1 // SPDX-License-Identifier: GPL-2.0
3 * RTC subsystem, base class
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
8 * class skeleton from drivers/hwmon/hwmon.c
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
23 static DEFINE_IDA(rtc_ida);
24 struct class *rtc_class;
26 static void rtc_device_release(struct device *dev)
28 struct rtc_device *rtc = to_rtc_device(dev);
30 ida_simple_remove(&rtc_ida, rtc->id);
31 mutex_destroy(&rtc->ops_lock);
35 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
36 /* Result of the last RTC to system clock attempt. */
37 int rtc_hctosys_ret = -ENODEV;
39 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
40 * whether it stores the most close value or the value with partial
41 * seconds truncated. However, it is important that we use it to store
42 * the truncated value. This is because otherwise it is necessary,
43 * in an rtc sync function, to read both xtime.tv_sec and
44 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
45 * of >32bits is not possible. So storing the most close value would
46 * slow down the sync API. So here we have the truncated value and
47 * the best guess is to add 0.5s.
50 static void rtc_hctosys(struct rtc_device *rtc)
54 struct timespec64 tv64 = {
55 .tv_nsec = NSEC_PER_SEC >> 1,
58 err = rtc_read_time(rtc, &tm);
60 dev_err(rtc->dev.parent,
61 "hctosys: unable to read the hardware clock\n");
65 tv64.tv_sec = rtc_tm_to_time64(&tm);
67 #if BITS_PER_LONG == 32
68 if (tv64.tv_sec > INT_MAX) {
74 err = do_settimeofday64(&tv64);
76 dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
77 &tm, (long long)tv64.tv_sec);
80 rtc_hctosys_ret = err;
84 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
86 * On suspend(), measure the delta between one RTC and the
87 * system's wall clock; restore it on resume().
90 static struct timespec64 old_rtc, old_system, old_delta;
92 static int rtc_suspend(struct device *dev)
94 struct rtc_device *rtc = to_rtc_device(dev);
96 struct timespec64 delta, delta_delta;
99 if (timekeeping_rtc_skipsuspend())
102 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
105 /* snapshot the current RTC and system time at suspend*/
106 err = rtc_read_time(rtc, &tm);
108 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
112 ktime_get_real_ts64(&old_system);
113 old_rtc.tv_sec = rtc_tm_to_time64(&tm);
116 * To avoid drift caused by repeated suspend/resumes,
117 * which each can add ~1 second drift error,
118 * try to compensate so the difference in system time
119 * and rtc time stays close to constant.
121 delta = timespec64_sub(old_system, old_rtc);
122 delta_delta = timespec64_sub(delta, old_delta);
123 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
125 * if delta_delta is too large, assume time correction
126 * has occurred and set old_delta to the current delta.
130 /* Otherwise try to adjust old_system to compensate */
131 old_system = timespec64_sub(old_system, delta_delta);
137 static int rtc_resume(struct device *dev)
139 struct rtc_device *rtc = to_rtc_device(dev);
141 struct timespec64 new_system, new_rtc;
142 struct timespec64 sleep_time;
145 if (timekeeping_rtc_skipresume())
148 rtc_hctosys_ret = -ENODEV;
149 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
152 /* snapshot the current rtc and system time at resume */
153 ktime_get_real_ts64(&new_system);
154 err = rtc_read_time(rtc, &tm);
156 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
160 new_rtc.tv_sec = rtc_tm_to_time64(&tm);
163 if (new_rtc.tv_sec < old_rtc.tv_sec) {
164 pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
168 /* calculate the RTC time delta (sleep time)*/
169 sleep_time = timespec64_sub(new_rtc, old_rtc);
172 * Since these RTC suspend/resume handlers are not called
173 * at the very end of suspend or the start of resume,
174 * some run-time may pass on either sides of the sleep time
175 * so subtract kernel run-time between rtc_suspend to rtc_resume
176 * to keep things accurate.
178 sleep_time = timespec64_sub(sleep_time,
179 timespec64_sub(new_system, old_system));
181 if (sleep_time.tv_sec >= 0)
182 timekeeping_inject_sleeptime64(&sleep_time);
187 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
188 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
190 #define RTC_CLASS_DEV_PM_OPS NULL
193 /* Ensure the caller will set the id before releasing the device */
194 static struct rtc_device *rtc_allocate_device(void)
196 struct rtc_device *rtc;
198 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
202 device_initialize(&rtc->dev);
205 * Drivers can revise this default after allocating the device.
206 * The default is what most RTCs do: Increment seconds exactly one
207 * second after the write happened. This adds a default transport
208 * time of 5ms which is at least halfways close to reality.
210 rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
213 rtc->max_user_freq = 64;
214 rtc->dev.class = rtc_class;
215 rtc->dev.groups = rtc_get_dev_attribute_groups();
216 rtc->dev.release = rtc_device_release;
218 mutex_init(&rtc->ops_lock);
219 spin_lock_init(&rtc->irq_lock);
220 init_waitqueue_head(&rtc->irq_queue);
222 /* Init timerqueue */
223 timerqueue_init_head(&rtc->timerqueue);
224 INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
226 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
228 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
230 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
231 rtc->pie_timer.function = rtc_pie_update_irq;
232 rtc->pie_enabled = 0;
234 set_bit(RTC_FEATURE_ALARM, rtc->features);
239 static int rtc_device_get_id(struct device *dev)
241 int of_id = -1, id = -1;
244 of_id = of_alias_get_id(dev->of_node, "rtc");
245 else if (dev->parent && dev->parent->of_node)
246 of_id = of_alias_get_id(dev->parent->of_node, "rtc");
249 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
251 dev_warn(dev, "/aliases ID %d not available\n", of_id);
255 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
260 static void rtc_device_get_offset(struct rtc_device *rtc)
267 * If RTC driver did not implement the range of RTC hardware device,
268 * then we can not expand the RTC range by adding or subtracting one
271 if (rtc->range_min == rtc->range_max)
274 ret = device_property_read_u32(rtc->dev.parent, "start-year",
277 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
278 rtc->set_start_time = true;
282 * If user did not implement the start time for RTC driver, then no
283 * need to expand the RTC range.
285 if (!rtc->set_start_time)
288 range_secs = rtc->range_max - rtc->range_min + 1;
291 * If the start_secs is larger than the maximum seconds (rtc->range_max)
292 * supported by RTC hardware or the maximum seconds of new expanded
293 * range (start_secs + rtc->range_max - rtc->range_min) is less than
294 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
295 * RTC hardware will be mapped to start_secs by adding one offset, so
296 * the offset seconds calculation formula should be:
297 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
299 * If the start_secs is larger than the minimum seconds (rtc->range_min)
300 * supported by RTC hardware, then there is one region is overlapped
301 * between the original RTC hardware range and the new expanded range,
302 * and this overlapped region do not need to be mapped into the new
303 * expanded range due to it is valid for RTC device. So the minimum
304 * seconds of RTC hardware (rtc->range_min) should be mapped to
305 * rtc->range_max + 1, then the offset seconds formula should be:
306 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
308 * If the start_secs is less than the minimum seconds (rtc->range_min),
309 * which is similar to case 2. So the start_secs should be mapped to
310 * start_secs + rtc->range_max - rtc->range_min + 1, then the
311 * offset seconds formula should be:
312 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
314 * Otherwise the offset seconds should be 0.
316 if (rtc->start_secs > rtc->range_max ||
317 rtc->start_secs + range_secs - 1 < rtc->range_min)
318 rtc->offset_secs = rtc->start_secs - rtc->range_min;
319 else if (rtc->start_secs > rtc->range_min)
320 rtc->offset_secs = range_secs;
321 else if (rtc->start_secs < rtc->range_min)
322 rtc->offset_secs = -range_secs;
324 rtc->offset_secs = 0;
327 static void devm_rtc_unregister_device(void *data)
329 struct rtc_device *rtc = data;
331 mutex_lock(&rtc->ops_lock);
333 * Remove innards of this RTC, then disable it, before
334 * letting any rtc_class_open() users access it again
336 rtc_proc_del_device(rtc);
337 cdev_device_del(&rtc->char_dev, &rtc->dev);
339 mutex_unlock(&rtc->ops_lock);
342 static void devm_rtc_release_device(void *res)
344 struct rtc_device *rtc = res;
346 put_device(&rtc->dev);
349 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
351 struct rtc_device *rtc;
354 id = rtc_device_get_id(dev);
358 rtc = rtc_allocate_device();
360 ida_simple_remove(&rtc_ida, id);
361 return ERR_PTR(-ENOMEM);
365 rtc->dev.parent = dev;
366 dev_set_name(&rtc->dev, "rtc%d", id);
368 err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
374 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
376 int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
378 struct rtc_wkalrm alrm;
382 dev_dbg(&rtc->dev, "no ops set\n");
386 if (!rtc->ops->set_alarm)
387 clear_bit(RTC_FEATURE_ALARM, rtc->features);
390 rtc_device_get_offset(rtc);
392 /* Check to see if there is an ALARM already set in hw */
393 err = __rtc_read_alarm(rtc, &alrm);
394 if (!err && !rtc_valid_tm(&alrm.time))
395 rtc_initialize_alarm(rtc, &alrm);
397 rtc_dev_prepare(rtc);
399 err = cdev_device_add(&rtc->char_dev, &rtc->dev);
401 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
402 MAJOR(rtc->dev.devt), rtc->id);
404 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
405 MAJOR(rtc->dev.devt), rtc->id);
407 rtc_proc_add_device(rtc);
409 dev_info(rtc->dev.parent, "registered as %s\n",
410 dev_name(&rtc->dev));
412 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
413 if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
417 return devm_add_action_or_reset(rtc->dev.parent,
418 devm_rtc_unregister_device, rtc);
420 EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
423 * devm_rtc_device_register - resource managed rtc_device_register()
424 * @dev: the device to register
425 * @name: the name of the device (unused)
426 * @ops: the rtc operations structure
427 * @owner: the module owner
429 * @return a struct rtc on success, or an ERR_PTR on error
431 * Managed rtc_device_register(). The rtc_device returned from this function
432 * are automatically freed on driver detach.
433 * This function is deprecated, use devm_rtc_allocate_device and
434 * rtc_register_device instead
436 struct rtc_device *devm_rtc_device_register(struct device *dev,
438 const struct rtc_class_ops *ops,
439 struct module *owner)
441 struct rtc_device *rtc;
444 rtc = devm_rtc_allocate_device(dev);
450 err = __devm_rtc_register_device(owner, rtc);
456 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
458 static int __init rtc_init(void)
460 rtc_class = class_create(THIS_MODULE, "rtc");
461 if (IS_ERR(rtc_class)) {
462 pr_err("couldn't create class\n");
463 return PTR_ERR(rtc_class);
465 rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
469 subsys_initcall(rtc_init);