rtc: ftrtc010: Fix error handling in ftrtc010_rtc_probe
[platform/kernel/linux-rpi.git] / drivers / rtc / rtc-cmos.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
61 static inline int cmos_use_acpi_alarm(void)
62 {
63         return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
67 static inline int cmos_use_acpi_alarm(void)
68 {
69         return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74         struct rtc_device       *rtc;
75         struct device           *dev;
76         int                     irq;
77         struct resource         *iomem;
78         time64_t                alarm_expires;
79
80         void                    (*wake_on)(struct device *);
81         void                    (*wake_off)(struct device *);
82
83         u8                      enabled_wake;
84         u8                      suspend_ctrl;
85
86         /* newer hardware extends the original register set */
87         u8                      day_alrm;
88         u8                      mon_alrm;
89         u8                      century;
90
91         struct rtc_wkalrm       saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)         ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
104
105 static inline int is_intr(u8 rtc_intr)
106 {
107         if (!(rtc_intr & RTC_IRQF))
108                 return 0;
109         return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
128 static inline int is_hpet_enabled(void)
129 {
130         return 0;
131 }
132
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135         return 0;
136 }
137
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140         return 0;
141 }
142
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146         return 0;
147 }
148
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151         return 0;
152 }
153
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156         return 0;
157 }
158
159 static inline int hpet_rtc_timer_init(void)
160 {
161         return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168         return 0;
169 }
170
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173         return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181         return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2       true
193
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196         outb(addr, RTC_PORT(2));
197         return inb(RTC_PORT(3));
198 }
199
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202         outb(addr, RTC_PORT(2));
203         outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2       false
209
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212         return 0;
213 }
214
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225         int ret;
226
227         /*
228          * If pm_trace abused the RTC for storage, set the timespec to 0,
229          * which tells the caller that this RTC value is unusable.
230          */
231         if (!pm_trace_rtc_valid())
232                 return -EIO;
233
234         ret = mc146818_get_time(t);
235         if (ret < 0) {
236                 dev_err_ratelimited(dev, "unable to read current time\n");
237                 return ret;
238         }
239
240         return 0;
241 }
242
243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245         /* NOTE: this ignores the issue whereby updating the seconds
246          * takes effect exactly 500ms after we write the register.
247          * (Also queueing and other delays before we get this far.)
248          */
249         return mc146818_set_time(t);
250 }
251
252 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
253 {
254         struct cmos_rtc *cmos = dev_get_drvdata(dev);
255         unsigned char   rtc_control;
256
257         /* This not only a rtc_op, but also called directly */
258         if (!is_valid_irq(cmos->irq))
259                 return -EIO;
260
261         /* Basic alarms only support hour, minute, and seconds fields.
262          * Some also support day and month, for alarms up to a year in
263          * the future.
264          */
265
266         spin_lock_irq(&rtc_lock);
267         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
268         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
269         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
270
271         if (cmos->day_alrm) {
272                 /* ignore upper bits on readback per ACPI spec */
273                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
274                 if (!t->time.tm_mday)
275                         t->time.tm_mday = -1;
276
277                 if (cmos->mon_alrm) {
278                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
279                         if (!t->time.tm_mon)
280                                 t->time.tm_mon = -1;
281                 }
282         }
283
284         rtc_control = CMOS_READ(RTC_CONTROL);
285         spin_unlock_irq(&rtc_lock);
286
287         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
288                 if (((unsigned)t->time.tm_sec) < 0x60)
289                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
290                 else
291                         t->time.tm_sec = -1;
292                 if (((unsigned)t->time.tm_min) < 0x60)
293                         t->time.tm_min = bcd2bin(t->time.tm_min);
294                 else
295                         t->time.tm_min = -1;
296                 if (((unsigned)t->time.tm_hour) < 0x24)
297                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
298                 else
299                         t->time.tm_hour = -1;
300
301                 if (cmos->day_alrm) {
302                         if (((unsigned)t->time.tm_mday) <= 0x31)
303                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
304                         else
305                                 t->time.tm_mday = -1;
306
307                         if (cmos->mon_alrm) {
308                                 if (((unsigned)t->time.tm_mon) <= 0x12)
309                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
310                                 else
311                                         t->time.tm_mon = -1;
312                         }
313                 }
314         }
315
316         t->enabled = !!(rtc_control & RTC_AIE);
317         t->pending = 0;
318
319         return 0;
320 }
321
322 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
323 {
324         unsigned char   rtc_intr;
325
326         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
327          * allegedly some older rtcs need that to handle irqs properly
328          */
329         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
330
331         if (use_hpet_alarm())
332                 return;
333
334         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
335         if (is_intr(rtc_intr))
336                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
337 }
338
339 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
340 {
341         unsigned char   rtc_control;
342
343         /* flush any pending IRQ status, notably for update irqs,
344          * before we enable new IRQs
345          */
346         rtc_control = CMOS_READ(RTC_CONTROL);
347         cmos_checkintr(cmos, rtc_control);
348
349         rtc_control |= mask;
350         CMOS_WRITE(rtc_control, RTC_CONTROL);
351         if (use_hpet_alarm())
352                 hpet_set_rtc_irq_bit(mask);
353
354         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
355                 if (cmos->wake_on)
356                         cmos->wake_on(cmos->dev);
357         }
358
359         cmos_checkintr(cmos, rtc_control);
360 }
361
362 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
363 {
364         unsigned char   rtc_control;
365
366         rtc_control = CMOS_READ(RTC_CONTROL);
367         rtc_control &= ~mask;
368         CMOS_WRITE(rtc_control, RTC_CONTROL);
369         if (use_hpet_alarm())
370                 hpet_mask_rtc_irq_bit(mask);
371
372         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
373                 if (cmos->wake_off)
374                         cmos->wake_off(cmos->dev);
375         }
376
377         cmos_checkintr(cmos, rtc_control);
378 }
379
380 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
381 {
382         struct cmos_rtc *cmos = dev_get_drvdata(dev);
383         struct rtc_time now;
384
385         cmos_read_time(dev, &now);
386
387         if (!cmos->day_alrm) {
388                 time64_t t_max_date;
389                 time64_t t_alrm;
390
391                 t_max_date = rtc_tm_to_time64(&now);
392                 t_max_date += 24 * 60 * 60 - 1;
393                 t_alrm = rtc_tm_to_time64(&t->time);
394                 if (t_alrm > t_max_date) {
395                         dev_err(dev,
396                                 "Alarms can be up to one day in the future\n");
397                         return -EINVAL;
398                 }
399         } else if (!cmos->mon_alrm) {
400                 struct rtc_time max_date = now;
401                 time64_t t_max_date;
402                 time64_t t_alrm;
403                 int max_mday;
404
405                 if (max_date.tm_mon == 11) {
406                         max_date.tm_mon = 0;
407                         max_date.tm_year += 1;
408                 } else {
409                         max_date.tm_mon += 1;
410                 }
411                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
412                 if (max_date.tm_mday > max_mday)
413                         max_date.tm_mday = max_mday;
414
415                 t_max_date = rtc_tm_to_time64(&max_date);
416                 t_max_date -= 1;
417                 t_alrm = rtc_tm_to_time64(&t->time);
418                 if (t_alrm > t_max_date) {
419                         dev_err(dev,
420                                 "Alarms can be up to one month in the future\n");
421                         return -EINVAL;
422                 }
423         } else {
424                 struct rtc_time max_date = now;
425                 time64_t t_max_date;
426                 time64_t t_alrm;
427                 int max_mday;
428
429                 max_date.tm_year += 1;
430                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
431                 if (max_date.tm_mday > max_mday)
432                         max_date.tm_mday = max_mday;
433
434                 t_max_date = rtc_tm_to_time64(&max_date);
435                 t_max_date -= 1;
436                 t_alrm = rtc_tm_to_time64(&t->time);
437                 if (t_alrm > t_max_date) {
438                         dev_err(dev,
439                                 "Alarms can be up to one year in the future\n");
440                         return -EINVAL;
441                 }
442         }
443
444         return 0;
445 }
446
447 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
448 {
449         struct cmos_rtc *cmos = dev_get_drvdata(dev);
450         unsigned char mon, mday, hrs, min, sec, rtc_control;
451         int ret;
452
453         /* This not only a rtc_op, but also called directly */
454         if (!is_valid_irq(cmos->irq))
455                 return -EIO;
456
457         ret = cmos_validate_alarm(dev, t);
458         if (ret < 0)
459                 return ret;
460
461         mon = t->time.tm_mon + 1;
462         mday = t->time.tm_mday;
463         hrs = t->time.tm_hour;
464         min = t->time.tm_min;
465         sec = t->time.tm_sec;
466
467         spin_lock_irq(&rtc_lock);
468         rtc_control = CMOS_READ(RTC_CONTROL);
469         spin_unlock_irq(&rtc_lock);
470
471         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
472                 /* Writing 0xff means "don't care" or "match all".  */
473                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
474                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
475                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
476                 min = (min < 60) ? bin2bcd(min) : 0xff;
477                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
478         }
479
480         spin_lock_irq(&rtc_lock);
481
482         /* next rtc irq must not be from previous alarm setting */
483         cmos_irq_disable(cmos, RTC_AIE);
484
485         /* update alarm */
486         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
487         CMOS_WRITE(min, RTC_MINUTES_ALARM);
488         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
489
490         /* the system may support an "enhanced" alarm */
491         if (cmos->day_alrm) {
492                 CMOS_WRITE(mday, cmos->day_alrm);
493                 if (cmos->mon_alrm)
494                         CMOS_WRITE(mon, cmos->mon_alrm);
495         }
496
497         if (use_hpet_alarm()) {
498                 /*
499                  * FIXME the HPET alarm glue currently ignores day_alrm
500                  * and mon_alrm ...
501                  */
502                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
503                                     t->time.tm_sec);
504         }
505
506         if (t->enabled)
507                 cmos_irq_enable(cmos, RTC_AIE);
508
509         spin_unlock_irq(&rtc_lock);
510
511         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
512
513         return 0;
514 }
515
516 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
517 {
518         struct cmos_rtc *cmos = dev_get_drvdata(dev);
519         unsigned long   flags;
520
521         spin_lock_irqsave(&rtc_lock, flags);
522
523         if (enabled)
524                 cmos_irq_enable(cmos, RTC_AIE);
525         else
526                 cmos_irq_disable(cmos, RTC_AIE);
527
528         spin_unlock_irqrestore(&rtc_lock, flags);
529         return 0;
530 }
531
532 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
533
534 static int cmos_procfs(struct device *dev, struct seq_file *seq)
535 {
536         struct cmos_rtc *cmos = dev_get_drvdata(dev);
537         unsigned char   rtc_control, valid;
538
539         spin_lock_irq(&rtc_lock);
540         rtc_control = CMOS_READ(RTC_CONTROL);
541         valid = CMOS_READ(RTC_VALID);
542         spin_unlock_irq(&rtc_lock);
543
544         /* NOTE:  at least ICH6 reports battery status using a different
545          * (non-RTC) bit; and SQWE is ignored on many current systems.
546          */
547         seq_printf(seq,
548                    "periodic_IRQ\t: %s\n"
549                    "update_IRQ\t: %s\n"
550                    "HPET_emulated\t: %s\n"
551                    // "square_wave\t: %s\n"
552                    "BCD\t\t: %s\n"
553                    "DST_enable\t: %s\n"
554                    "periodic_freq\t: %d\n"
555                    "batt_status\t: %s\n",
556                    (rtc_control & RTC_PIE) ? "yes" : "no",
557                    (rtc_control & RTC_UIE) ? "yes" : "no",
558                    use_hpet_alarm() ? "yes" : "no",
559                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
560                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
561                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
562                    cmos->rtc->irq_freq,
563                    (valid & RTC_VRT) ? "okay" : "dead");
564
565         return 0;
566 }
567
568 #else
569 #define cmos_procfs     NULL
570 #endif
571
572 static const struct rtc_class_ops cmos_rtc_ops = {
573         .read_time              = cmos_read_time,
574         .set_time               = cmos_set_time,
575         .read_alarm             = cmos_read_alarm,
576         .set_alarm              = cmos_set_alarm,
577         .proc                   = cmos_procfs,
578         .alarm_irq_enable       = cmos_alarm_irq_enable,
579 };
580
581 /*----------------------------------------------------------------*/
582
583 /*
584  * All these chips have at least 64 bytes of address space, shared by
585  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
586  * by boot firmware.  Modern chips have 128 or 256 bytes.
587  */
588
589 #define NVRAM_OFFSET    (RTC_REG_D + 1)
590
591 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
592                            size_t count)
593 {
594         unsigned char *buf = val;
595         int     retval;
596
597         off += NVRAM_OFFSET;
598         spin_lock_irq(&rtc_lock);
599         for (retval = 0; count; count--, off++, retval++) {
600                 if (off < 128)
601                         *buf++ = CMOS_READ(off);
602                 else if (can_bank2)
603                         *buf++ = cmos_read_bank2(off);
604                 else
605                         break;
606         }
607         spin_unlock_irq(&rtc_lock);
608
609         return retval;
610 }
611
612 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
613                             size_t count)
614 {
615         struct cmos_rtc *cmos = priv;
616         unsigned char   *buf = val;
617         int             retval;
618
619         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
620          * checksum on part of the NVRAM data.  That's currently ignored
621          * here.  If userspace is smart enough to know what fields of
622          * NVRAM to update, updating checksums is also part of its job.
623          */
624         off += NVRAM_OFFSET;
625         spin_lock_irq(&rtc_lock);
626         for (retval = 0; count; count--, off++, retval++) {
627                 /* don't trash RTC registers */
628                 if (off == cmos->day_alrm
629                                 || off == cmos->mon_alrm
630                                 || off == cmos->century)
631                         buf++;
632                 else if (off < 128)
633                         CMOS_WRITE(*buf++, off);
634                 else if (can_bank2)
635                         cmos_write_bank2(*buf++, off);
636                 else
637                         break;
638         }
639         spin_unlock_irq(&rtc_lock);
640
641         return retval;
642 }
643
644 /*----------------------------------------------------------------*/
645
646 static struct cmos_rtc  cmos_rtc;
647
648 static irqreturn_t cmos_interrupt(int irq, void *p)
649 {
650         u8              irqstat;
651         u8              rtc_control;
652
653         spin_lock(&rtc_lock);
654
655         /* When the HPET interrupt handler calls us, the interrupt
656          * status is passed as arg1 instead of the irq number.  But
657          * always clear irq status, even when HPET is in the way.
658          *
659          * Note that HPET and RTC are almost certainly out of phase,
660          * giving different IRQ status ...
661          */
662         irqstat = CMOS_READ(RTC_INTR_FLAGS);
663         rtc_control = CMOS_READ(RTC_CONTROL);
664         if (use_hpet_alarm())
665                 irqstat = (unsigned long)irq & 0xF0;
666
667         /* If we were suspended, RTC_CONTROL may not be accurate since the
668          * bios may have cleared it.
669          */
670         if (!cmos_rtc.suspend_ctrl)
671                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
672         else
673                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
674
675         /* All Linux RTC alarms should be treated as if they were oneshot.
676          * Similar code may be needed in system wakeup paths, in case the
677          * alarm woke the system.
678          */
679         if (irqstat & RTC_AIE) {
680                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
681                 rtc_control &= ~RTC_AIE;
682                 CMOS_WRITE(rtc_control, RTC_CONTROL);
683                 if (use_hpet_alarm())
684                         hpet_mask_rtc_irq_bit(RTC_AIE);
685                 CMOS_READ(RTC_INTR_FLAGS);
686         }
687         spin_unlock(&rtc_lock);
688
689         if (is_intr(irqstat)) {
690                 rtc_update_irq(p, 1, irqstat);
691                 return IRQ_HANDLED;
692         } else
693                 return IRQ_NONE;
694 }
695
696 #ifdef  CONFIG_PNP
697 #define INITSECTION
698
699 #else
700 #define INITSECTION     __init
701 #endif
702
703 static int INITSECTION
704 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
705 {
706         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
707         int                             retval = 0;
708         unsigned char                   rtc_control;
709         unsigned                        address_space;
710         u32                             flags = 0;
711         struct nvmem_config nvmem_cfg = {
712                 .name = "cmos_nvram",
713                 .word_size = 1,
714                 .stride = 1,
715                 .reg_read = cmos_nvram_read,
716                 .reg_write = cmos_nvram_write,
717                 .priv = &cmos_rtc,
718         };
719
720         /* there can be only one ... */
721         if (cmos_rtc.dev)
722                 return -EBUSY;
723
724         if (!ports)
725                 return -ENODEV;
726
727         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
728          *
729          * REVISIT non-x86 systems may instead use memory space resources
730          * (needing ioremap etc), not i/o space resources like this ...
731          */
732         if (RTC_IOMAPPED)
733                 ports = request_region(ports->start, resource_size(ports),
734                                        driver_name);
735         else
736                 ports = request_mem_region(ports->start, resource_size(ports),
737                                            driver_name);
738         if (!ports) {
739                 dev_dbg(dev, "i/o registers already in use\n");
740                 return -EBUSY;
741         }
742
743         cmos_rtc.irq = rtc_irq;
744         cmos_rtc.iomem = ports;
745
746         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
747          * driver did, but don't reject unknown configs.   Old hardware
748          * won't address 128 bytes.  Newer chips have multiple banks,
749          * though they may not be listed in one I/O resource.
750          */
751 #if     defined(CONFIG_ATARI)
752         address_space = 64;
753 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
754                         || defined(__sparc__) || defined(__mips__) \
755                         || defined(__powerpc__)
756         address_space = 128;
757 #else
758 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
759         address_space = 128;
760 #endif
761         if (can_bank2 && ports->end > (ports->start + 1))
762                 address_space = 256;
763
764         /* For ACPI systems extension info comes from the FADT.  On others,
765          * board specific setup provides it as appropriate.  Systems where
766          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
767          * some almost-clones) can provide hooks to make that behave.
768          *
769          * Note that ACPI doesn't preclude putting these registers into
770          * "extended" areas of the chip, including some that we won't yet
771          * expect CMOS_READ and friends to handle.
772          */
773         if (info) {
774                 if (info->flags)
775                         flags = info->flags;
776                 if (info->address_space)
777                         address_space = info->address_space;
778
779                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
780                         cmos_rtc.day_alrm = info->rtc_day_alarm;
781                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
782                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
783                 if (info->rtc_century && info->rtc_century < 128)
784                         cmos_rtc.century = info->rtc_century;
785
786                 if (info->wake_on && info->wake_off) {
787                         cmos_rtc.wake_on = info->wake_on;
788                         cmos_rtc.wake_off = info->wake_off;
789                 }
790         }
791
792         cmos_rtc.dev = dev;
793         dev_set_drvdata(dev, &cmos_rtc);
794
795         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
796         if (IS_ERR(cmos_rtc.rtc)) {
797                 retval = PTR_ERR(cmos_rtc.rtc);
798                 goto cleanup0;
799         }
800
801         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
802
803         if (!mc146818_does_rtc_work()) {
804                 dev_warn(dev, "broken or not accessible\n");
805                 retval = -ENXIO;
806                 goto cleanup1;
807         }
808
809         spin_lock_irq(&rtc_lock);
810
811         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
812                 /* force periodic irq to CMOS reset default of 1024Hz;
813                  *
814                  * REVISIT it's been reported that at least one x86_64 ALI
815                  * mobo doesn't use 32KHz here ... for portability we might
816                  * need to do something about other clock frequencies.
817                  */
818                 cmos_rtc.rtc->irq_freq = 1024;
819                 if (use_hpet_alarm())
820                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
821                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
822         }
823
824         /* disable irqs */
825         if (is_valid_irq(rtc_irq))
826                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
827
828         rtc_control = CMOS_READ(RTC_CONTROL);
829
830         spin_unlock_irq(&rtc_lock);
831
832         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
833                 dev_warn(dev, "only 24-hr supported\n");
834                 retval = -ENXIO;
835                 goto cleanup1;
836         }
837
838         if (use_hpet_alarm())
839                 hpet_rtc_timer_init();
840
841         if (is_valid_irq(rtc_irq)) {
842                 irq_handler_t rtc_cmos_int_handler;
843
844                 if (use_hpet_alarm()) {
845                         rtc_cmos_int_handler = hpet_rtc_interrupt;
846                         retval = hpet_register_irq_handler(cmos_interrupt);
847                         if (retval) {
848                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
849                                 dev_warn(dev, "hpet_register_irq_handler "
850                                                 " failed in rtc_init().");
851                                 goto cleanup1;
852                         }
853                 } else
854                         rtc_cmos_int_handler = cmos_interrupt;
855
856                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
857                                 0, dev_name(&cmos_rtc.rtc->dev),
858                                 cmos_rtc.rtc);
859                 if (retval < 0) {
860                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
861                         goto cleanup1;
862                 }
863         } else {
864                 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
865         }
866
867         cmos_rtc.rtc->ops = &cmos_rtc_ops;
868
869         retval = devm_rtc_register_device(cmos_rtc.rtc);
870         if (retval)
871                 goto cleanup2;
872
873         /* Set the sync offset for the periodic 11min update correct */
874         cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
875
876         /* export at least the first block of NVRAM */
877         nvmem_cfg.size = address_space - NVRAM_OFFSET;
878         devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
879
880         dev_info(dev, "%s%s, %d bytes nvram%s\n",
881                  !is_valid_irq(rtc_irq) ? "no alarms" :
882                  cmos_rtc.mon_alrm ? "alarms up to one year" :
883                  cmos_rtc.day_alrm ? "alarms up to one month" :
884                  "alarms up to one day",
885                  cmos_rtc.century ? ", y3k" : "",
886                  nvmem_cfg.size,
887                  use_hpet_alarm() ? ", hpet irqs" : "");
888
889         return 0;
890
891 cleanup2:
892         if (is_valid_irq(rtc_irq))
893                 free_irq(rtc_irq, cmos_rtc.rtc);
894 cleanup1:
895         cmos_rtc.dev = NULL;
896 cleanup0:
897         if (RTC_IOMAPPED)
898                 release_region(ports->start, resource_size(ports));
899         else
900                 release_mem_region(ports->start, resource_size(ports));
901         return retval;
902 }
903
904 static void cmos_do_shutdown(int rtc_irq)
905 {
906         spin_lock_irq(&rtc_lock);
907         if (is_valid_irq(rtc_irq))
908                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
909         spin_unlock_irq(&rtc_lock);
910 }
911
912 static void cmos_do_remove(struct device *dev)
913 {
914         struct cmos_rtc *cmos = dev_get_drvdata(dev);
915         struct resource *ports;
916
917         cmos_do_shutdown(cmos->irq);
918
919         if (is_valid_irq(cmos->irq)) {
920                 free_irq(cmos->irq, cmos->rtc);
921                 if (use_hpet_alarm())
922                         hpet_unregister_irq_handler(cmos_interrupt);
923         }
924
925         cmos->rtc = NULL;
926
927         ports = cmos->iomem;
928         if (RTC_IOMAPPED)
929                 release_region(ports->start, resource_size(ports));
930         else
931                 release_mem_region(ports->start, resource_size(ports));
932         cmos->iomem = NULL;
933
934         cmos->dev = NULL;
935 }
936
937 static int cmos_aie_poweroff(struct device *dev)
938 {
939         struct cmos_rtc *cmos = dev_get_drvdata(dev);
940         struct rtc_time now;
941         time64_t t_now;
942         int retval = 0;
943         unsigned char rtc_control;
944
945         if (!cmos->alarm_expires)
946                 return -EINVAL;
947
948         spin_lock_irq(&rtc_lock);
949         rtc_control = CMOS_READ(RTC_CONTROL);
950         spin_unlock_irq(&rtc_lock);
951
952         /* We only care about the situation where AIE is disabled. */
953         if (rtc_control & RTC_AIE)
954                 return -EBUSY;
955
956         cmos_read_time(dev, &now);
957         t_now = rtc_tm_to_time64(&now);
958
959         /*
960          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
961          * automatically right after shutdown on some buggy boxes.
962          * This automatic rebooting issue won't happen when the alarm
963          * time is larger than now+1 seconds.
964          *
965          * If the alarm time is equal to now+1 seconds, the issue can be
966          * prevented by cancelling the alarm.
967          */
968         if (cmos->alarm_expires == t_now + 1) {
969                 struct rtc_wkalrm alarm;
970
971                 /* Cancel the AIE timer by configuring the past time. */
972                 rtc_time64_to_tm(t_now - 1, &alarm.time);
973                 alarm.enabled = 0;
974                 retval = cmos_set_alarm(dev, &alarm);
975         } else if (cmos->alarm_expires > t_now + 1) {
976                 retval = -EBUSY;
977         }
978
979         return retval;
980 }
981
982 static int cmos_suspend(struct device *dev)
983 {
984         struct cmos_rtc *cmos = dev_get_drvdata(dev);
985         unsigned char   tmp;
986
987         /* only the alarm might be a wakeup event source */
988         spin_lock_irq(&rtc_lock);
989         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
990         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
991                 unsigned char   mask;
992
993                 if (device_may_wakeup(dev))
994                         mask = RTC_IRQMASK & ~RTC_AIE;
995                 else
996                         mask = RTC_IRQMASK;
997                 tmp &= ~mask;
998                 CMOS_WRITE(tmp, RTC_CONTROL);
999                 if (use_hpet_alarm())
1000                         hpet_mask_rtc_irq_bit(mask);
1001                 cmos_checkintr(cmos, tmp);
1002         }
1003         spin_unlock_irq(&rtc_lock);
1004
1005         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1006                 cmos->enabled_wake = 1;
1007                 if (cmos->wake_on)
1008                         cmos->wake_on(dev);
1009                 else
1010                         enable_irq_wake(cmos->irq);
1011         }
1012
1013         memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1014         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1015
1016         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1017                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1018                         tmp);
1019
1020         return 0;
1021 }
1022
1023 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1024  * after a detour through G3 "mechanical off", although the ACPI spec
1025  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1026  * distinctions between S4 and S5 are pointless.  So when the hardware
1027  * allows, don't draw that distinction.
1028  */
1029 static inline int cmos_poweroff(struct device *dev)
1030 {
1031         if (!IS_ENABLED(CONFIG_PM))
1032                 return -ENOSYS;
1033
1034         return cmos_suspend(dev);
1035 }
1036
1037 static void cmos_check_wkalrm(struct device *dev)
1038 {
1039         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1040         struct rtc_wkalrm current_alarm;
1041         time64_t t_now;
1042         time64_t t_current_expires;
1043         time64_t t_saved_expires;
1044         struct rtc_time now;
1045
1046         /* Check if we have RTC Alarm armed */
1047         if (!(cmos->suspend_ctrl & RTC_AIE))
1048                 return;
1049
1050         cmos_read_time(dev, &now);
1051         t_now = rtc_tm_to_time64(&now);
1052
1053         /*
1054          * ACPI RTC wake event is cleared after resume from STR,
1055          * ACK the rtc irq here
1056          */
1057         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1058                 local_irq_disable();
1059                 cmos_interrupt(0, (void *)cmos->rtc);
1060                 local_irq_enable();
1061                 return;
1062         }
1063
1064         memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1065         cmos_read_alarm(dev, &current_alarm);
1066         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1067         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1068         if (t_current_expires != t_saved_expires ||
1069             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1070                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1071         }
1072 }
1073
1074 static void cmos_check_acpi_rtc_status(struct device *dev,
1075                                        unsigned char *rtc_control);
1076
1077 static int __maybe_unused cmos_resume(struct device *dev)
1078 {
1079         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1080         unsigned char tmp;
1081
1082         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1083                 if (cmos->wake_off)
1084                         cmos->wake_off(dev);
1085                 else
1086                         disable_irq_wake(cmos->irq);
1087                 cmos->enabled_wake = 0;
1088         }
1089
1090         /* The BIOS might have changed the alarm, restore it */
1091         cmos_check_wkalrm(dev);
1092
1093         spin_lock_irq(&rtc_lock);
1094         tmp = cmos->suspend_ctrl;
1095         cmos->suspend_ctrl = 0;
1096         /* re-enable any irqs previously active */
1097         if (tmp & RTC_IRQMASK) {
1098                 unsigned char   mask;
1099
1100                 if (device_may_wakeup(dev) && use_hpet_alarm())
1101                         hpet_rtc_timer_init();
1102
1103                 do {
1104                         CMOS_WRITE(tmp, RTC_CONTROL);
1105                         if (use_hpet_alarm())
1106                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1107
1108                         mask = CMOS_READ(RTC_INTR_FLAGS);
1109                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1110                         if (!use_hpet_alarm() || !is_intr(mask))
1111                                 break;
1112
1113                         /* force one-shot behavior if HPET blocked
1114                          * the wake alarm's irq
1115                          */
1116                         rtc_update_irq(cmos->rtc, 1, mask);
1117                         tmp &= ~RTC_AIE;
1118                         hpet_mask_rtc_irq_bit(RTC_AIE);
1119                 } while (mask & RTC_AIE);
1120
1121                 if (tmp & RTC_AIE)
1122                         cmos_check_acpi_rtc_status(dev, &tmp);
1123         }
1124         spin_unlock_irq(&rtc_lock);
1125
1126         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1127
1128         return 0;
1129 }
1130
1131 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1132
1133 /*----------------------------------------------------------------*/
1134
1135 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1136  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1137  * probably list them in similar PNPBIOS tables; so PNP is more common.
1138  *
1139  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1140  * predate even PNPBIOS should set up platform_bus devices.
1141  */
1142
1143 #ifdef  CONFIG_ACPI
1144
1145 #include <linux/acpi.h>
1146
1147 static u32 rtc_handler(void *context)
1148 {
1149         struct device *dev = context;
1150         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1151         unsigned char rtc_control = 0;
1152         unsigned char rtc_intr;
1153         unsigned long flags;
1154
1155
1156         /*
1157          * Always update rtc irq when ACPI is used as RTC Alarm.
1158          * Or else, ACPI SCI is enabled during suspend/resume only,
1159          * update rtc irq in that case.
1160          */
1161         if (cmos_use_acpi_alarm())
1162                 cmos_interrupt(0, (void *)cmos->rtc);
1163         else {
1164                 /* Fix me: can we use cmos_interrupt() here as well? */
1165                 spin_lock_irqsave(&rtc_lock, flags);
1166                 if (cmos_rtc.suspend_ctrl)
1167                         rtc_control = CMOS_READ(RTC_CONTROL);
1168                 if (rtc_control & RTC_AIE) {
1169                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1170                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1171                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1172                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1173                 }
1174                 spin_unlock_irqrestore(&rtc_lock, flags);
1175         }
1176
1177         pm_wakeup_hard_event(dev);
1178         acpi_clear_event(ACPI_EVENT_RTC);
1179         acpi_disable_event(ACPI_EVENT_RTC, 0);
1180         return ACPI_INTERRUPT_HANDLED;
1181 }
1182
1183 static inline void rtc_wake_setup(struct device *dev)
1184 {
1185         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1186         /*
1187          * After the RTC handler is installed, the Fixed_RTC event should
1188          * be disabled. Only when the RTC alarm is set will it be enabled.
1189          */
1190         acpi_clear_event(ACPI_EVENT_RTC);
1191         acpi_disable_event(ACPI_EVENT_RTC, 0);
1192 }
1193
1194 static void rtc_wake_on(struct device *dev)
1195 {
1196         acpi_clear_event(ACPI_EVENT_RTC);
1197         acpi_enable_event(ACPI_EVENT_RTC, 0);
1198 }
1199
1200 static void rtc_wake_off(struct device *dev)
1201 {
1202         acpi_disable_event(ACPI_EVENT_RTC, 0);
1203 }
1204
1205 #ifdef CONFIG_X86
1206 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1207 static void use_acpi_alarm_quirks(void)
1208 {
1209         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1210                 return;
1211
1212         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1213                 return;
1214
1215         if (!is_hpet_enabled())
1216                 return;
1217
1218         if (dmi_get_bios_year() < 2015)
1219                 return;
1220
1221         use_acpi_alarm = true;
1222 }
1223 #else
1224 static inline void use_acpi_alarm_quirks(void) { }
1225 #endif
1226
1227 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1228  * its device node and pass extra config data.  This helps its driver use
1229  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1230  * that this board's RTC is wakeup-capable (per ACPI spec).
1231  */
1232 static struct cmos_rtc_board_info acpi_rtc_info;
1233
1234 static void cmos_wake_setup(struct device *dev)
1235 {
1236         if (acpi_disabled)
1237                 return;
1238
1239         use_acpi_alarm_quirks();
1240
1241         rtc_wake_setup(dev);
1242         acpi_rtc_info.wake_on = rtc_wake_on;
1243         acpi_rtc_info.wake_off = rtc_wake_off;
1244
1245         /* workaround bug in some ACPI tables */
1246         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1247                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1248                         acpi_gbl_FADT.month_alarm);
1249                 acpi_gbl_FADT.month_alarm = 0;
1250         }
1251
1252         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1253         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1254         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1255
1256         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1257         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1258                 dev_info(dev, "RTC can wake from S4\n");
1259
1260         dev->platform_data = &acpi_rtc_info;
1261
1262         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1263         device_init_wakeup(dev, 1);
1264 }
1265
1266 static void cmos_check_acpi_rtc_status(struct device *dev,
1267                                        unsigned char *rtc_control)
1268 {
1269         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1270         acpi_event_status rtc_status;
1271         acpi_status status;
1272
1273         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1274                 return;
1275
1276         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1277         if (ACPI_FAILURE(status)) {
1278                 dev_err(dev, "Could not get RTC status\n");
1279         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1280                 unsigned char mask;
1281                 *rtc_control &= ~RTC_AIE;
1282                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1283                 mask = CMOS_READ(RTC_INTR_FLAGS);
1284                 rtc_update_irq(cmos->rtc, 1, mask);
1285         }
1286 }
1287
1288 #else
1289
1290 static void cmos_wake_setup(struct device *dev)
1291 {
1292 }
1293
1294 static void cmos_check_acpi_rtc_status(struct device *dev,
1295                                        unsigned char *rtc_control)
1296 {
1297 }
1298
1299 #endif
1300
1301 #ifdef  CONFIG_PNP
1302
1303 #include <linux/pnp.h>
1304
1305 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1306 {
1307         cmos_wake_setup(&pnp->dev);
1308
1309         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1310                 unsigned int irq = 0;
1311 #ifdef CONFIG_X86
1312                 /* Some machines contain a PNP entry for the RTC, but
1313                  * don't define the IRQ. It should always be safe to
1314                  * hardcode it on systems with a legacy PIC.
1315                  */
1316                 if (nr_legacy_irqs())
1317                         irq = RTC_IRQ;
1318 #endif
1319                 return cmos_do_probe(&pnp->dev,
1320                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1321         } else {
1322                 return cmos_do_probe(&pnp->dev,
1323                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1324                                 pnp_irq(pnp, 0));
1325         }
1326 }
1327
1328 static void cmos_pnp_remove(struct pnp_dev *pnp)
1329 {
1330         cmos_do_remove(&pnp->dev);
1331 }
1332
1333 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1334 {
1335         struct device *dev = &pnp->dev;
1336         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1337
1338         if (system_state == SYSTEM_POWER_OFF) {
1339                 int retval = cmos_poweroff(dev);
1340
1341                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1342                         return;
1343         }
1344
1345         cmos_do_shutdown(cmos->irq);
1346 }
1347
1348 static const struct pnp_device_id rtc_ids[] = {
1349         { .id = "PNP0b00", },
1350         { .id = "PNP0b01", },
1351         { .id = "PNP0b02", },
1352         { },
1353 };
1354 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1355
1356 static struct pnp_driver cmos_pnp_driver = {
1357         .name           = driver_name,
1358         .id_table       = rtc_ids,
1359         .probe          = cmos_pnp_probe,
1360         .remove         = cmos_pnp_remove,
1361         .shutdown       = cmos_pnp_shutdown,
1362
1363         /* flag ensures resume() gets called, and stops syslog spam */
1364         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1365         .driver         = {
1366                         .pm = &cmos_pm_ops,
1367         },
1368 };
1369
1370 #endif  /* CONFIG_PNP */
1371
1372 #ifdef CONFIG_OF
1373 static const struct of_device_id of_cmos_match[] = {
1374         {
1375                 .compatible = "motorola,mc146818",
1376         },
1377         { },
1378 };
1379 MODULE_DEVICE_TABLE(of, of_cmos_match);
1380
1381 static __init void cmos_of_init(struct platform_device *pdev)
1382 {
1383         struct device_node *node = pdev->dev.of_node;
1384         const __be32 *val;
1385
1386         if (!node)
1387                 return;
1388
1389         val = of_get_property(node, "ctrl-reg", NULL);
1390         if (val)
1391                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1392
1393         val = of_get_property(node, "freq-reg", NULL);
1394         if (val)
1395                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1396 }
1397 #else
1398 static inline void cmos_of_init(struct platform_device *pdev) {}
1399 #endif
1400 /*----------------------------------------------------------------*/
1401
1402 /* Platform setup should have set up an RTC device, when PNP is
1403  * unavailable ... this could happen even on (older) PCs.
1404  */
1405
1406 static int __init cmos_platform_probe(struct platform_device *pdev)
1407 {
1408         struct resource *resource;
1409         int irq;
1410
1411         cmos_of_init(pdev);
1412         cmos_wake_setup(&pdev->dev);
1413
1414         if (RTC_IOMAPPED)
1415                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1416         else
1417                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1418         irq = platform_get_irq(pdev, 0);
1419         if (irq < 0)
1420                 irq = -1;
1421
1422         return cmos_do_probe(&pdev->dev, resource, irq);
1423 }
1424
1425 static int cmos_platform_remove(struct platform_device *pdev)
1426 {
1427         cmos_do_remove(&pdev->dev);
1428         return 0;
1429 }
1430
1431 static void cmos_platform_shutdown(struct platform_device *pdev)
1432 {
1433         struct device *dev = &pdev->dev;
1434         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1435
1436         if (system_state == SYSTEM_POWER_OFF) {
1437                 int retval = cmos_poweroff(dev);
1438
1439                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1440                         return;
1441         }
1442
1443         cmos_do_shutdown(cmos->irq);
1444 }
1445
1446 /* work with hotplug and coldplug */
1447 MODULE_ALIAS("platform:rtc_cmos");
1448
1449 static struct platform_driver cmos_platform_driver = {
1450         .remove         = cmos_platform_remove,
1451         .shutdown       = cmos_platform_shutdown,
1452         .driver = {
1453                 .name           = driver_name,
1454                 .pm             = &cmos_pm_ops,
1455                 .of_match_table = of_match_ptr(of_cmos_match),
1456         }
1457 };
1458
1459 #ifdef CONFIG_PNP
1460 static bool pnp_driver_registered;
1461 #endif
1462 static bool platform_driver_registered;
1463
1464 static int __init cmos_init(void)
1465 {
1466         int retval = 0;
1467
1468 #ifdef  CONFIG_PNP
1469         retval = pnp_register_driver(&cmos_pnp_driver);
1470         if (retval == 0)
1471                 pnp_driver_registered = true;
1472 #endif
1473
1474         if (!cmos_rtc.dev) {
1475                 retval = platform_driver_probe(&cmos_platform_driver,
1476                                                cmos_platform_probe);
1477                 if (retval == 0)
1478                         platform_driver_registered = true;
1479         }
1480
1481         if (retval == 0)
1482                 return 0;
1483
1484 #ifdef  CONFIG_PNP
1485         if (pnp_driver_registered)
1486                 pnp_unregister_driver(&cmos_pnp_driver);
1487 #endif
1488         return retval;
1489 }
1490 module_init(cmos_init);
1491
1492 static void __exit cmos_exit(void)
1493 {
1494 #ifdef  CONFIG_PNP
1495         if (pnp_driver_registered)
1496                 pnp_unregister_driver(&cmos_pnp_driver);
1497 #endif
1498         if (platform_driver_registered)
1499                 platform_driver_unregister(&cmos_platform_driver);
1500 }
1501 module_exit(cmos_exit);
1502
1503
1504 MODULE_AUTHOR("David Brownell");
1505 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1506 MODULE_LICENSE("GPL");