2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 #include <asm/i8259.h>
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
52 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
54 * If cleared, ACPI SCI is only used to wake up the system from suspend
56 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
59 static bool use_acpi_alarm;
60 module_param(use_acpi_alarm, bool, 0444);
63 struct rtc_device *rtc;
66 struct resource *iomem;
67 time64_t alarm_expires;
69 void (*wake_on)(struct device *);
70 void (*wake_off)(struct device *);
75 /* newer hardware extends the original register set */
80 struct rtc_wkalrm saved_wkalrm;
83 /* both platform and pnp busses use negative numbers for invalid irqs */
84 #define is_valid_irq(n) ((n) > 0)
86 static const char driver_name[] = "rtc_cmos";
88 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
89 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
90 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
92 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
94 static inline int is_intr(u8 rtc_intr)
96 if (!(rtc_intr & RTC_IRQF))
98 return rtc_intr & RTC_IRQMASK;
101 /*----------------------------------------------------------------*/
103 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
104 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
105 * used in a broken "legacy replacement" mode. The breakage includes
106 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
107 * other (better) use.
109 * When that broken mode is in use, platform glue provides a partial
110 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
111 * want to use HPET for anything except those IRQs though...
113 #ifdef CONFIG_HPET_EMULATE_RTC
114 #include <asm/hpet.h>
117 static inline int is_hpet_enabled(void)
122 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
127 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
133 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
138 static inline int hpet_set_periodic_freq(unsigned long freq)
143 static inline int hpet_rtc_dropped_irq(void)
148 static inline int hpet_rtc_timer_init(void)
153 extern irq_handler_t hpet_rtc_interrupt;
155 static inline int hpet_register_irq_handler(irq_handler_t handler)
160 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
167 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
168 static int use_hpet_alarm(void)
170 return is_hpet_enabled() && !use_acpi_alarm;
173 /*----------------------------------------------------------------*/
177 /* Most newer x86 systems have two register banks, the first used
178 * for RTC and NVRAM and the second only for NVRAM. Caller must
179 * own rtc_lock ... and we won't worry about access during NMI.
181 #define can_bank2 true
183 static inline unsigned char cmos_read_bank2(unsigned char addr)
185 outb(addr, RTC_PORT(2));
186 return inb(RTC_PORT(3));
189 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
191 outb(addr, RTC_PORT(2));
192 outb(val, RTC_PORT(3));
197 #define can_bank2 false
199 static inline unsigned char cmos_read_bank2(unsigned char addr)
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
210 /*----------------------------------------------------------------*/
212 static int cmos_read_time(struct device *dev, struct rtc_time *t)
215 * If pm_trace abused the RTC for storage, set the timespec to 0,
216 * which tells the caller that this RTC value is unusable.
218 if (!pm_trace_rtc_valid())
221 /* REVISIT: if the clock has a "century" register, use
222 * that instead of the heuristic in mc146818_get_time().
223 * That'll make Y3K compatility (year > 2070) easy!
225 mc146818_get_time(t);
229 static int cmos_set_time(struct device *dev, struct rtc_time *t)
231 /* REVISIT: set the "century" register if available
233 * NOTE: this ignores the issue whereby updating the seconds
234 * takes effect exactly 500ms after we write the register.
235 * (Also queueing and other delays before we get this far.)
237 return mc146818_set_time(t);
240 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
242 struct cmos_rtc *cmos = dev_get_drvdata(dev);
243 unsigned char rtc_control;
245 if (!is_valid_irq(cmos->irq))
248 /* Basic alarms only support hour, minute, and seconds fields.
249 * Some also support day and month, for alarms up to a year in
253 spin_lock_irq(&rtc_lock);
254 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
255 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
256 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
258 if (cmos->day_alrm) {
259 /* ignore upper bits on readback per ACPI spec */
260 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
261 if (!t->time.tm_mday)
262 t->time.tm_mday = -1;
264 if (cmos->mon_alrm) {
265 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
271 rtc_control = CMOS_READ(RTC_CONTROL);
272 spin_unlock_irq(&rtc_lock);
274 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
275 if (((unsigned)t->time.tm_sec) < 0x60)
276 t->time.tm_sec = bcd2bin(t->time.tm_sec);
279 if (((unsigned)t->time.tm_min) < 0x60)
280 t->time.tm_min = bcd2bin(t->time.tm_min);
283 if (((unsigned)t->time.tm_hour) < 0x24)
284 t->time.tm_hour = bcd2bin(t->time.tm_hour);
286 t->time.tm_hour = -1;
288 if (cmos->day_alrm) {
289 if (((unsigned)t->time.tm_mday) <= 0x31)
290 t->time.tm_mday = bcd2bin(t->time.tm_mday);
292 t->time.tm_mday = -1;
294 if (cmos->mon_alrm) {
295 if (((unsigned)t->time.tm_mon) <= 0x12)
296 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
303 t->enabled = !!(rtc_control & RTC_AIE);
309 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
311 unsigned char rtc_intr;
313 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
314 * allegedly some older rtcs need that to handle irqs properly
316 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
318 if (use_hpet_alarm())
321 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
322 if (is_intr(rtc_intr))
323 rtc_update_irq(cmos->rtc, 1, rtc_intr);
326 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
328 unsigned char rtc_control;
330 /* flush any pending IRQ status, notably for update irqs,
331 * before we enable new IRQs
333 rtc_control = CMOS_READ(RTC_CONTROL);
334 cmos_checkintr(cmos, rtc_control);
337 CMOS_WRITE(rtc_control, RTC_CONTROL);
338 if (use_hpet_alarm())
339 hpet_set_rtc_irq_bit(mask);
341 if ((mask & RTC_AIE) && use_acpi_alarm) {
343 cmos->wake_on(cmos->dev);
346 cmos_checkintr(cmos, rtc_control);
349 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
351 unsigned char rtc_control;
353 rtc_control = CMOS_READ(RTC_CONTROL);
354 rtc_control &= ~mask;
355 CMOS_WRITE(rtc_control, RTC_CONTROL);
356 if (use_hpet_alarm())
357 hpet_mask_rtc_irq_bit(mask);
359 if ((mask & RTC_AIE) && use_acpi_alarm) {
361 cmos->wake_off(cmos->dev);
364 cmos_checkintr(cmos, rtc_control);
367 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
369 struct cmos_rtc *cmos = dev_get_drvdata(dev);
372 cmos_read_time(dev, &now);
374 if (!cmos->day_alrm) {
378 t_max_date = rtc_tm_to_time64(&now);
379 t_max_date += 24 * 60 * 60 - 1;
380 t_alrm = rtc_tm_to_time64(&t->time);
381 if (t_alrm > t_max_date) {
383 "Alarms can be up to one day in the future\n");
386 } else if (!cmos->mon_alrm) {
387 struct rtc_time max_date = now;
392 if (max_date.tm_mon == 11) {
394 max_date.tm_year += 1;
396 max_date.tm_mon += 1;
398 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
399 if (max_date.tm_mday > max_mday)
400 max_date.tm_mday = max_mday;
402 t_max_date = rtc_tm_to_time64(&max_date);
404 t_alrm = rtc_tm_to_time64(&t->time);
405 if (t_alrm > t_max_date) {
407 "Alarms can be up to one month in the future\n");
411 struct rtc_time max_date = now;
416 max_date.tm_year += 1;
417 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
418 if (max_date.tm_mday > max_mday)
419 max_date.tm_mday = max_mday;
421 t_max_date = rtc_tm_to_time64(&max_date);
423 t_alrm = rtc_tm_to_time64(&t->time);
424 if (t_alrm > t_max_date) {
426 "Alarms can be up to one year in the future\n");
434 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
436 struct cmos_rtc *cmos = dev_get_drvdata(dev);
437 unsigned char mon, mday, hrs, min, sec, rtc_control;
440 if (!is_valid_irq(cmos->irq))
443 ret = cmos_validate_alarm(dev, t);
447 mon = t->time.tm_mon + 1;
448 mday = t->time.tm_mday;
449 hrs = t->time.tm_hour;
450 min = t->time.tm_min;
451 sec = t->time.tm_sec;
453 rtc_control = CMOS_READ(RTC_CONTROL);
454 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
455 /* Writing 0xff means "don't care" or "match all". */
456 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
457 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
458 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
459 min = (min < 60) ? bin2bcd(min) : 0xff;
460 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
463 spin_lock_irq(&rtc_lock);
465 /* next rtc irq must not be from previous alarm setting */
466 cmos_irq_disable(cmos, RTC_AIE);
469 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
470 CMOS_WRITE(min, RTC_MINUTES_ALARM);
471 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
473 /* the system may support an "enhanced" alarm */
474 if (cmos->day_alrm) {
475 CMOS_WRITE(mday, cmos->day_alrm);
477 CMOS_WRITE(mon, cmos->mon_alrm);
480 if (use_hpet_alarm()) {
482 * FIXME the HPET alarm glue currently ignores day_alrm
485 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
490 cmos_irq_enable(cmos, RTC_AIE);
492 spin_unlock_irq(&rtc_lock);
494 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
499 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
501 struct cmos_rtc *cmos = dev_get_drvdata(dev);
504 if (!is_valid_irq(cmos->irq))
507 spin_lock_irqsave(&rtc_lock, flags);
510 cmos_irq_enable(cmos, RTC_AIE);
512 cmos_irq_disable(cmos, RTC_AIE);
514 spin_unlock_irqrestore(&rtc_lock, flags);
518 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
520 static int cmos_procfs(struct device *dev, struct seq_file *seq)
522 struct cmos_rtc *cmos = dev_get_drvdata(dev);
523 unsigned char rtc_control, valid;
525 spin_lock_irq(&rtc_lock);
526 rtc_control = CMOS_READ(RTC_CONTROL);
527 valid = CMOS_READ(RTC_VALID);
528 spin_unlock_irq(&rtc_lock);
530 /* NOTE: at least ICH6 reports battery status using a different
531 * (non-RTC) bit; and SQWE is ignored on many current systems.
534 "periodic_IRQ\t: %s\n"
536 "HPET_emulated\t: %s\n"
537 // "square_wave\t: %s\n"
540 "periodic_freq\t: %d\n"
541 "batt_status\t: %s\n",
542 (rtc_control & RTC_PIE) ? "yes" : "no",
543 (rtc_control & RTC_UIE) ? "yes" : "no",
544 use_hpet_alarm() ? "yes" : "no",
545 // (rtc_control & RTC_SQWE) ? "yes" : "no",
546 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
547 (rtc_control & RTC_DST_EN) ? "yes" : "no",
549 (valid & RTC_VRT) ? "okay" : "dead");
555 #define cmos_procfs NULL
558 static const struct rtc_class_ops cmos_rtc_ops = {
559 .read_time = cmos_read_time,
560 .set_time = cmos_set_time,
561 .read_alarm = cmos_read_alarm,
562 .set_alarm = cmos_set_alarm,
564 .alarm_irq_enable = cmos_alarm_irq_enable,
567 /*----------------------------------------------------------------*/
570 * All these chips have at least 64 bytes of address space, shared by
571 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
572 * by boot firmware. Modern chips have 128 or 256 bytes.
575 #define NVRAM_OFFSET (RTC_REG_D + 1)
577 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
580 unsigned char *buf = val;
584 spin_lock_irq(&rtc_lock);
585 for (retval = 0; count; count--, off++, retval++) {
587 *buf++ = CMOS_READ(off);
589 *buf++ = cmos_read_bank2(off);
593 spin_unlock_irq(&rtc_lock);
598 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
601 struct cmos_rtc *cmos = priv;
602 unsigned char *buf = val;
605 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
606 * checksum on part of the NVRAM data. That's currently ignored
607 * here. If userspace is smart enough to know what fields of
608 * NVRAM to update, updating checksums is also part of its job.
611 spin_lock_irq(&rtc_lock);
612 for (retval = 0; count; count--, off++, retval++) {
613 /* don't trash RTC registers */
614 if (off == cmos->day_alrm
615 || off == cmos->mon_alrm
616 || off == cmos->century)
619 CMOS_WRITE(*buf++, off);
621 cmos_write_bank2(*buf++, off);
625 spin_unlock_irq(&rtc_lock);
630 /*----------------------------------------------------------------*/
632 static struct cmos_rtc cmos_rtc;
634 static irqreturn_t cmos_interrupt(int irq, void *p)
639 spin_lock(&rtc_lock);
641 /* When the HPET interrupt handler calls us, the interrupt
642 * status is passed as arg1 instead of the irq number. But
643 * always clear irq status, even when HPET is in the way.
645 * Note that HPET and RTC are almost certainly out of phase,
646 * giving different IRQ status ...
648 irqstat = CMOS_READ(RTC_INTR_FLAGS);
649 rtc_control = CMOS_READ(RTC_CONTROL);
650 if (use_hpet_alarm())
651 irqstat = (unsigned long)irq & 0xF0;
653 /* If we were suspended, RTC_CONTROL may not be accurate since the
654 * bios may have cleared it.
656 if (!cmos_rtc.suspend_ctrl)
657 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
659 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
661 /* All Linux RTC alarms should be treated as if they were oneshot.
662 * Similar code may be needed in system wakeup paths, in case the
663 * alarm woke the system.
665 if (irqstat & RTC_AIE) {
666 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
667 rtc_control &= ~RTC_AIE;
668 CMOS_WRITE(rtc_control, RTC_CONTROL);
669 if (use_hpet_alarm())
670 hpet_mask_rtc_irq_bit(RTC_AIE);
671 CMOS_READ(RTC_INTR_FLAGS);
673 spin_unlock(&rtc_lock);
675 if (is_intr(irqstat)) {
676 rtc_update_irq(p, 1, irqstat);
686 #define INITSECTION __init
689 static int INITSECTION
690 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
692 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
694 unsigned char rtc_control;
695 unsigned address_space;
697 struct nvmem_config nvmem_cfg = {
698 .name = "cmos_nvram",
701 .reg_read = cmos_nvram_read,
702 .reg_write = cmos_nvram_write,
706 /* there can be only one ... */
713 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
715 * REVISIT non-x86 systems may instead use memory space resources
716 * (needing ioremap etc), not i/o space resources like this ...
719 ports = request_region(ports->start, resource_size(ports),
722 ports = request_mem_region(ports->start, resource_size(ports),
725 dev_dbg(dev, "i/o registers already in use\n");
729 cmos_rtc.irq = rtc_irq;
730 cmos_rtc.iomem = ports;
732 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
733 * driver did, but don't reject unknown configs. Old hardware
734 * won't address 128 bytes. Newer chips have multiple banks,
735 * though they may not be listed in one I/O resource.
737 #if defined(CONFIG_ATARI)
739 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
740 || defined(__sparc__) || defined(__mips__) \
741 || defined(__powerpc__)
744 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
747 if (can_bank2 && ports->end > (ports->start + 1))
750 /* For ACPI systems extension info comes from the FADT. On others,
751 * board specific setup provides it as appropriate. Systems where
752 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
753 * some almost-clones) can provide hooks to make that behave.
755 * Note that ACPI doesn't preclude putting these registers into
756 * "extended" areas of the chip, including some that we won't yet
757 * expect CMOS_READ and friends to handle.
762 if (info->address_space)
763 address_space = info->address_space;
765 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
766 cmos_rtc.day_alrm = info->rtc_day_alarm;
767 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
768 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
769 if (info->rtc_century && info->rtc_century < 128)
770 cmos_rtc.century = info->rtc_century;
772 if (info->wake_on && info->wake_off) {
773 cmos_rtc.wake_on = info->wake_on;
774 cmos_rtc.wake_off = info->wake_off;
779 dev_set_drvdata(dev, &cmos_rtc);
781 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
782 if (IS_ERR(cmos_rtc.rtc)) {
783 retval = PTR_ERR(cmos_rtc.rtc);
787 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
789 spin_lock_irq(&rtc_lock);
791 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
792 /* force periodic irq to CMOS reset default of 1024Hz;
794 * REVISIT it's been reported that at least one x86_64 ALI
795 * mobo doesn't use 32KHz here ... for portability we might
796 * need to do something about other clock frequencies.
798 cmos_rtc.rtc->irq_freq = 1024;
799 if (use_hpet_alarm())
800 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
801 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
805 if (is_valid_irq(rtc_irq))
806 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
808 rtc_control = CMOS_READ(RTC_CONTROL);
810 spin_unlock_irq(&rtc_lock);
812 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
813 dev_warn(dev, "only 24-hr supported\n");
818 if (use_hpet_alarm())
819 hpet_rtc_timer_init();
821 if (is_valid_irq(rtc_irq)) {
822 irq_handler_t rtc_cmos_int_handler;
824 if (use_hpet_alarm()) {
825 rtc_cmos_int_handler = hpet_rtc_interrupt;
826 retval = hpet_register_irq_handler(cmos_interrupt);
828 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
829 dev_warn(dev, "hpet_register_irq_handler "
830 " failed in rtc_init().");
834 rtc_cmos_int_handler = cmos_interrupt;
836 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
837 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
840 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
845 cmos_rtc.rtc->ops = &cmos_rtc_ops;
846 cmos_rtc.rtc->nvram_old_abi = true;
847 retval = rtc_register_device(cmos_rtc.rtc);
851 /* export at least the first block of NVRAM */
852 nvmem_cfg.size = address_space - NVRAM_OFFSET;
853 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
854 dev_err(dev, "nvmem registration failed\n");
856 dev_info(dev, "%s%s, %d bytes nvram%s\n",
857 !is_valid_irq(rtc_irq) ? "no alarms" :
858 cmos_rtc.mon_alrm ? "alarms up to one year" :
859 cmos_rtc.day_alrm ? "alarms up to one month" :
860 "alarms up to one day",
861 cmos_rtc.century ? ", y3k" : "",
863 use_hpet_alarm() ? ", hpet irqs" : "");
868 if (is_valid_irq(rtc_irq))
869 free_irq(rtc_irq, cmos_rtc.rtc);
874 release_region(ports->start, resource_size(ports));
876 release_mem_region(ports->start, resource_size(ports));
880 static void cmos_do_shutdown(int rtc_irq)
882 spin_lock_irq(&rtc_lock);
883 if (is_valid_irq(rtc_irq))
884 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
885 spin_unlock_irq(&rtc_lock);
888 static void cmos_do_remove(struct device *dev)
890 struct cmos_rtc *cmos = dev_get_drvdata(dev);
891 struct resource *ports;
893 cmos_do_shutdown(cmos->irq);
895 if (is_valid_irq(cmos->irq)) {
896 free_irq(cmos->irq, cmos->rtc);
897 if (use_hpet_alarm())
898 hpet_unregister_irq_handler(cmos_interrupt);
905 release_region(ports->start, resource_size(ports));
907 release_mem_region(ports->start, resource_size(ports));
913 static int cmos_aie_poweroff(struct device *dev)
915 struct cmos_rtc *cmos = dev_get_drvdata(dev);
919 unsigned char rtc_control;
921 if (!cmos->alarm_expires)
924 spin_lock_irq(&rtc_lock);
925 rtc_control = CMOS_READ(RTC_CONTROL);
926 spin_unlock_irq(&rtc_lock);
928 /* We only care about the situation where AIE is disabled. */
929 if (rtc_control & RTC_AIE)
932 cmos_read_time(dev, &now);
933 t_now = rtc_tm_to_time64(&now);
936 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
937 * automatically right after shutdown on some buggy boxes.
938 * This automatic rebooting issue won't happen when the alarm
939 * time is larger than now+1 seconds.
941 * If the alarm time is equal to now+1 seconds, the issue can be
942 * prevented by cancelling the alarm.
944 if (cmos->alarm_expires == t_now + 1) {
945 struct rtc_wkalrm alarm;
947 /* Cancel the AIE timer by configuring the past time. */
948 rtc_time64_to_tm(t_now - 1, &alarm.time);
950 retval = cmos_set_alarm(dev, &alarm);
951 } else if (cmos->alarm_expires > t_now + 1) {
958 static int cmos_suspend(struct device *dev)
960 struct cmos_rtc *cmos = dev_get_drvdata(dev);
963 /* only the alarm might be a wakeup event source */
964 spin_lock_irq(&rtc_lock);
965 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
966 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
969 if (device_may_wakeup(dev))
970 mask = RTC_IRQMASK & ~RTC_AIE;
974 CMOS_WRITE(tmp, RTC_CONTROL);
975 if (use_hpet_alarm())
976 hpet_mask_rtc_irq_bit(mask);
977 cmos_checkintr(cmos, tmp);
979 spin_unlock_irq(&rtc_lock);
981 if ((tmp & RTC_AIE) && !use_acpi_alarm) {
982 cmos->enabled_wake = 1;
986 enable_irq_wake(cmos->irq);
989 cmos_read_alarm(dev, &cmos->saved_wkalrm);
991 dev_dbg(dev, "suspend%s, ctrl %02x\n",
992 (tmp & RTC_AIE) ? ", alarm may wake" : "",
998 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
999 * after a detour through G3 "mechanical off", although the ACPI spec
1000 * says wakeup should only work from G1/S4 "hibernate". To most users,
1001 * distinctions between S4 and S5 are pointless. So when the hardware
1002 * allows, don't draw that distinction.
1004 static inline int cmos_poweroff(struct device *dev)
1006 if (!IS_ENABLED(CONFIG_PM))
1009 return cmos_suspend(dev);
1012 static void cmos_check_wkalrm(struct device *dev)
1014 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1015 struct rtc_wkalrm current_alarm;
1017 time64_t t_current_expires;
1018 time64_t t_saved_expires;
1019 struct rtc_time now;
1021 /* Check if we have RTC Alarm armed */
1022 if (!(cmos->suspend_ctrl & RTC_AIE))
1025 cmos_read_time(dev, &now);
1026 t_now = rtc_tm_to_time64(&now);
1029 * ACPI RTC wake event is cleared after resume from STR,
1030 * ACK the rtc irq here
1032 if (t_now >= cmos->alarm_expires && use_acpi_alarm) {
1033 cmos_interrupt(0, (void *)cmos->rtc);
1037 cmos_read_alarm(dev, ¤t_alarm);
1038 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1039 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1040 if (t_current_expires != t_saved_expires ||
1041 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1042 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1046 static void cmos_check_acpi_rtc_status(struct device *dev,
1047 unsigned char *rtc_control);
1049 static int __maybe_unused cmos_resume(struct device *dev)
1051 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1054 if (cmos->enabled_wake && !use_acpi_alarm) {
1056 cmos->wake_off(dev);
1058 disable_irq_wake(cmos->irq);
1059 cmos->enabled_wake = 0;
1062 /* The BIOS might have changed the alarm, restore it */
1063 cmos_check_wkalrm(dev);
1065 spin_lock_irq(&rtc_lock);
1066 tmp = cmos->suspend_ctrl;
1067 cmos->suspend_ctrl = 0;
1068 /* re-enable any irqs previously active */
1069 if (tmp & RTC_IRQMASK) {
1072 if (device_may_wakeup(dev) && use_hpet_alarm())
1073 hpet_rtc_timer_init();
1076 CMOS_WRITE(tmp, RTC_CONTROL);
1077 if (use_hpet_alarm())
1078 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1080 mask = CMOS_READ(RTC_INTR_FLAGS);
1081 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1082 if (!use_hpet_alarm() || !is_intr(mask))
1085 /* force one-shot behavior if HPET blocked
1086 * the wake alarm's irq
1088 rtc_update_irq(cmos->rtc, 1, mask);
1090 hpet_mask_rtc_irq_bit(RTC_AIE);
1091 } while (mask & RTC_AIE);
1094 cmos_check_acpi_rtc_status(dev, &tmp);
1096 spin_unlock_irq(&rtc_lock);
1098 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1103 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1105 /*----------------------------------------------------------------*/
1107 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1108 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1109 * probably list them in similar PNPBIOS tables; so PNP is more common.
1111 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1112 * predate even PNPBIOS should set up platform_bus devices.
1117 #include <linux/acpi.h>
1119 static u32 rtc_handler(void *context)
1121 struct device *dev = context;
1122 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1123 unsigned char rtc_control = 0;
1124 unsigned char rtc_intr;
1125 unsigned long flags;
1129 * Always update rtc irq when ACPI is used as RTC Alarm.
1130 * Or else, ACPI SCI is enabled during suspend/resume only,
1131 * update rtc irq in that case.
1134 cmos_interrupt(0, (void *)cmos->rtc);
1136 /* Fix me: can we use cmos_interrupt() here as well? */
1137 spin_lock_irqsave(&rtc_lock, flags);
1138 if (cmos_rtc.suspend_ctrl)
1139 rtc_control = CMOS_READ(RTC_CONTROL);
1140 if (rtc_control & RTC_AIE) {
1141 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1142 CMOS_WRITE(rtc_control, RTC_CONTROL);
1143 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1144 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1146 spin_unlock_irqrestore(&rtc_lock, flags);
1149 pm_wakeup_hard_event(dev);
1150 acpi_clear_event(ACPI_EVENT_RTC);
1151 acpi_disable_event(ACPI_EVENT_RTC, 0);
1152 return ACPI_INTERRUPT_HANDLED;
1155 static inline void rtc_wake_setup(struct device *dev)
1157 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1159 * After the RTC handler is installed, the Fixed_RTC event should
1160 * be disabled. Only when the RTC alarm is set will it be enabled.
1162 acpi_clear_event(ACPI_EVENT_RTC);
1163 acpi_disable_event(ACPI_EVENT_RTC, 0);
1166 static void rtc_wake_on(struct device *dev)
1168 acpi_clear_event(ACPI_EVENT_RTC);
1169 acpi_enable_event(ACPI_EVENT_RTC, 0);
1172 static void rtc_wake_off(struct device *dev)
1174 acpi_disable_event(ACPI_EVENT_RTC, 0);
1177 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1178 * its device node and pass extra config data. This helps its driver use
1179 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1180 * that this board's RTC is wakeup-capable (per ACPI spec).
1182 static struct cmos_rtc_board_info acpi_rtc_info;
1184 static void cmos_wake_setup(struct device *dev)
1189 rtc_wake_setup(dev);
1190 acpi_rtc_info.wake_on = rtc_wake_on;
1191 acpi_rtc_info.wake_off = rtc_wake_off;
1193 /* workaround bug in some ACPI tables */
1194 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1195 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1196 acpi_gbl_FADT.month_alarm);
1197 acpi_gbl_FADT.month_alarm = 0;
1200 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1201 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1202 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1204 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1205 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1206 dev_info(dev, "RTC can wake from S4\n");
1208 dev->platform_data = &acpi_rtc_info;
1210 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1211 device_init_wakeup(dev, 1);
1214 static void cmos_check_acpi_rtc_status(struct device *dev,
1215 unsigned char *rtc_control)
1217 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1218 acpi_event_status rtc_status;
1221 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1224 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1225 if (ACPI_FAILURE(status)) {
1226 dev_err(dev, "Could not get RTC status\n");
1227 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1229 *rtc_control &= ~RTC_AIE;
1230 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1231 mask = CMOS_READ(RTC_INTR_FLAGS);
1232 rtc_update_irq(cmos->rtc, 1, mask);
1238 static void cmos_wake_setup(struct device *dev)
1242 static void cmos_check_acpi_rtc_status(struct device *dev,
1243 unsigned char *rtc_control)
1251 #include <linux/pnp.h>
1253 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1255 cmos_wake_setup(&pnp->dev);
1257 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1258 unsigned int irq = 0;
1260 /* Some machines contain a PNP entry for the RTC, but
1261 * don't define the IRQ. It should always be safe to
1262 * hardcode it on systems with a legacy PIC.
1264 if (nr_legacy_irqs())
1267 return cmos_do_probe(&pnp->dev,
1268 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1270 return cmos_do_probe(&pnp->dev,
1271 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1276 static void cmos_pnp_remove(struct pnp_dev *pnp)
1278 cmos_do_remove(&pnp->dev);
1281 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1283 struct device *dev = &pnp->dev;
1284 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1286 if (system_state == SYSTEM_POWER_OFF) {
1287 int retval = cmos_poweroff(dev);
1289 if (cmos_aie_poweroff(dev) < 0 && !retval)
1293 cmos_do_shutdown(cmos->irq);
1296 static const struct pnp_device_id rtc_ids[] = {
1297 { .id = "PNP0b00", },
1298 { .id = "PNP0b01", },
1299 { .id = "PNP0b02", },
1302 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1304 static struct pnp_driver cmos_pnp_driver = {
1305 .name = (char *) driver_name,
1306 .id_table = rtc_ids,
1307 .probe = cmos_pnp_probe,
1308 .remove = cmos_pnp_remove,
1309 .shutdown = cmos_pnp_shutdown,
1311 /* flag ensures resume() gets called, and stops syslog spam */
1312 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1318 #endif /* CONFIG_PNP */
1321 static const struct of_device_id of_cmos_match[] = {
1323 .compatible = "motorola,mc146818",
1327 MODULE_DEVICE_TABLE(of, of_cmos_match);
1329 static __init void cmos_of_init(struct platform_device *pdev)
1331 struct device_node *node = pdev->dev.of_node;
1337 val = of_get_property(node, "ctrl-reg", NULL);
1339 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1341 val = of_get_property(node, "freq-reg", NULL);
1343 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1346 static inline void cmos_of_init(struct platform_device *pdev) {}
1348 /*----------------------------------------------------------------*/
1350 /* Platform setup should have set up an RTC device, when PNP is
1351 * unavailable ... this could happen even on (older) PCs.
1354 static int __init cmos_platform_probe(struct platform_device *pdev)
1356 struct resource *resource;
1360 cmos_wake_setup(&pdev->dev);
1363 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1365 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1366 irq = platform_get_irq(pdev, 0);
1370 return cmos_do_probe(&pdev->dev, resource, irq);
1373 static int cmos_platform_remove(struct platform_device *pdev)
1375 cmos_do_remove(&pdev->dev);
1379 static void cmos_platform_shutdown(struct platform_device *pdev)
1381 struct device *dev = &pdev->dev;
1382 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1384 if (system_state == SYSTEM_POWER_OFF) {
1385 int retval = cmos_poweroff(dev);
1387 if (cmos_aie_poweroff(dev) < 0 && !retval)
1391 cmos_do_shutdown(cmos->irq);
1394 /* work with hotplug and coldplug */
1395 MODULE_ALIAS("platform:rtc_cmos");
1397 static struct platform_driver cmos_platform_driver = {
1398 .remove = cmos_platform_remove,
1399 .shutdown = cmos_platform_shutdown,
1401 .name = driver_name,
1403 .of_match_table = of_match_ptr(of_cmos_match),
1408 static bool pnp_driver_registered;
1410 static bool platform_driver_registered;
1412 static int __init cmos_init(void)
1417 retval = pnp_register_driver(&cmos_pnp_driver);
1419 pnp_driver_registered = true;
1422 if (!cmos_rtc.dev) {
1423 retval = platform_driver_probe(&cmos_platform_driver,
1424 cmos_platform_probe);
1426 platform_driver_registered = true;
1433 if (pnp_driver_registered)
1434 pnp_unregister_driver(&cmos_pnp_driver);
1438 module_init(cmos_init);
1440 static void __exit cmos_exit(void)
1443 if (pnp_driver_registered)
1444 pnp_unregister_driver(&cmos_pnp_driver);
1446 if (platform_driver_registered)
1447 platform_driver_unregister(&cmos_platform_driver);
1449 module_exit(cmos_exit);
1452 MODULE_AUTHOR("David Brownell");
1453 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1454 MODULE_LICENSE("GPL");