1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
39 #include <linux/of_platform.h>
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
61 static inline int cmos_use_acpi_alarm(void)
63 return use_acpi_alarm;
65 #else /* !CONFIG_ACPI */
67 static inline int cmos_use_acpi_alarm(void)
74 struct rtc_device *rtc;
77 struct resource *iomem;
78 time64_t alarm_expires;
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
86 /* newer hardware extends the original register set */
91 struct rtc_wkalrm saved_wkalrm;
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
97 static const char driver_name[] = "rtc_cmos";
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
105 static inline int is_intr(u8 rtc_intr)
107 if (!(rtc_intr & RTC_IRQF))
109 return rtc_intr & RTC_IRQMASK;
112 /*----------------------------------------------------------------*/
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
128 static inline int is_hpet_enabled(void)
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 static inline int hpet_set_periodic_freq(unsigned long freq)
154 static inline int hpet_rtc_dropped_irq(void)
159 static inline int hpet_rtc_timer_init(void)
164 extern irq_handler_t hpet_rtc_interrupt;
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
184 /*----------------------------------------------------------------*/
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
192 #define can_bank2 true
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
208 #define can_bank2 false
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
221 /*----------------------------------------------------------------*/
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
229 if (!pm_trace_rtc_valid())
232 mc146818_get_time(t);
236 static int cmos_set_time(struct device *dev, struct rtc_time *t)
238 /* NOTE: this ignores the issue whereby updating the seconds
239 * takes effect exactly 500ms after we write the register.
240 * (Also queueing and other delays before we get this far.)
242 return mc146818_set_time(t);
245 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
247 struct cmos_rtc *cmos = dev_get_drvdata(dev);
248 unsigned char rtc_control;
250 /* This not only a rtc_op, but also called directly */
251 if (!is_valid_irq(cmos->irq))
254 /* Basic alarms only support hour, minute, and seconds fields.
255 * Some also support day and month, for alarms up to a year in
259 spin_lock_irq(&rtc_lock);
260 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
261 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
262 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
264 if (cmos->day_alrm) {
265 /* ignore upper bits on readback per ACPI spec */
266 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
267 if (!t->time.tm_mday)
268 t->time.tm_mday = -1;
270 if (cmos->mon_alrm) {
271 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
277 rtc_control = CMOS_READ(RTC_CONTROL);
278 spin_unlock_irq(&rtc_lock);
280 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
281 if (((unsigned)t->time.tm_sec) < 0x60)
282 t->time.tm_sec = bcd2bin(t->time.tm_sec);
285 if (((unsigned)t->time.tm_min) < 0x60)
286 t->time.tm_min = bcd2bin(t->time.tm_min);
289 if (((unsigned)t->time.tm_hour) < 0x24)
290 t->time.tm_hour = bcd2bin(t->time.tm_hour);
292 t->time.tm_hour = -1;
294 if (cmos->day_alrm) {
295 if (((unsigned)t->time.tm_mday) <= 0x31)
296 t->time.tm_mday = bcd2bin(t->time.tm_mday);
298 t->time.tm_mday = -1;
300 if (cmos->mon_alrm) {
301 if (((unsigned)t->time.tm_mon) <= 0x12)
302 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 t->enabled = !!(rtc_control & RTC_AIE);
315 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
317 unsigned char rtc_intr;
319 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
320 * allegedly some older rtcs need that to handle irqs properly
322 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
324 if (use_hpet_alarm())
327 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
328 if (is_intr(rtc_intr))
329 rtc_update_irq(cmos->rtc, 1, rtc_intr);
332 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
334 unsigned char rtc_control;
336 /* flush any pending IRQ status, notably for update irqs,
337 * before we enable new IRQs
339 rtc_control = CMOS_READ(RTC_CONTROL);
340 cmos_checkintr(cmos, rtc_control);
343 CMOS_WRITE(rtc_control, RTC_CONTROL);
344 if (use_hpet_alarm())
345 hpet_set_rtc_irq_bit(mask);
347 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
349 cmos->wake_on(cmos->dev);
352 cmos_checkintr(cmos, rtc_control);
355 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
357 unsigned char rtc_control;
359 rtc_control = CMOS_READ(RTC_CONTROL);
360 rtc_control &= ~mask;
361 CMOS_WRITE(rtc_control, RTC_CONTROL);
362 if (use_hpet_alarm())
363 hpet_mask_rtc_irq_bit(mask);
365 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
367 cmos->wake_off(cmos->dev);
370 cmos_checkintr(cmos, rtc_control);
373 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
375 struct cmos_rtc *cmos = dev_get_drvdata(dev);
378 cmos_read_time(dev, &now);
380 if (!cmos->day_alrm) {
384 t_max_date = rtc_tm_to_time64(&now);
385 t_max_date += 24 * 60 * 60 - 1;
386 t_alrm = rtc_tm_to_time64(&t->time);
387 if (t_alrm > t_max_date) {
389 "Alarms can be up to one day in the future\n");
392 } else if (!cmos->mon_alrm) {
393 struct rtc_time max_date = now;
398 if (max_date.tm_mon == 11) {
400 max_date.tm_year += 1;
402 max_date.tm_mon += 1;
404 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
405 if (max_date.tm_mday > max_mday)
406 max_date.tm_mday = max_mday;
408 t_max_date = rtc_tm_to_time64(&max_date);
410 t_alrm = rtc_tm_to_time64(&t->time);
411 if (t_alrm > t_max_date) {
413 "Alarms can be up to one month in the future\n");
417 struct rtc_time max_date = now;
422 max_date.tm_year += 1;
423 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
424 if (max_date.tm_mday > max_mday)
425 max_date.tm_mday = max_mday;
427 t_max_date = rtc_tm_to_time64(&max_date);
429 t_alrm = rtc_tm_to_time64(&t->time);
430 if (t_alrm > t_max_date) {
432 "Alarms can be up to one year in the future\n");
440 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
442 struct cmos_rtc *cmos = dev_get_drvdata(dev);
443 unsigned char mon, mday, hrs, min, sec, rtc_control;
446 /* This not only a rtc_op, but also called directly */
447 if (!is_valid_irq(cmos->irq))
450 ret = cmos_validate_alarm(dev, t);
454 mon = t->time.tm_mon + 1;
455 mday = t->time.tm_mday;
456 hrs = t->time.tm_hour;
457 min = t->time.tm_min;
458 sec = t->time.tm_sec;
460 rtc_control = CMOS_READ(RTC_CONTROL);
461 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
462 /* Writing 0xff means "don't care" or "match all". */
463 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
464 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
465 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
466 min = (min < 60) ? bin2bcd(min) : 0xff;
467 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
470 spin_lock_irq(&rtc_lock);
472 /* next rtc irq must not be from previous alarm setting */
473 cmos_irq_disable(cmos, RTC_AIE);
476 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
477 CMOS_WRITE(min, RTC_MINUTES_ALARM);
478 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
480 /* the system may support an "enhanced" alarm */
481 if (cmos->day_alrm) {
482 CMOS_WRITE(mday, cmos->day_alrm);
484 CMOS_WRITE(mon, cmos->mon_alrm);
487 if (use_hpet_alarm()) {
489 * FIXME the HPET alarm glue currently ignores day_alrm
492 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
497 cmos_irq_enable(cmos, RTC_AIE);
499 spin_unlock_irq(&rtc_lock);
501 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
506 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
508 struct cmos_rtc *cmos = dev_get_drvdata(dev);
511 spin_lock_irqsave(&rtc_lock, flags);
514 cmos_irq_enable(cmos, RTC_AIE);
516 cmos_irq_disable(cmos, RTC_AIE);
518 spin_unlock_irqrestore(&rtc_lock, flags);
522 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
524 static int cmos_procfs(struct device *dev, struct seq_file *seq)
526 struct cmos_rtc *cmos = dev_get_drvdata(dev);
527 unsigned char rtc_control, valid;
529 spin_lock_irq(&rtc_lock);
530 rtc_control = CMOS_READ(RTC_CONTROL);
531 valid = CMOS_READ(RTC_VALID);
532 spin_unlock_irq(&rtc_lock);
534 /* NOTE: at least ICH6 reports battery status using a different
535 * (non-RTC) bit; and SQWE is ignored on many current systems.
538 "periodic_IRQ\t: %s\n"
540 "HPET_emulated\t: %s\n"
541 // "square_wave\t: %s\n"
544 "periodic_freq\t: %d\n"
545 "batt_status\t: %s\n",
546 (rtc_control & RTC_PIE) ? "yes" : "no",
547 (rtc_control & RTC_UIE) ? "yes" : "no",
548 use_hpet_alarm() ? "yes" : "no",
549 // (rtc_control & RTC_SQWE) ? "yes" : "no",
550 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
551 (rtc_control & RTC_DST_EN) ? "yes" : "no",
553 (valid & RTC_VRT) ? "okay" : "dead");
559 #define cmos_procfs NULL
562 static const struct rtc_class_ops cmos_rtc_ops = {
563 .read_time = cmos_read_time,
564 .set_time = cmos_set_time,
565 .read_alarm = cmos_read_alarm,
566 .set_alarm = cmos_set_alarm,
568 .alarm_irq_enable = cmos_alarm_irq_enable,
571 /*----------------------------------------------------------------*/
574 * All these chips have at least 64 bytes of address space, shared by
575 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
576 * by boot firmware. Modern chips have 128 or 256 bytes.
579 #define NVRAM_OFFSET (RTC_REG_D + 1)
581 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
584 unsigned char *buf = val;
588 spin_lock_irq(&rtc_lock);
589 for (retval = 0; count; count--, off++, retval++) {
591 *buf++ = CMOS_READ(off);
593 *buf++ = cmos_read_bank2(off);
597 spin_unlock_irq(&rtc_lock);
602 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
605 struct cmos_rtc *cmos = priv;
606 unsigned char *buf = val;
609 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
610 * checksum on part of the NVRAM data. That's currently ignored
611 * here. If userspace is smart enough to know what fields of
612 * NVRAM to update, updating checksums is also part of its job.
615 spin_lock_irq(&rtc_lock);
616 for (retval = 0; count; count--, off++, retval++) {
617 /* don't trash RTC registers */
618 if (off == cmos->day_alrm
619 || off == cmos->mon_alrm
620 || off == cmos->century)
623 CMOS_WRITE(*buf++, off);
625 cmos_write_bank2(*buf++, off);
629 spin_unlock_irq(&rtc_lock);
634 /*----------------------------------------------------------------*/
636 static struct cmos_rtc cmos_rtc;
638 static irqreturn_t cmos_interrupt(int irq, void *p)
643 spin_lock(&rtc_lock);
645 /* When the HPET interrupt handler calls us, the interrupt
646 * status is passed as arg1 instead of the irq number. But
647 * always clear irq status, even when HPET is in the way.
649 * Note that HPET and RTC are almost certainly out of phase,
650 * giving different IRQ status ...
652 irqstat = CMOS_READ(RTC_INTR_FLAGS);
653 rtc_control = CMOS_READ(RTC_CONTROL);
654 if (use_hpet_alarm())
655 irqstat = (unsigned long)irq & 0xF0;
657 /* If we were suspended, RTC_CONTROL may not be accurate since the
658 * bios may have cleared it.
660 if (!cmos_rtc.suspend_ctrl)
661 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
663 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
665 /* All Linux RTC alarms should be treated as if they were oneshot.
666 * Similar code may be needed in system wakeup paths, in case the
667 * alarm woke the system.
669 if (irqstat & RTC_AIE) {
670 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
671 rtc_control &= ~RTC_AIE;
672 CMOS_WRITE(rtc_control, RTC_CONTROL);
673 if (use_hpet_alarm())
674 hpet_mask_rtc_irq_bit(RTC_AIE);
675 CMOS_READ(RTC_INTR_FLAGS);
677 spin_unlock(&rtc_lock);
679 if (is_intr(irqstat)) {
680 rtc_update_irq(p, 1, irqstat);
690 #define INITSECTION __init
693 static int INITSECTION
694 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
696 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
698 unsigned char rtc_control;
699 unsigned address_space;
701 struct nvmem_config nvmem_cfg = {
702 .name = "cmos_nvram",
705 .reg_read = cmos_nvram_read,
706 .reg_write = cmos_nvram_write,
710 /* there can be only one ... */
717 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
719 * REVISIT non-x86 systems may instead use memory space resources
720 * (needing ioremap etc), not i/o space resources like this ...
723 ports = request_region(ports->start, resource_size(ports),
726 ports = request_mem_region(ports->start, resource_size(ports),
729 dev_dbg(dev, "i/o registers already in use\n");
733 cmos_rtc.irq = rtc_irq;
734 cmos_rtc.iomem = ports;
736 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
737 * driver did, but don't reject unknown configs. Old hardware
738 * won't address 128 bytes. Newer chips have multiple banks,
739 * though they may not be listed in one I/O resource.
741 #if defined(CONFIG_ATARI)
743 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
744 || defined(__sparc__) || defined(__mips__) \
745 || defined(__powerpc__)
748 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
751 if (can_bank2 && ports->end > (ports->start + 1))
754 /* For ACPI systems extension info comes from the FADT. On others,
755 * board specific setup provides it as appropriate. Systems where
756 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
757 * some almost-clones) can provide hooks to make that behave.
759 * Note that ACPI doesn't preclude putting these registers into
760 * "extended" areas of the chip, including some that we won't yet
761 * expect CMOS_READ and friends to handle.
766 if (info->address_space)
767 address_space = info->address_space;
769 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
770 cmos_rtc.day_alrm = info->rtc_day_alarm;
771 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
772 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
773 if (info->rtc_century && info->rtc_century < 128)
774 cmos_rtc.century = info->rtc_century;
776 if (info->wake_on && info->wake_off) {
777 cmos_rtc.wake_on = info->wake_on;
778 cmos_rtc.wake_off = info->wake_off;
783 dev_set_drvdata(dev, &cmos_rtc);
785 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
786 if (IS_ERR(cmos_rtc.rtc)) {
787 retval = PTR_ERR(cmos_rtc.rtc);
791 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
793 spin_lock_irq(&rtc_lock);
795 /* Ensure that the RTC is accessible. Bit 6 must be 0! */
796 if ((CMOS_READ(RTC_VALID) & 0x40) != 0) {
797 spin_unlock_irq(&rtc_lock);
798 dev_warn(dev, "not accessible\n");
803 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
804 /* force periodic irq to CMOS reset default of 1024Hz;
806 * REVISIT it's been reported that at least one x86_64 ALI
807 * mobo doesn't use 32KHz here ... for portability we might
808 * need to do something about other clock frequencies.
810 cmos_rtc.rtc->irq_freq = 1024;
811 if (use_hpet_alarm())
812 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
813 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
817 if (is_valid_irq(rtc_irq))
818 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
820 rtc_control = CMOS_READ(RTC_CONTROL);
822 spin_unlock_irq(&rtc_lock);
824 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
825 dev_warn(dev, "only 24-hr supported\n");
830 if (use_hpet_alarm())
831 hpet_rtc_timer_init();
833 if (is_valid_irq(rtc_irq)) {
834 irq_handler_t rtc_cmos_int_handler;
836 if (use_hpet_alarm()) {
837 rtc_cmos_int_handler = hpet_rtc_interrupt;
838 retval = hpet_register_irq_handler(cmos_interrupt);
840 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
841 dev_warn(dev, "hpet_register_irq_handler "
842 " failed in rtc_init().");
846 rtc_cmos_int_handler = cmos_interrupt;
848 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
849 0, dev_name(&cmos_rtc.rtc->dev),
852 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
856 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
859 cmos_rtc.rtc->ops = &cmos_rtc_ops;
861 retval = devm_rtc_register_device(cmos_rtc.rtc);
865 /* Set the sync offset for the periodic 11min update correct */
866 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
868 /* export at least the first block of NVRAM */
869 nvmem_cfg.size = address_space - NVRAM_OFFSET;
870 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
872 dev_info(dev, "%s%s, %d bytes nvram%s\n",
873 !is_valid_irq(rtc_irq) ? "no alarms" :
874 cmos_rtc.mon_alrm ? "alarms up to one year" :
875 cmos_rtc.day_alrm ? "alarms up to one month" :
876 "alarms up to one day",
877 cmos_rtc.century ? ", y3k" : "",
879 use_hpet_alarm() ? ", hpet irqs" : "");
884 if (is_valid_irq(rtc_irq))
885 free_irq(rtc_irq, cmos_rtc.rtc);
890 release_region(ports->start, resource_size(ports));
892 release_mem_region(ports->start, resource_size(ports));
896 static void cmos_do_shutdown(int rtc_irq)
898 spin_lock_irq(&rtc_lock);
899 if (is_valid_irq(rtc_irq))
900 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
901 spin_unlock_irq(&rtc_lock);
904 static void cmos_do_remove(struct device *dev)
906 struct cmos_rtc *cmos = dev_get_drvdata(dev);
907 struct resource *ports;
909 cmos_do_shutdown(cmos->irq);
911 if (is_valid_irq(cmos->irq)) {
912 free_irq(cmos->irq, cmos->rtc);
913 if (use_hpet_alarm())
914 hpet_unregister_irq_handler(cmos_interrupt);
921 release_region(ports->start, resource_size(ports));
923 release_mem_region(ports->start, resource_size(ports));
929 static int cmos_aie_poweroff(struct device *dev)
931 struct cmos_rtc *cmos = dev_get_drvdata(dev);
935 unsigned char rtc_control;
937 if (!cmos->alarm_expires)
940 spin_lock_irq(&rtc_lock);
941 rtc_control = CMOS_READ(RTC_CONTROL);
942 spin_unlock_irq(&rtc_lock);
944 /* We only care about the situation where AIE is disabled. */
945 if (rtc_control & RTC_AIE)
948 cmos_read_time(dev, &now);
949 t_now = rtc_tm_to_time64(&now);
952 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
953 * automatically right after shutdown on some buggy boxes.
954 * This automatic rebooting issue won't happen when the alarm
955 * time is larger than now+1 seconds.
957 * If the alarm time is equal to now+1 seconds, the issue can be
958 * prevented by cancelling the alarm.
960 if (cmos->alarm_expires == t_now + 1) {
961 struct rtc_wkalrm alarm;
963 /* Cancel the AIE timer by configuring the past time. */
964 rtc_time64_to_tm(t_now - 1, &alarm.time);
966 retval = cmos_set_alarm(dev, &alarm);
967 } else if (cmos->alarm_expires > t_now + 1) {
974 static int cmos_suspend(struct device *dev)
976 struct cmos_rtc *cmos = dev_get_drvdata(dev);
979 /* only the alarm might be a wakeup event source */
980 spin_lock_irq(&rtc_lock);
981 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
982 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
985 if (device_may_wakeup(dev))
986 mask = RTC_IRQMASK & ~RTC_AIE;
990 CMOS_WRITE(tmp, RTC_CONTROL);
991 if (use_hpet_alarm())
992 hpet_mask_rtc_irq_bit(mask);
993 cmos_checkintr(cmos, tmp);
995 spin_unlock_irq(&rtc_lock);
997 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
998 cmos->enabled_wake = 1;
1002 enable_irq_wake(cmos->irq);
1005 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1006 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1008 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1009 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1015 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1016 * after a detour through G3 "mechanical off", although the ACPI spec
1017 * says wakeup should only work from G1/S4 "hibernate". To most users,
1018 * distinctions between S4 and S5 are pointless. So when the hardware
1019 * allows, don't draw that distinction.
1021 static inline int cmos_poweroff(struct device *dev)
1023 if (!IS_ENABLED(CONFIG_PM))
1026 return cmos_suspend(dev);
1029 static void cmos_check_wkalrm(struct device *dev)
1031 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1032 struct rtc_wkalrm current_alarm;
1034 time64_t t_current_expires;
1035 time64_t t_saved_expires;
1036 struct rtc_time now;
1038 /* Check if we have RTC Alarm armed */
1039 if (!(cmos->suspend_ctrl & RTC_AIE))
1042 cmos_read_time(dev, &now);
1043 t_now = rtc_tm_to_time64(&now);
1046 * ACPI RTC wake event is cleared after resume from STR,
1047 * ACK the rtc irq here
1049 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1050 local_irq_disable();
1051 cmos_interrupt(0, (void *)cmos->rtc);
1056 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1057 cmos_read_alarm(dev, ¤t_alarm);
1058 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1059 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1060 if (t_current_expires != t_saved_expires ||
1061 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1062 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1066 static void cmos_check_acpi_rtc_status(struct device *dev,
1067 unsigned char *rtc_control);
1069 static int __maybe_unused cmos_resume(struct device *dev)
1071 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1074 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1076 cmos->wake_off(dev);
1078 disable_irq_wake(cmos->irq);
1079 cmos->enabled_wake = 0;
1082 /* The BIOS might have changed the alarm, restore it */
1083 cmos_check_wkalrm(dev);
1085 spin_lock_irq(&rtc_lock);
1086 tmp = cmos->suspend_ctrl;
1087 cmos->suspend_ctrl = 0;
1088 /* re-enable any irqs previously active */
1089 if (tmp & RTC_IRQMASK) {
1092 if (device_may_wakeup(dev) && use_hpet_alarm())
1093 hpet_rtc_timer_init();
1096 CMOS_WRITE(tmp, RTC_CONTROL);
1097 if (use_hpet_alarm())
1098 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1100 mask = CMOS_READ(RTC_INTR_FLAGS);
1101 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1102 if (!use_hpet_alarm() || !is_intr(mask))
1105 /* force one-shot behavior if HPET blocked
1106 * the wake alarm's irq
1108 rtc_update_irq(cmos->rtc, 1, mask);
1110 hpet_mask_rtc_irq_bit(RTC_AIE);
1111 } while (mask & RTC_AIE);
1114 cmos_check_acpi_rtc_status(dev, &tmp);
1116 spin_unlock_irq(&rtc_lock);
1118 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1123 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1125 /*----------------------------------------------------------------*/
1127 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1128 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1129 * probably list them in similar PNPBIOS tables; so PNP is more common.
1131 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1132 * predate even PNPBIOS should set up platform_bus devices.
1137 #include <linux/acpi.h>
1139 static u32 rtc_handler(void *context)
1141 struct device *dev = context;
1142 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1143 unsigned char rtc_control = 0;
1144 unsigned char rtc_intr;
1145 unsigned long flags;
1149 * Always update rtc irq when ACPI is used as RTC Alarm.
1150 * Or else, ACPI SCI is enabled during suspend/resume only,
1151 * update rtc irq in that case.
1153 if (cmos_use_acpi_alarm())
1154 cmos_interrupt(0, (void *)cmos->rtc);
1156 /* Fix me: can we use cmos_interrupt() here as well? */
1157 spin_lock_irqsave(&rtc_lock, flags);
1158 if (cmos_rtc.suspend_ctrl)
1159 rtc_control = CMOS_READ(RTC_CONTROL);
1160 if (rtc_control & RTC_AIE) {
1161 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1162 CMOS_WRITE(rtc_control, RTC_CONTROL);
1163 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1164 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1166 spin_unlock_irqrestore(&rtc_lock, flags);
1169 pm_wakeup_hard_event(dev);
1170 acpi_clear_event(ACPI_EVENT_RTC);
1171 acpi_disable_event(ACPI_EVENT_RTC, 0);
1172 return ACPI_INTERRUPT_HANDLED;
1175 static inline void rtc_wake_setup(struct device *dev)
1177 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1179 * After the RTC handler is installed, the Fixed_RTC event should
1180 * be disabled. Only when the RTC alarm is set will it be enabled.
1182 acpi_clear_event(ACPI_EVENT_RTC);
1183 acpi_disable_event(ACPI_EVENT_RTC, 0);
1186 static void rtc_wake_on(struct device *dev)
1188 acpi_clear_event(ACPI_EVENT_RTC);
1189 acpi_enable_event(ACPI_EVENT_RTC, 0);
1192 static void rtc_wake_off(struct device *dev)
1194 acpi_disable_event(ACPI_EVENT_RTC, 0);
1198 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1199 static void use_acpi_alarm_quirks(void)
1201 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1204 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1207 if (!is_hpet_enabled())
1210 if (dmi_get_bios_year() < 2015)
1213 use_acpi_alarm = true;
1216 static inline void use_acpi_alarm_quirks(void) { }
1219 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1220 * its device node and pass extra config data. This helps its driver use
1221 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1222 * that this board's RTC is wakeup-capable (per ACPI spec).
1224 static struct cmos_rtc_board_info acpi_rtc_info;
1226 static void cmos_wake_setup(struct device *dev)
1231 use_acpi_alarm_quirks();
1233 rtc_wake_setup(dev);
1234 acpi_rtc_info.wake_on = rtc_wake_on;
1235 acpi_rtc_info.wake_off = rtc_wake_off;
1237 /* workaround bug in some ACPI tables */
1238 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1239 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1240 acpi_gbl_FADT.month_alarm);
1241 acpi_gbl_FADT.month_alarm = 0;
1244 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1245 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1246 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1248 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1249 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1250 dev_info(dev, "RTC can wake from S4\n");
1252 dev->platform_data = &acpi_rtc_info;
1254 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1255 device_init_wakeup(dev, 1);
1258 static void cmos_check_acpi_rtc_status(struct device *dev,
1259 unsigned char *rtc_control)
1261 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1262 acpi_event_status rtc_status;
1265 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1268 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1269 if (ACPI_FAILURE(status)) {
1270 dev_err(dev, "Could not get RTC status\n");
1271 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1273 *rtc_control &= ~RTC_AIE;
1274 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1275 mask = CMOS_READ(RTC_INTR_FLAGS);
1276 rtc_update_irq(cmos->rtc, 1, mask);
1282 static void cmos_wake_setup(struct device *dev)
1286 static void cmos_check_acpi_rtc_status(struct device *dev,
1287 unsigned char *rtc_control)
1295 #include <linux/pnp.h>
1297 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1299 cmos_wake_setup(&pnp->dev);
1301 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1302 unsigned int irq = 0;
1304 /* Some machines contain a PNP entry for the RTC, but
1305 * don't define the IRQ. It should always be safe to
1306 * hardcode it on systems with a legacy PIC.
1308 if (nr_legacy_irqs())
1311 return cmos_do_probe(&pnp->dev,
1312 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1314 return cmos_do_probe(&pnp->dev,
1315 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1320 static void cmos_pnp_remove(struct pnp_dev *pnp)
1322 cmos_do_remove(&pnp->dev);
1325 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1327 struct device *dev = &pnp->dev;
1328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1330 if (system_state == SYSTEM_POWER_OFF) {
1331 int retval = cmos_poweroff(dev);
1333 if (cmos_aie_poweroff(dev) < 0 && !retval)
1337 cmos_do_shutdown(cmos->irq);
1340 static const struct pnp_device_id rtc_ids[] = {
1341 { .id = "PNP0b00", },
1342 { .id = "PNP0b01", },
1343 { .id = "PNP0b02", },
1346 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1348 static struct pnp_driver cmos_pnp_driver = {
1349 .name = driver_name,
1350 .id_table = rtc_ids,
1351 .probe = cmos_pnp_probe,
1352 .remove = cmos_pnp_remove,
1353 .shutdown = cmos_pnp_shutdown,
1355 /* flag ensures resume() gets called, and stops syslog spam */
1356 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1362 #endif /* CONFIG_PNP */
1365 static const struct of_device_id of_cmos_match[] = {
1367 .compatible = "motorola,mc146818",
1371 MODULE_DEVICE_TABLE(of, of_cmos_match);
1373 static __init void cmos_of_init(struct platform_device *pdev)
1375 struct device_node *node = pdev->dev.of_node;
1381 val = of_get_property(node, "ctrl-reg", NULL);
1383 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1385 val = of_get_property(node, "freq-reg", NULL);
1387 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1390 static inline void cmos_of_init(struct platform_device *pdev) {}
1392 /*----------------------------------------------------------------*/
1394 /* Platform setup should have set up an RTC device, when PNP is
1395 * unavailable ... this could happen even on (older) PCs.
1398 static int __init cmos_platform_probe(struct platform_device *pdev)
1400 struct resource *resource;
1404 cmos_wake_setup(&pdev->dev);
1407 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1409 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1410 irq = platform_get_irq(pdev, 0);
1414 return cmos_do_probe(&pdev->dev, resource, irq);
1417 static int cmos_platform_remove(struct platform_device *pdev)
1419 cmos_do_remove(&pdev->dev);
1423 static void cmos_platform_shutdown(struct platform_device *pdev)
1425 struct device *dev = &pdev->dev;
1426 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1428 if (system_state == SYSTEM_POWER_OFF) {
1429 int retval = cmos_poweroff(dev);
1431 if (cmos_aie_poweroff(dev) < 0 && !retval)
1435 cmos_do_shutdown(cmos->irq);
1438 /* work with hotplug and coldplug */
1439 MODULE_ALIAS("platform:rtc_cmos");
1441 static struct platform_driver cmos_platform_driver = {
1442 .remove = cmos_platform_remove,
1443 .shutdown = cmos_platform_shutdown,
1445 .name = driver_name,
1447 .of_match_table = of_match_ptr(of_cmos_match),
1452 static bool pnp_driver_registered;
1454 static bool platform_driver_registered;
1456 static int __init cmos_init(void)
1461 retval = pnp_register_driver(&cmos_pnp_driver);
1463 pnp_driver_registered = true;
1466 if (!cmos_rtc.dev) {
1467 retval = platform_driver_probe(&cmos_platform_driver,
1468 cmos_platform_probe);
1470 platform_driver_registered = true;
1477 if (pnp_driver_registered)
1478 pnp_unregister_driver(&cmos_pnp_driver);
1482 module_init(cmos_init);
1484 static void __exit cmos_exit(void)
1487 if (pnp_driver_registered)
1488 pnp_unregister_driver(&cmos_pnp_driver);
1490 if (platform_driver_registered)
1491 platform_driver_unregister(&cmos_platform_driver);
1493 module_exit(cmos_exit);
1496 MODULE_AUTHOR("David Brownell");
1497 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1498 MODULE_LICENSE("GPL");