(dev);
572 spin_lock_irqsave(&rtc_lock, flags);
575 cmos_irq_enable(cmos, RTC_AIE);
577 cmos_irq_disable(cmos, RTC_AIE);
579 spin_unlock_irqrestore(&rtc_lock, flags);
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
587 struct cmos_rtc *cmos = dev_get_drvdata(dev);
588 unsigned char rtc_control, valid;
590 spin_lock_irq(&rtc_lock);
591 rtc_control = CMOS_READ(RTC_CONTROL);
592 valid = CMOS_READ(RTC_VALID);
593 spin_unlock_irq(&rtc_lock);
595 /* NOTE: at least ICH6 reports battery status using a different
596 * (non-RTC) bit; and SQWE is ignored on many current systems.
599 "periodic_IRQ\t: %s\n"
601 "HPET_emulated\t: %s\n"
602 // "square_wave\t: %s\n"
605 "periodic_freq\t: %d\n"
606 "batt_status\t: %s\n",
607 (rtc_control & RTC_PIE) ? "yes" : "no",
608 (rtc_control & RTC_UIE) ? "yes" : "no",
609 use_hpet_alarm() ? "yes" : "no",
610 // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 (rtc_control & RTC_DST_EN) ? "yes" : "no",
614 (valid & RTC_VRT) ? "okay" : "dead");
620 #define cmos_procfs NULL
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 .read_time = cmos_read_time,
625 .set_time = cmos_set_time,
626 .read_alarm = cmos_read_alarm,
627 .set_alarm = cmos_set_alarm,
629 .alarm_irq_enable = cmos_alarm_irq_enable,
632 /*----------------------------------------------------------------*/
635 * All these chips have at least 64 bytes of address space, shared by
636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
637 * by boot firmware. Modern chips have 128 or 256 bytes.
640 #define NVRAM_OFFSET (RTC_REG_D + 1)
642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
645 unsigned char *buf = val;
649 spin_lock_irq(&rtc_lock);
650 for (retval = 0; count; count--, off++, retval++) {
652 *buf++ = CMOS_READ(off);
654 *buf++ = cmos_read_bank2(off);
658 spin_unlock_irq(&rtc_lock);
663 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
666 struct cmos_rtc *cmos = priv;
667 unsigned char *buf = val;
670 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
671 * checksum on part of the NVRAM data. That's currently ignored
672 * here. If userspace is smart enough to know what fields of
673 * NVRAM to update, updating checksums is also part of its job.
676 spin_lock_irq(&rtc_lock);
677 for (retval = 0; count; count--, off++, retval++) {
678 /* don't trash RTC registers */
679 if (off == cmos->day_alrm
680 || off == cmos->mon_alrm
681 || off == cmos->century)
684 CMOS_WRITE(*buf++, off);
686 cmos_write_bank2(*buf++, off);
690 spin_unlock_irq(&rtc_lock);
695 /*----------------------------------------------------------------*/
697 static struct cmos_rtc cmos_rtc;
699 static irqreturn_t cmos_interrupt(int irq, void *p)
704 spin_lock(&rtc_lock);
706 /* When the HPET interrupt handler calls us, the interrupt
707 * status is passed as arg1 instead of the irq number. But
708 * always clear irq status, even when HPET is in the way.
710 * Note that HPET and RTC are almost certainly out of phase,
711 * giving different IRQ status ...
713 irqstat = CMOS_READ(RTC_INTR_FLAGS);
714 rtc_control = CMOS_READ(RTC_CONTROL);
715 if (use_hpet_alarm())
716 irqstat = (unsigned long)irq & 0xF0;
718 /* If we were suspended, RTC_CONTROL may not be accurate since the
719 * bios may have cleared it.
721 if (!cmos_rtc.suspend_ctrl)
722 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
724 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
726 /* All Linux RTC alarms should be treated as if they were oneshot.
727 * Similar code may be needed in system wakeup paths, in case the
728 * alarm woke the system.
730 if (irqstat & RTC_AIE) {
731 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
732 rtc_control &= ~RTC_AIE;
733 CMOS_WRITE(rtc_control, RTC_CONTROL);
734 if (use_hpet_alarm())
735 hpet_mask_rtc_irq_bit(RTC_AIE);
736 CMOS_READ(RTC_INTR_FLAGS);
738 spin_unlock(&rtc_lock);
740 if (is_intr(irqstat)) {
741 rtc_update_irq(p, 1, irqstat);
751 #define INITSECTION __init
754 static int INITSECTION
755 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
757 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
759 unsigned char rtc_control;
760 unsigned address_space;
762 struct nvmem_config nvmem_cfg = {
763 .name = "cmos_nvram",
766 .reg_read = cmos_nvram_read,
767 .reg_write = cmos_nvram_write,
771 /* there can be only one ... */
778 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
780 * REVISIT non-x86 systems may instead use memory space resources
781 * (needing ioremap etc), not i/o space resources like this ...
784 ports = request_region(ports->start, resource_size(ports),
787 ports = request_mem_region(ports->start, resource_size(ports),
790 dev_dbg(dev, "i/o registers already in use\n");
794 cmos_rtc.irq = rtc_irq;
795 cmos_rtc.iomem = ports;
797 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
798 * driver did, but don't reject unknown configs. Old hardware
799 * won't address 128 bytes. Newer chips have multiple banks,
800 * though they may not be listed in one I/O resource.
802 #if defined(CONFIG_ATARI)
804 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
805 || defined(__sparc__) || defined(__mips__) \
806 || defined(__powerpc__)
809 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
812 if (can_bank2 && ports->end > (ports->start + 1))
815 /* For ACPI systems extension info comes from the FADT. On others,
816 * board specific setup provides it as appropriate. Systems where
817 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
818 * some almost-clones) can provide hooks to make that behave.
820 * Note that ACPI doesn't preclude putting these registers into
821 * "extended" areas of the chip, including some that we won't yet
822 * expect CMOS_READ and friends to handle.
827 if (info->address_space)
828 address_space = info->address_space;
830 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
831 cmos_rtc.day_alrm = info->rtc_day_alarm;
832 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
833 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
834 if (info->rtc_century && info->rtc_century < 128)
835 cmos_rtc.century = info->rtc_century;
837 if (info->wake_on && info->wake_off) {
838 cmos_rtc.wake_on = info->wake_on;
839 cmos_rtc.wake_off = info->wake_off;
844 dev_set_drvdata(dev, &cmos_rtc);
846 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
847 if (IS_ERR(cmos_rtc.rtc)) {
848 retval = PTR_ERR(cmos_rtc.rtc);
852 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
854 if (!mc146818_does_rtc_work()) {
855 dev_warn(dev, "broken or not accessible\n");
860 spin_lock_irq(&rtc_lock);
862 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
863 /* force periodic irq to CMOS reset default of 1024Hz;
865 * REVISIT it's been reported that at least one x86_64 ALI
866 * mobo doesn't use 32KHz here ... for portability we might
867 * need to do something about other clock frequencies.
869 cmos_rtc.rtc->irq_freq = 1024;
870 if (use_hpet_alarm())
871 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
872 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
876 if (is_valid_irq(rtc_irq))
877 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
879 rtc_control = CMOS_READ(RTC_CONTROL);
881 spin_unlock_irq(&rtc_lock);
883 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
884 dev_warn(dev, "only 24-hr supported\n");
889 if (use_hpet_alarm())
890 hpet_rtc_timer_init();
892 if (is_valid_irq(rtc_irq)) {
893 irq_handler_t rtc_cmos_int_handler;
895 if (use_hpet_alarm()) {
896 rtc_cmos_int_handler = hpet_rtc_interrupt;
897 retval = hpet_register_irq_handler(cmos_interrupt);
899 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
900 dev_warn(dev, "hpet_register_irq_handler "
901 " failed in rtc_init().");
905 rtc_cmos_int_handler = cmos_interrupt;
907 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
908 0, dev_name(&cmos_rtc.rtc->dev),
911 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
915 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
918 cmos_rtc.rtc->ops = &cmos_rtc_ops;
920 retval = devm_rtc_register_device(cmos_rtc.rtc);
924 /* Set the sync offset for the periodic 11min update correct */
925 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
927 /* export at least the first block of NVRAM */
928 nvmem_cfg.size = address_space - NVRAM_OFFSET;
929 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
931 dev_info(dev, "%s%s, %d bytes nvram%s\n",
932 !is_valid_irq(rtc_irq) ? "no alarms" :
933 cmos_rtc.mon_alrm ? "alarms up to one year" :
934 cmos_rtc.day_alrm ? "alarms up to one month" :
935 "alarms up to one day",
936 cmos_rtc.century ? ", y3k" : "",
938 use_hpet_alarm() ? ", hpet irqs" : "");
943 if (is_valid_irq(rtc_irq))
944 free_irq(rtc_irq, cmos_rtc.rtc);
949 release_region(ports->start, resource_size(ports));
951 release_mem_region(ports->start, resource_size(ports));
955 static void cmos_do_shutdown(int rtc_irq)
957 spin_lock_irq(&rtc_lock);
958 if (is_valid_irq(rtc_irq))
959 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
960 spin_unlock_irq(&rtc_lock);
963 static void cmos_do_remove(struct device *dev)
965 struct cmos_rtc *cmos = dev_get_drvdata(dev);
966 struct resource *ports;
968 cmos_do_shutdown(cmos->irq);
970 if (is_valid_irq(cmos->irq)) {
971 free_irq(cmos->irq, cmos->rtc);
972 if (use_hpet_alarm())
973 hpet_unregister_irq_handler(cmos_interrupt);
980 release_region(ports->start, resource_size(ports));
982 release_mem_region(ports->start, resource_size(ports));
988 static int cmos_aie_poweroff(struct device *dev)
990 struct cmos_rtc *cmos = dev_get_drvdata(dev);
994 unsigned char rtc_control;
996 if (!cmos->alarm_expires)
999 spin_lock_irq(&rtc_lock);
1000 rtc_control = CMOS_READ(RTC_CONTROL);
1001 spin_unlock_irq(&rtc_lock);
1003 /* We only care about the situation where AIE is disabled. */
1004 if (rtc_control & RTC_AIE)
1007 cmos_read_time(dev, &now);
1008 t_now = rtc_tm_to_time64(&now);
1011 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1012 * automatically right after shutdown on some buggy boxes.
1013 * This automatic rebooting issue won't happen when the alarm
1014 * time is larger than now+1 seconds.
1016 * If the alarm time is equal to now+1 seconds, the issue can be
1017 * prevented by cancelling the alarm.
1019 if (cmos->alarm_expires == t_now + 1) {
1020 struct rtc_wkalrm alarm;
1022 /* Cancel the AIE timer by configuring the past time. */
1023 rtc_time64_to_tm(t_now - 1, &alarm.time);
1025 retval = cmos_set_alarm(dev, &alarm);
1026 } else if (cmos->alarm_expires > t_now + 1) {
1033 static int cmos_suspend(struct device *dev)
1035 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1038 /* only the alarm might be a wakeup event source */
1039 spin_lock_irq(&rtc_lock);
1040 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1041 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1044 if (device_may_wakeup(dev))
1045 mask = RTC_IRQMASK & ~RTC_AIE;
1049 CMOS_WRITE(tmp, RTC_CONTROL);
1050 if (use_hpet_alarm())
1051 hpet_mask_rtc_irq_bit(mask);
1052 cmos_checkintr(cmos, tmp);
1054 spin_unlock_irq(&rtc_lock);
1056 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1057 cmos->enabled_wake = 1;
1061 enable_irq_wake(cmos->irq);
1064 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1065 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1067 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1068 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1074 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1075 * after a detour through G3 "mechanical off", although the ACPI spec
1076 * says wakeup should only work from G1/S4 "hibernate". To most users,
1077 * distinctions between S4 and S5 are pointless. So when the hardware
1078 * allows, don't draw that distinction.
1080 static inline int cmos_poweroff(struct device *dev)
1082 if (!IS_ENABLED(CONFIG_PM))
1085 return cmos_suspend(dev);
1088 static void cmos_check_wkalrm(struct device *dev)
1090 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1091 struct rtc_wkalrm current_alarm;
1093 time64_t t_current_expires;
1094 time64_t t_saved_expires;
1095 struct rtc_time now;
1097 /* Check if we have RTC Alarm armed */
1098 if (!(cmos->suspend_ctrl & RTC_AIE))
1101 cmos_read_time(dev, &now);
1102 t_now = rtc_tm_to_time64(&now);
1105 * ACPI RTC wake event is cleared after resume from STR,
1106 * ACK the rtc irq here
1108 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1109 local_irq_disable();
1110 cmos_interrupt(0, (void *)cmos->rtc);
1115 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1116 cmos_read_alarm(dev, ¤t_alarm);
1117 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1118 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1119 if (t_current_expires != t_saved_expires ||
1120 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1121 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1125 static void cmos_check_acpi_rtc_status(struct device *dev,
1126 unsigned char *rtc_control);
1128 static int __maybe_unused cmos_resume(struct device *dev)
1130 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1133 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1135 cmos->wake_off(dev);
1137 disable_irq_wake(cmos->irq);
1138 cmos->enabled_wake = 0;
1141 /* The BIOS might have changed the alarm, restore it */
1142 cmos_check_wkalrm(dev);
1144 spin_lock_irq(&rtc_lock);
1145 tmp = cmos->suspend_ctrl;
1146 cmos->suspend_ctrl = 0;
1147 /* re-enable any irqs previously active */
1148 if (tmp & RTC_IRQMASK) {
1151 if (device_may_wakeup(dev) && use_hpet_alarm())
1152 hpet_rtc_timer_init();
1155 CMOS_WRITE(tmp, RTC_CONTROL);
1156 if (use_hpet_alarm())
1157 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1159 mask = CMOS_READ(RTC_INTR_FLAGS);
1160 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1161 if (!use_hpet_alarm() || !is_intr(mask))
1164 /* force one-shot behavior if HPET blocked
1165 * the wake alarm's irq
1167 rtc_update_irq(cmos->rtc, 1, mask);
1169 hpet_mask_rtc_irq_bit(RTC_AIE);
1170 } while (mask & RTC_AIE);
1173 cmos_check_acpi_rtc_status(dev, &tmp);
1175 spin_unlock_irq(&rtc_lock);
1177 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1182 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1184 /*----------------------------------------------------------------*/
1186 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1187 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1188 * probably list them in similar PNPBIOS tables; so PNP is more common.
1190 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1191 * predate even PNPBIOS should set up platform_bus devices.
1196 #include <linux/acpi.h>
1198 static u32 rtc_handler(void *context)
1200 struct device *dev = context;
1201 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1202 unsigned char rtc_control = 0;
1203 unsigned char rtc_intr;
1204 unsigned long flags;
1208 * Always update rtc irq when ACPI is used as RTC Alarm.
1209 * Or else, ACPI SCI is enabled during suspend/resume only,
1210 * update rtc irq in that case.
1212 if (cmos_use_acpi_alarm())
1213 cmos_interrupt(0, (void *)cmos->rtc);
1215 /* Fix me: can we use cmos_interrupt() here as well? */
1216 spin_lock_irqsave(&rtc_lock, flags);
1217 if (cmos_rtc.suspend_ctrl)
1218 rtc_control = CMOS_READ(RTC_CONTROL);
1219 if (rtc_control & RTC_AIE) {
1220 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1221 CMOS_WRITE(rtc_control, RTC_CONTROL);
1222 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1223 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1225 spin_unlock_irqrestore(&rtc_lock, flags);
1228 pm_wakeup_hard_event(dev);
1229 acpi_clear_event(ACPI_EVENT_RTC);
1230 acpi_disable_event(ACPI_EVENT_RTC, 0);
1231 return ACPI_INTERRUPT_HANDLED;
1234 static inline void rtc_wake_setup(struct device *dev)
1236 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1238 * After the RTC handler is installed, the Fixed_RTC event should
1239 * be disabled. Only when the RTC alarm is set will it be enabled.
1241 acpi_clear_event(ACPI_EVENT_RTC);
1242 acpi_disable_event(ACPI_EVENT_RTC, 0);
1245 static void rtc_wake_on(struct device *dev)
1247 acpi_clear_event(ACPI_EVENT_RTC);
1248 acpi_enable_event(ACPI_EVENT_RTC, 0);
1251 static void rtc_wake_off(struct device *dev)
1253 acpi_disable_event(ACPI_EVENT_RTC, 0);
1257 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1258 static void use_acpi_alarm_quirks(void)
1260 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1263 if (!is_hpet_enabled())
1266 if (dmi_get_bios_year() < 2015)
1269 use_acpi_alarm = true;
1272 static inline void use_acpi_alarm_quirks(void) { }
1275 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1276 * its device node and pass extra config data. This helps its driver use
1277 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1278 * that this board's RTC is wakeup-capable (per ACPI spec).
1280 static struct cmos_rtc_board_info acpi_rtc_info;
1282 static void cmos_wake_setup(struct device *dev)
1287 use_acpi_alarm_quirks();
1289 rtc_wake_setup(dev);
1290 acpi_rtc_info.wake_on = rtc_wake_on;
1291 acpi_rtc_info.wake_off = rtc_wake_off;
1293 /* workaround bug in some ACPI tables */
1294 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1295 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1296 acpi_gbl_FADT.month_alarm);
1297 acpi_gbl_FADT.month_alarm = 0;
1300 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1301 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1302 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1304 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1305 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1306 dev_info(dev, "RTC can wake from S4\n");
1308 dev->platform_data = &acpi_rtc_info;
1310 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1311 device_init_wakeup(dev, 1);
1314 static void cmos_check_acpi_rtc_status(struct device *dev,
1315 unsigned char *rtc_control)
1317 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1318 acpi_event_status rtc_status;
1321 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1324 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1325 if (ACPI_FAILURE(status)) {
1326 dev_err(dev, "Could not get RTC status\n");
1327 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1329 *rtc_control &= ~RTC_AIE;
1330 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1331 mask = CMOS_READ(RTC_INTR_FLAGS);
1332 rtc_update_irq(cmos->rtc, 1, mask);
1338 static void cmos_wake_setup(struct device *dev)
1342 static void cmos_check_acpi_rtc_status(struct device *dev,
1343 unsigned char *rtc_control)
1351 #include <linux/pnp.h>
1353 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1355 cmos_wake_setup(&pnp->dev);
1357 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1358 unsigned int irq = 0;
1360 /* Some machines contain a PNP entry for the RTC, but
1361 * don't define the IRQ. It should always be safe to
1362 * hardcode it on systems with a legacy PIC.
1364 if (nr_legacy_irqs())
1367 return cmos_do_probe(&pnp->dev,
1368 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1370 return cmos_do_probe(&pnp->dev,
1371 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1376 static void cmos_pnp_remove(struct pnp_dev *pnp)
1378 cmos_do_remove(&pnp->dev);
1381 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1383 struct device *dev = &pnp->dev;
1384 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1386 if (system_state == SYSTEM_POWER_OFF) {
1387 int retval = cmos_poweroff(dev);
1389 if (cmos_aie_poweroff(dev) < 0 && !retval)
1393 cmos_do_shutdown(cmos->irq);
1396 static const struct pnp_device_id rtc_ids[] = {
1397 { .id = "PNP0b00", },
1398 { .id = "PNP0b01", },
1399 { .id = "PNP0b02", },
1402 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1404 static struct pnp_driver cmos_pnp_driver = {
1405 .name = driver_name,
1406 .id_table = rtc_ids,
1407 .probe = cmos_pnp_probe,
1408 .remove = cmos_pnp_remove,
1409 .shutdown = cmos_pnp_shutdown,
1411 /* flag ensures resume() gets called, and stops syslog spam */
1412 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1418 #endif /* CONFIG_PNP */
1421 static const struct of_device_id of_cmos_match[] = {
1423 .compatible = "motorola,mc146818",
1427 MODULE_DEVICE_TABLE(of, of_cmos_match);
1429 static __init void cmos_of_init(struct platform_device *pdev)
1431 struct device_node *node = pdev->dev.of_node;
1437 val = of_get_property(node, "ctrl-reg", NULL);
1439 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1441 val = of_get_property(node, "freq-reg", NULL);
1443 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1446 static inline void cmos_of_init(struct platform_device *pdev) {}
1448 /*----------------------------------------------------------------*/
1450 /* Platform setup should have set up an RTC device, when PNP is
1451 * unavailable ... this could happen even on (older) PCs.
1454 static int __init cmos_platform_probe(struct platform_device *pdev)
1456 struct resource *resource;
1460 cmos_wake_setup(&pdev->dev);
1463 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1465 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1466 irq = platform_get_irq(pdev, 0);
1470 return cmos_do_probe(&pdev->dev, resource, irq);
1473 static int cmos_platform_remove(struct platform_device *pdev)
1475 cmos_do_remove(&pdev->dev);
1479 static void cmos_platform_shutdown(struct platform_device *pdev)
1481 struct device *dev = &pdev->dev;
1482 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1484 if (system_state == SYSTEM_POWER_OFF) {
1485 int retval = cmos_poweroff(dev);
1487 if (cmos_aie_poweroff(dev) < 0 && !retval)
1491 cmos_do_shutdown(cmos->irq);
1494 /* work with hotplug and coldplug */
1495 MODULE_ALIAS("platform:rtc_cmos");
1497 static struct platform_driver cmos_platform_driver = {
1498 .remove = cmos_platform_remove,
1499 .shutdown = cmos_platform_shutdown,
1501 .name = driver_name,
1503 .of_match_table = of_match_ptr(of_cmos_match),
1508 static bool pnp_driver_registered;
1510 static bool platform_driver_registered;
1512 static int __init cmos_init(void)
1517 retval = pnp_register_driver(&cmos_pnp_driver);
1519 pnp_driver_registered = true;
1522 if (!cmos_rtc.dev) {
1523 retval = platform_driver_probe(&cmos_platform_driver,
1524 cmos_platform_probe);
1526 platform_driver_registered = true;
1533 if (pnp_driver_registered)
1534 pnp_unregister_driver(&cmos_pnp_driver);
1538 module_init(cmos_init);
1540 static void __exit cmos_exit(void)
1543 if (pnp_driver_registered)
1544 pnp_unregister_driver(&cmos_pnp_driver);
1546 if (platform_driver_registered)
1547 platform_driver_unregister(&cmos_platform_driver);
1549 module_exit(cmos_exit);
1552 MODULE_AUTHOR("David Brownell");
1553 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1554 MODULE_LICENSE("GPL");