1 // SPDX-License-Identifier: GPL-2.0-only
3 * TI K3 R5F (MCU) Remote Processor driver
5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
16 #include <linux/of_address.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/of_platform.h>
19 #include <linux/omap-mailbox.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/remoteproc.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
26 #include "omap_remoteproc.h"
27 #include "remoteproc_internal.h"
28 #include "ti_sci_proc.h"
30 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
31 #define K3_R5_TCM_DEV_ADDR 0x41010000
33 /* R5 TI-SCI Processor Configuration Flags */
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
35 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
36 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
37 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
38 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
39 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
40 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
41 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
42 /* Available from J7200 SoCs onwards */
43 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44 /* Applicable to only AM64x SoCs */
45 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
47 /* R5 TI-SCI Processor Control Flags */
48 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
50 /* R5 TI-SCI Processor Status Flags */
51 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
52 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
53 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
54 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
55 /* Applicable to only AM64x SoCs */
56 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
59 * struct k3_r5_mem - internal memory structure
60 * @cpu_addr: MPU virtual address of the memory region
61 * @bus_addr: Bus address used to access the memory region
62 * @dev_addr: Device address from remoteproc view
63 * @size: Size of the memory region
66 void __iomem *cpu_addr;
73 * All cluster mode values are not applicable on all SoCs. The following
74 * are the modes supported on various SoCs:
75 * Split mode : AM65x, J721E, J7200 and AM64x SoCs
76 * LockStep mode : AM65x, J721E and J7200 SoCs
77 * Single-CPU mode : AM64x SoCs only
78 * Single-Core mode : AM62x, AM62A SoCs
81 CLUSTER_MODE_SPLIT = 0,
82 CLUSTER_MODE_LOCKSTEP,
83 CLUSTER_MODE_SINGLECPU,
84 CLUSTER_MODE_SINGLECORE
88 * struct k3_r5_soc_data - match data to handle SoC variations
89 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92 * @is_single_core: flag to denote if SoC/IP has only single core R5
94 struct k3_r5_soc_data {
96 bool tcm_ecc_autoinit;
102 * struct k3_r5_cluster - K3 R5F Cluster structure
103 * @dev: cached device pointer
104 * @mode: Mode to configure the Cluster - Split or LockStep
105 * @cores: list of R5 cores within the cluster
106 * @soc_data: SoC-specific feature data for a R5FSS
108 struct k3_r5_cluster {
110 enum cluster_mode mode;
111 struct list_head cores;
112 const struct k3_r5_soc_data *soc_data;
116 * struct k3_r5_core - K3 R5 core structure
117 * @elem: linked list item
118 * @dev: cached device pointer
119 * @rproc: rproc handle representing this core
120 * @mem: internal memory regions data
121 * @sram: on-chip SRAM memory regions data
122 * @num_mems: number of internal memory regions
123 * @num_sram: number of on-chip SRAM memory regions
124 * @reset: reset control handle
125 * @tsp: TI-SCI processor control handle
126 * @ti_sci: TI-SCI handle
127 * @ti_sci_id: TI-SCI device identifier
128 * @atcm_enable: flag to control ATCM enablement
129 * @btcm_enable: flag to control BTCM enablement
130 * @loczrama: flag to dictate which TCM is at device address 0x0
133 struct list_head elem;
136 struct k3_r5_mem *mem;
137 struct k3_r5_mem *sram;
140 struct reset_control *reset;
141 struct ti_sci_proc *tsp;
142 const struct ti_sci_handle *ti_sci;
150 * struct k3_r5_rproc - K3 remote processor state
151 * @dev: cached device pointer
152 * @cluster: cached pointer to parent cluster structure
153 * @mbox: mailbox channel handle
154 * @client: mailbox client to request the mailbox channel
155 * @rproc: rproc handle
156 * @core: cached pointer to r5 core structure being used
157 * @rmem: reserved memory regions data
158 * @num_rmems: number of reserved memory regions
162 struct k3_r5_cluster *cluster;
163 struct mbox_chan *mbox;
164 struct mbox_client client;
166 struct k3_r5_core *core;
167 struct k3_r5_mem *rmem;
172 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
173 * @client: mailbox client pointer used for requesting the mailbox channel
174 * @data: mailbox payload
176 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
177 * message is received. Usually, the mailbox payload simply contains
178 * the index of the virtqueue that is kicked by the remote processor,
179 * and we let remoteproc core handle it.
181 * In addition to virtqueue indices, we also have some out-of-band values
182 * that indicate different events. Those values are deliberately very
183 * large so they don't coincide with virtqueue indices.
185 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
187 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
189 struct device *dev = kproc->rproc->dev.parent;
190 const char *name = kproc->rproc->name;
191 u32 msg = omap_mbox_message(data);
193 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
198 * remoteproc detected an exception, but error recovery is not
199 * supported. So, just log this for now
201 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
203 case RP_MBOX_ECHO_REPLY:
204 dev_info(dev, "received echo reply from %s\n", name);
207 /* silently handle all other valid messages */
208 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
210 if (msg > kproc->rproc->max_notifyid) {
211 dev_dbg(dev, "dropping unknown message 0x%x", msg);
214 /* msg contains the index of the triggered vring */
215 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
216 dev_dbg(dev, "no message was found in vqid %d\n", msg);
220 /* kick a virtqueue */
221 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
223 struct k3_r5_rproc *kproc = rproc->priv;
224 struct device *dev = rproc->dev.parent;
225 mbox_msg_t msg = (mbox_msg_t)vqid;
228 /* send the index of the triggered virtqueue in the mailbox payload */
229 ret = mbox_send_message(kproc->mbox, (void *)msg);
231 dev_err(dev, "failed to send mailbox message, status = %d\n",
235 static int k3_r5_split_reset(struct k3_r5_core *core)
239 ret = reset_control_assert(core->reset);
241 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
246 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
249 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
251 if (reset_control_deassert(core->reset))
252 dev_warn(core->dev, "local-reset deassert back failed\n");
258 static int k3_r5_split_release(struct k3_r5_core *core)
262 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
265 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
270 ret = reset_control_deassert(core->reset);
272 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
274 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
276 dev_warn(core->dev, "module-reset assert back failed\n");
282 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
284 struct k3_r5_core *core;
287 /* assert local reset on all applicable cores */
288 list_for_each_entry(core, &cluster->cores, elem) {
289 ret = reset_control_assert(core->reset);
291 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
293 core = list_prev_entry(core, elem);
294 goto unroll_local_reset;
298 /* disable PSC modules on all applicable cores */
299 list_for_each_entry(core, &cluster->cores, elem) {
300 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
303 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
305 goto unroll_module_reset;
312 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
313 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
315 dev_warn(core->dev, "module-reset assert back failed\n");
317 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
319 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
320 if (reset_control_deassert(core->reset))
321 dev_warn(core->dev, "local-reset deassert back failed\n");
327 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
329 struct k3_r5_core *core;
332 /* enable PSC modules on all applicable cores */
333 list_for_each_entry_reverse(core, &cluster->cores, elem) {
334 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
337 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
339 core = list_next_entry(core, elem);
340 goto unroll_module_reset;
344 /* deassert local reset on all applicable cores */
345 list_for_each_entry_reverse(core, &cluster->cores, elem) {
346 ret = reset_control_deassert(core->reset);
348 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
350 goto unroll_local_reset;
357 list_for_each_entry_continue(core, &cluster->cores, elem) {
358 if (reset_control_assert(core->reset))
359 dev_warn(core->dev, "local-reset assert back failed\n");
361 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
363 list_for_each_entry_from(core, &cluster->cores, elem) {
364 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
366 dev_warn(core->dev, "module-reset assert back failed\n");
372 static inline int k3_r5_core_halt(struct k3_r5_core *core)
374 return ti_sci_proc_set_control(core->tsp,
375 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
378 static inline int k3_r5_core_run(struct k3_r5_core *core)
380 return ti_sci_proc_set_control(core->tsp,
381 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
384 static int k3_r5_rproc_request_mbox(struct rproc *rproc)
386 struct k3_r5_rproc *kproc = rproc->priv;
387 struct mbox_client *client = &kproc->client;
388 struct device *dev = kproc->dev;
392 client->tx_done = NULL;
393 client->rx_callback = k3_r5_rproc_mbox_callback;
394 client->tx_block = false;
395 client->knows_txdone = false;
397 kproc->mbox = mbox_request_channel(client, 0);
398 if (IS_ERR(kproc->mbox)) {
400 dev_err(dev, "mbox_request_channel failed: %ld\n",
401 PTR_ERR(kproc->mbox));
406 * Ping the remote processor, this is only for sanity-sake for now;
407 * there is no functional effect whatsoever.
409 * Note that the reply will _not_ arrive immediately: this message
410 * will wait in the mailbox fifo until the remote processor is booted.
412 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
414 dev_err(dev, "mbox_send_message failed: %d\n", ret);
415 mbox_free_channel(kproc->mbox);
423 * The R5F cores have controls for both a reset and a halt/run. The code
424 * execution from DDR requires the initial boot-strapping code to be run
425 * from the internal TCMs. This function is used to release the resets on
426 * applicable cores to allow loading into the TCMs. The .prepare() ops is
427 * invoked by remoteproc core before any firmware loading, and is followed
428 * by the .start() ops after loading to actually let the R5 cores run.
430 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
431 * execute code, but combines the TCMs from both cores. The resets for both
432 * cores need to be released to make this possible, as the TCMs are in general
433 * private to each core. Only Core0 needs to be unhalted for running the
434 * cluster in this mode. The function uses the same reset logic as LockStep
435 * mode for this (though the behavior is agnostic of the reset release order).
436 * This callback is invoked only in remoteproc mode.
438 static int k3_r5_rproc_prepare(struct rproc *rproc)
440 struct k3_r5_rproc *kproc = rproc->priv;
441 struct k3_r5_cluster *cluster = kproc->cluster;
442 struct k3_r5_core *core = kproc->core;
443 struct device *dev = kproc->dev;
444 u32 ctrl = 0, cfg = 0, stat = 0;
449 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
452 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
454 /* Re-use LockStep-mode reset logic for Single-CPU mode */
455 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
456 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
457 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
459 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
465 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
466 * of TCMs, so there is no need to perform the s/w memzero. This bit is
467 * configurable through System Firmware, the default value does perform
468 * auto-init, but account for it in case it is disabled
470 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
471 dev_dbg(dev, "leveraging h/w init for TCM memories\n");
476 * Zero out both TCMs unconditionally (access from v8 Arm core is not
477 * affected by ATCM & BTCM enable configuration values) so that ECC
478 * can be effective on all TCM addresses.
480 dev_dbg(dev, "zeroing out ATCM memory\n");
481 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
483 dev_dbg(dev, "zeroing out BTCM memory\n");
484 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
490 * This function implements the .unprepare() ops and performs the complimentary
491 * operations to that of the .prepare() ops. The function is used to assert the
492 * resets on all applicable cores for the rproc device (depending on LockStep
493 * or Split mode). This completes the second portion of powering down the R5F
494 * cores. The cores themselves are only halted in the .stop() ops, and the
495 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
498 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
499 * both cores. The access is made possible only with releasing the resets for
500 * both cores, but with only Core0 unhalted. This function re-uses the same
501 * reset assert logic as LockStep mode for this mode (though the behavior is
502 * agnostic of the reset assert order). This callback is invoked only in
505 static int k3_r5_rproc_unprepare(struct rproc *rproc)
507 struct k3_r5_rproc *kproc = rproc->priv;
508 struct k3_r5_cluster *cluster = kproc->cluster;
509 struct k3_r5_core *core = kproc->core;
510 struct device *dev = kproc->dev;
513 /* Re-use LockStep-mode reset logic for Single-CPU mode */
514 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
515 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
516 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
518 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
524 * The R5F start sequence includes two different operations
525 * 1. Configure the boot vector for R5F core(s)
526 * 2. Unhalt/Run the R5F core(s)
528 * The sequence is different between LockStep and Split modes. The LockStep
529 * mode requires the boot vector to be configured only for Core0, and then
530 * unhalt both the cores to start the execution - Core1 needs to be unhalted
531 * first followed by Core0. The Split-mode requires that Core0 to be maintained
532 * always in a higher power state that Core1 (implying Core1 needs to be started
533 * always only after Core0 is started).
535 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
536 * code, so only Core0 needs to be unhalted. The function uses the same logic
537 * flow as Split-mode for this. This callback is invoked only in remoteproc
540 static int k3_r5_rproc_start(struct rproc *rproc)
542 struct k3_r5_rproc *kproc = rproc->priv;
543 struct k3_r5_cluster *cluster = kproc->cluster;
544 struct device *dev = kproc->dev;
545 struct k3_r5_core *core;
549 ret = k3_r5_rproc_request_mbox(rproc);
553 boot_addr = rproc->bootaddr;
554 /* TODO: add boot_addr sanity checking */
555 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
557 /* boot vector need not be programmed for Core1 in LockStep mode */
559 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
563 /* unhalt/run all applicable cores */
564 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
565 list_for_each_entry_reverse(core, &cluster->cores, elem) {
566 ret = k3_r5_core_run(core);
568 goto unroll_core_run;
571 ret = k3_r5_core_run(core);
579 list_for_each_entry_continue(core, &cluster->cores, elem) {
580 if (k3_r5_core_halt(core))
581 dev_warn(core->dev, "core halt back failed\n");
584 mbox_free_channel(kproc->mbox);
589 * The R5F stop function includes the following operations
590 * 1. Halt R5F core(s)
592 * The sequence is different between LockStep and Split modes, and the order
593 * of cores the operations are performed are also in general reverse to that
594 * of the start function. The LockStep mode requires each operation to be
595 * performed first on Core0 followed by Core1. The Split-mode requires that
596 * Core0 to be maintained always in a higher power state that Core1 (implying
597 * Core1 needs to be stopped first before Core0).
599 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
600 * code, so only Core0 needs to be halted. The function uses the same logic
601 * flow as Split-mode for this.
603 * Note that the R5F halt operation in general is not effective when the R5F
604 * core is running, but is needed to make sure the core won't run after
605 * deasserting the reset the subsequent time. The asserting of reset can
606 * be done here, but is preferred to be done in the .unprepare() ops - this
607 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
608 * and .unprepare() ops, and also balances them well between sysfs 'state'
609 * flow and device bind/unbind or module removal. This callback is invoked
610 * only in remoteproc mode.
612 static int k3_r5_rproc_stop(struct rproc *rproc)
614 struct k3_r5_rproc *kproc = rproc->priv;
615 struct k3_r5_cluster *cluster = kproc->cluster;
616 struct k3_r5_core *core = kproc->core;
619 /* halt all applicable cores */
620 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
621 list_for_each_entry(core, &cluster->cores, elem) {
622 ret = k3_r5_core_halt(core);
624 core = list_prev_entry(core, elem);
625 goto unroll_core_halt;
629 ret = k3_r5_core_halt(core);
634 mbox_free_channel(kproc->mbox);
639 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
640 if (k3_r5_core_run(core))
641 dev_warn(core->dev, "core run back failed\n");
648 * Attach to a running R5F remote processor (IPC-only mode)
650 * The R5F attach callback only needs to request the mailbox, the remote
651 * processor is already booted, so there is no need to issue any TI-SCI
652 * commands to boot the R5F cores in IPC-only mode. This callback is invoked
653 * only in IPC-only mode.
655 static int k3_r5_rproc_attach(struct rproc *rproc)
657 struct k3_r5_rproc *kproc = rproc->priv;
658 struct device *dev = kproc->dev;
661 ret = k3_r5_rproc_request_mbox(rproc);
665 dev_info(dev, "R5F core initialized in IPC-only mode\n");
670 * Detach from a running R5F remote processor (IPC-only mode)
672 * The R5F detach callback performs the opposite operation to attach callback
673 * and only needs to release the mailbox, the R5F cores are not stopped and
674 * will be left in booted state in IPC-only mode. This callback is invoked
675 * only in IPC-only mode.
677 static int k3_r5_rproc_detach(struct rproc *rproc)
679 struct k3_r5_rproc *kproc = rproc->priv;
680 struct device *dev = kproc->dev;
682 mbox_free_channel(kproc->mbox);
683 dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
688 * This function implements the .get_loaded_rsc_table() callback and is used
689 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
690 * firmwares follow a design-by-contract approach and are expected to have the
691 * resource table at the base of the DDR region reserved for firmware usage.
692 * This provides flexibility for the remote processor to be booted by different
693 * bootloaders that may or may not have the ability to publish the resource table
694 * address and size through a DT property. This callback is invoked only in
697 static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
698 size_t *rsc_table_sz)
700 struct k3_r5_rproc *kproc = rproc->priv;
701 struct device *dev = kproc->dev;
703 if (!kproc->rmem[0].cpu_addr) {
704 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
705 return ERR_PTR(-ENOMEM);
709 * NOTE: The resource table size is currently hard-coded to a maximum
710 * of 256 bytes. The most common resource table usage for K3 firmwares
711 * is to only have the vdev resource entry and an optional trace entry.
712 * The exact size could be computed based on resource table address, but
713 * the hard-coded value suffices to support the IPC-only mode.
716 return (struct resource_table *)kproc->rmem[0].cpu_addr;
720 * Internal Memory translation helper
722 * Custom function implementing the rproc .da_to_va ops to provide address
723 * translation (device address to kernel virtual address) for internal RAMs
724 * present in a DSP or IPU device). The translated addresses can be used
725 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
727 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
729 struct k3_r5_rproc *kproc = rproc->priv;
730 struct k3_r5_core *core = kproc->core;
731 void __iomem *va = NULL;
732 phys_addr_t bus_addr;
733 u32 dev_addr, offset;
740 /* handle both R5 and SoC views of ATCM and BTCM */
741 for (i = 0; i < core->num_mems; i++) {
742 bus_addr = core->mem[i].bus_addr;
743 dev_addr = core->mem[i].dev_addr;
744 size = core->mem[i].size;
746 /* handle R5-view addresses of TCMs */
747 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
748 offset = da - dev_addr;
749 va = core->mem[i].cpu_addr + offset;
750 return (__force void *)va;
753 /* handle SoC-view addresses of TCMs */
754 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
755 offset = da - bus_addr;
756 va = core->mem[i].cpu_addr + offset;
757 return (__force void *)va;
761 /* handle any SRAM regions using SoC-view addresses */
762 for (i = 0; i < core->num_sram; i++) {
763 dev_addr = core->sram[i].dev_addr;
764 size = core->sram[i].size;
766 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
767 offset = da - dev_addr;
768 va = core->sram[i].cpu_addr + offset;
769 return (__force void *)va;
773 /* handle static DDR reserved memory regions */
774 for (i = 0; i < kproc->num_rmems; i++) {
775 dev_addr = kproc->rmem[i].dev_addr;
776 size = kproc->rmem[i].size;
778 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
779 offset = da - dev_addr;
780 va = kproc->rmem[i].cpu_addr + offset;
781 return (__force void *)va;
788 static const struct rproc_ops k3_r5_rproc_ops = {
789 .prepare = k3_r5_rproc_prepare,
790 .unprepare = k3_r5_rproc_unprepare,
791 .start = k3_r5_rproc_start,
792 .stop = k3_r5_rproc_stop,
793 .kick = k3_r5_rproc_kick,
794 .da_to_va = k3_r5_rproc_da_to_va,
798 * Internal R5F Core configuration
800 * Each R5FSS has a cluster-level setting for configuring the processor
801 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
802 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
803 * as an alternate for LockStep mode that exercises only a single R5F core
804 * called Single-CPU mode. Each R5F core has a number of settings to either
805 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
806 * address 0x0. These settings need to be configured before the resets for the
807 * corresponding core are released. These settings are all protected and managed
808 * by the System Processor.
810 * This function is used to pre-configure these settings for each R5F core, and
811 * the configuration is all done through various ti_sci_proc functions that
812 * communicate with the System Processor. The function also ensures that both
813 * the cores are halted before the .prepare() step.
815 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
816 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
817 * for LockStep-mode is dictated by an eFUSE register bit, and the config
818 * settings retrieved from DT are adjusted accordingly as per the permitted
819 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
820 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
821 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
822 * and retrieved using Core0.
824 * The function behavior is different based on the cluster mode. The R5F cores
825 * are configured independently as per their individual settings in Split mode.
826 * They are identically configured in LockStep mode using the primary Core0
827 * settings. However, some individual settings cannot be set in LockStep mode.
828 * This is overcome by switching to Split-mode initially and then programming
829 * both the cores with the same settings, before reconfiguing again for
832 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
834 struct k3_r5_cluster *cluster = kproc->cluster;
835 struct device *dev = kproc->dev;
836 struct k3_r5_core *core0, *core, *temp;
837 u32 ctrl = 0, cfg = 0, stat = 0;
838 u32 set_cfg = 0, clr_cfg = 0;
844 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
845 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
846 cluster->mode == CLUSTER_MODE_SINGLECPU ||
847 cluster->mode == CLUSTER_MODE_SINGLECORE) {
853 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
858 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
859 boot_vec, cfg, ctrl, stat);
861 single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
862 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
864 /* Override to single CPU mode if set in status flag */
865 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
866 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
867 cluster->mode = CLUSTER_MODE_SINGLECPU;
870 /* Override to split mode if lockstep enable bit is not set in status flag */
871 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
872 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
873 cluster->mode = CLUSTER_MODE_SPLIT;
876 /* always enable ARM mode and set boot vector to 0 */
879 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
881 * Single-CPU configuration bit can only be configured
882 * on Core0 and system firmware will NACK any requests
883 * with the bit configured, so program it only on
886 if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
887 cluster->mode == CLUSTER_MODE_SINGLECORE) {
888 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
891 * LockStep configuration bit is Read-only on Split-mode
892 * _only_ devices and system firmware will NACK any
893 * requests with the bit configured, so program it only
894 * on permitted devices
897 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
901 if (core->atcm_enable)
902 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
904 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
906 if (core->btcm_enable)
907 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
909 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
912 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
914 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
916 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
918 * work around system firmware limitations to make sure both
919 * cores are programmed symmetrically in LockStep. LockStep
920 * and TEINIT config is only allowed with Core0.
922 list_for_each_entry(temp, &cluster->cores, elem) {
923 ret = k3_r5_core_halt(temp);
928 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
929 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
931 ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
937 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
939 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
942 ret = k3_r5_core_halt(core);
946 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
954 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
956 struct device *dev = kproc->dev;
957 struct device_node *np = dev_of_node(dev);
958 struct device_node *rmem_np;
959 struct reserved_mem *rmem;
963 num_rmems = of_property_count_elems_of_size(np, "memory-region",
965 if (num_rmems <= 0) {
966 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
971 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
976 /* use reserved memory region 0 for vring DMA allocations */
977 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
979 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
985 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
991 /* use remaining reserved memory regions for static carveouts */
992 for (i = 0; i < num_rmems; i++) {
993 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
999 rmem = of_reserved_mem_lookup(rmem_np);
1001 of_node_put(rmem_np);
1005 of_node_put(rmem_np);
1007 kproc->rmem[i].bus_addr = rmem->base;
1009 * R5Fs do not have an MMU, but have a Region Address Translator
1010 * (RAT) module that provides a fixed entry translation between
1011 * the 32-bit processor addresses to 64-bit bus addresses. The
1012 * RAT is programmable only by the R5F cores. Support for RAT
1013 * is currently not supported, so 64-bit address regions are not
1014 * supported. The absence of MMUs implies that the R5F device
1015 * addresses/supported memory regions are restricted to 32-bit
1016 * bus addresses, and are identical
1018 kproc->rmem[i].dev_addr = (u32)rmem->base;
1019 kproc->rmem[i].size = rmem->size;
1020 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1021 if (!kproc->rmem[i].cpu_addr) {
1022 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1023 i + 1, &rmem->base, &rmem->size);
1028 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1029 i + 1, &kproc->rmem[i].bus_addr,
1030 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1031 kproc->rmem[i].dev_addr);
1033 kproc->num_rmems = num_rmems;
1038 for (i--; i >= 0; i--)
1039 iounmap(kproc->rmem[i].cpu_addr);
1042 of_reserved_mem_device_release(dev);
1046 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1050 for (i = 0; i < kproc->num_rmems; i++)
1051 iounmap(kproc->rmem[i].cpu_addr);
1054 of_reserved_mem_device_release(kproc->dev);
1058 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1059 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1060 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1061 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1062 * leveraging the Core1 TCMs as well in certain modes where they would have
1063 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1064 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1065 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1066 * the Core0 TCMs, and the dts representation reflects this increased size on
1067 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1068 * half the original size in Split mode.
1070 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1072 struct k3_r5_cluster *cluster = kproc->cluster;
1073 struct k3_r5_core *core = kproc->core;
1074 struct device *cdev = core->dev;
1075 struct k3_r5_core *core0;
1077 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1078 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1079 cluster->mode == CLUSTER_MODE_SINGLECORE ||
1080 !cluster->soc_data->tcm_is_double)
1083 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1084 if (core == core0) {
1085 WARN_ON(core->mem[0].size != SZ_64K);
1086 WARN_ON(core->mem[1].size != SZ_64K);
1088 core->mem[0].size /= 2;
1089 core->mem[1].size /= 2;
1091 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1092 core->mem[0].size, core->mem[1].size);
1097 * This function checks and configures a R5F core for IPC-only or remoteproc
1098 * mode. The driver is configured to be in IPC-only mode for a R5F core when
1099 * the core has been loaded and started by a bootloader. The IPC-only mode is
1100 * detected by querying the System Firmware for reset, power on and halt status
1101 * and ensuring that the core is running. Any incomplete steps at bootloader
1102 * are validated and errored out.
1104 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1105 * and cluster mode parsed originally from kernel DT are updated to reflect the
1106 * actual values configured by bootloader. The driver internal device memory
1107 * addresses for TCMs are also updated.
1109 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1111 struct k3_r5_cluster *cluster = kproc->cluster;
1112 struct k3_r5_core *core = kproc->core;
1113 struct device *cdev = core->dev;
1114 bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1115 u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1117 u32 atcm_enable, btcm_enable, loczrama;
1118 struct k3_r5_core *core0;
1119 enum cluster_mode mode = cluster->mode;
1122 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1124 ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1125 &r_state, &c_state);
1127 dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1131 if (r_state != c_state) {
1132 dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1136 ret = reset_control_status(core->reset);
1138 dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1143 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1146 dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1150 atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
1151 btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
1152 loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
1153 single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1154 lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1156 if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1157 mode = CLUSTER_MODE_SINGLECPU;
1159 mode = CLUSTER_MODE_LOCKSTEP;
1161 halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1164 * IPC-only mode detection requires both local and module resets to
1165 * be deasserted and R5F core to be unhalted. Local reset status is
1166 * irrelevant if module reset is asserted (POR value has local reset
1167 * deasserted), and is deemed as remoteproc mode
1169 if (c_state && !ret && !halted) {
1170 dev_info(cdev, "configured R5F for IPC-only mode\n");
1171 kproc->rproc->state = RPROC_DETACHED;
1173 /* override rproc ops with only required IPC-only mode ops */
1174 kproc->rproc->ops->prepare = NULL;
1175 kproc->rproc->ops->unprepare = NULL;
1176 kproc->rproc->ops->start = NULL;
1177 kproc->rproc->ops->stop = NULL;
1178 kproc->rproc->ops->attach = k3_r5_rproc_attach;
1179 kproc->rproc->ops->detach = k3_r5_rproc_detach;
1180 kproc->rproc->ops->get_loaded_rsc_table =
1181 k3_r5_get_loaded_rsc_table;
1182 } else if (!c_state) {
1183 dev_info(cdev, "configured R5F for remoteproc mode\n");
1186 dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1187 !ret ? "deasserted" : "asserted",
1188 c_state ? "deasserted" : "asserted",
1189 halted ? "halted" : "unhalted");
1193 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1196 cluster->mode = mode;
1197 core->atcm_enable = atcm_enable;
1198 core->btcm_enable = btcm_enable;
1199 core->loczrama = loczrama;
1200 core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1201 core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1207 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1209 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1210 struct device *dev = &pdev->dev;
1211 struct k3_r5_rproc *kproc;
1212 struct k3_r5_core *core, *core1;
1213 struct device *cdev;
1214 const char *fw_name;
1215 struct rproc *rproc;
1218 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1219 list_for_each_entry(core, &cluster->cores, elem) {
1221 ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1223 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1228 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1229 fw_name, sizeof(*kproc));
1235 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
1236 rproc->has_iommu = false;
1237 /* error recovery is not supported at present */
1238 rproc->recovery_disabled = true;
1240 kproc = rproc->priv;
1241 kproc->cluster = cluster;
1244 kproc->rproc = rproc;
1245 core->rproc = rproc;
1247 ret = k3_r5_rproc_configure_mode(kproc);
1253 ret = k3_r5_rproc_configure(kproc);
1255 dev_err(dev, "initial configure failed, ret = %d\n",
1261 k3_r5_adjust_tcm_sizes(kproc);
1263 ret = k3_r5_reserved_mem_init(kproc);
1265 dev_err(dev, "reserved memory init failed, ret = %d\n",
1270 ret = rproc_add(rproc);
1272 dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1276 /* create only one rproc in lockstep, single-cpu or
1279 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1280 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1281 cluster->mode == CLUSTER_MODE_SINGLECORE)
1288 if (rproc->state == RPROC_ATTACHED) {
1289 ret1 = rproc_detach(rproc);
1291 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1299 k3_r5_reserved_mem_exit(kproc);
1304 /* undo core0 upon any failures on core1 in split-mode */
1305 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1306 core = list_prev_entry(core, elem);
1307 rproc = core->rproc;
1308 kproc = rproc->priv;
1314 static void k3_r5_cluster_rproc_exit(void *data)
1316 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1317 struct k3_r5_rproc *kproc;
1318 struct k3_r5_core *core;
1319 struct rproc *rproc;
1323 * lockstep mode and single-cpu modes have only one rproc associated
1324 * with first core, whereas split-mode has two rprocs associated with
1325 * each core, and requires that core1 be powered down first
1327 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1328 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1329 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1330 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1332 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1333 rproc = core->rproc;
1334 kproc = rproc->priv;
1336 if (rproc->state == RPROC_ATTACHED) {
1337 ret = rproc_detach(rproc);
1339 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1346 k3_r5_reserved_mem_exit(kproc);
1353 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1354 struct k3_r5_core *core)
1356 static const char * const mem_names[] = {"atcm", "btcm"};
1357 struct device *dev = &pdev->dev;
1358 struct resource *res;
1362 num_mems = ARRAY_SIZE(mem_names);
1363 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1367 for (i = 0; i < num_mems; i++) {
1368 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1371 dev_err(dev, "found no memory resource for %s\n",
1375 if (!devm_request_mem_region(dev, res->start,
1378 dev_err(dev, "could not request %s region for resource\n",
1384 * TCMs are designed in general to support RAM-like backing
1385 * memories. So, map these as Normal Non-Cached memories. This
1386 * also avoids/fixes any potential alignment faults due to
1387 * unaligned data accesses when using memcpy() or memset()
1388 * functions (normally seen with device type memory).
1390 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1391 resource_size(res));
1392 if (!core->mem[i].cpu_addr) {
1393 dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1396 core->mem[i].bus_addr = res->start;
1400 * The R5F cores can place ATCM & BTCM anywhere in its address
1401 * based on the corresponding Region Registers in the System
1402 * Control coprocessor. For now, place ATCM and BTCM at
1403 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1404 * SoCs) based on loczrama setting
1406 if (!strcmp(mem_names[i], "atcm")) {
1407 core->mem[i].dev_addr = core->loczrama ?
1408 0 : K3_R5_TCM_DEV_ADDR;
1410 core->mem[i].dev_addr = core->loczrama ?
1411 K3_R5_TCM_DEV_ADDR : 0;
1413 core->mem[i].size = resource_size(res);
1415 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1416 mem_names[i], &core->mem[i].bus_addr,
1417 core->mem[i].size, core->mem[i].cpu_addr,
1418 core->mem[i].dev_addr);
1420 core->num_mems = num_mems;
1425 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1426 struct k3_r5_core *core)
1428 struct device_node *np = pdev->dev.of_node;
1429 struct device *dev = &pdev->dev;
1430 struct device_node *sram_np;
1431 struct resource res;
1435 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1436 if (num_sram <= 0) {
1437 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1442 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1446 for (i = 0; i < num_sram; i++) {
1447 sram_np = of_parse_phandle(np, "sram", i);
1451 if (!of_device_is_available(sram_np)) {
1452 of_node_put(sram_np);
1456 ret = of_address_to_resource(sram_np, 0, &res);
1457 of_node_put(sram_np);
1461 core->sram[i].bus_addr = res.start;
1462 core->sram[i].dev_addr = res.start;
1463 core->sram[i].size = resource_size(&res);
1464 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1465 resource_size(&res));
1466 if (!core->sram[i].cpu_addr) {
1467 dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1472 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1473 i, &core->sram[i].bus_addr,
1474 core->sram[i].size, core->sram[i].cpu_addr,
1475 core->sram[i].dev_addr);
1477 core->num_sram = num_sram;
1483 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1484 const struct ti_sci_handle *sci)
1486 struct ti_sci_proc *tsp;
1490 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1493 return ERR_PTR(ret);
1495 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1497 return ERR_PTR(-ENOMEM);
1501 tsp->ops = &sci->ops.proc_ops;
1502 tsp->proc_id = temp[0];
1503 tsp->host_id = temp[1];
1508 static int k3_r5_core_of_init(struct platform_device *pdev)
1510 struct device *dev = &pdev->dev;
1511 struct device_node *np = dev_of_node(dev);
1512 struct k3_r5_core *core;
1515 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1518 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1526 * Use SoC Power-on-Reset values as default if no DT properties are
1527 * used to dictate the TCM configurations
1529 core->atcm_enable = 0;
1530 core->btcm_enable = 1;
1533 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1534 if (ret < 0 && ret != -EINVAL) {
1535 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1540 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1541 if (ret < 0 && ret != -EINVAL) {
1542 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1547 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1548 if (ret < 0 && ret != -EINVAL) {
1549 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1553 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1554 if (IS_ERR(core->ti_sci)) {
1555 ret = PTR_ERR(core->ti_sci);
1556 if (ret != -EPROBE_DEFER) {
1557 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1560 core->ti_sci = NULL;
1564 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1566 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1570 core->reset = devm_reset_control_get_exclusive(dev, NULL);
1571 if (IS_ERR_OR_NULL(core->reset)) {
1572 ret = PTR_ERR_OR_ZERO(core->reset);
1575 if (ret != -EPROBE_DEFER) {
1576 dev_err(dev, "failed to get reset handle, ret = %d\n",
1582 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1583 if (IS_ERR(core->tsp)) {
1584 ret = PTR_ERR(core->tsp);
1585 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1590 ret = k3_r5_core_of_get_internal_memories(pdev, core);
1592 dev_err(dev, "failed to get internal memories, ret = %d\n",
1597 ret = k3_r5_core_of_get_sram_memories(pdev, core);
1599 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1603 ret = ti_sci_proc_request(core->tsp);
1605 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1609 platform_set_drvdata(pdev, core);
1610 devres_close_group(dev, k3_r5_core_of_init);
1615 devres_release_group(dev, k3_r5_core_of_init);
1620 * free the resources explicitly since driver model is not being used
1621 * for the child R5F devices
1623 static void k3_r5_core_of_exit(struct platform_device *pdev)
1625 struct k3_r5_core *core = platform_get_drvdata(pdev);
1626 struct device *dev = &pdev->dev;
1629 ret = ti_sci_proc_release(core->tsp);
1631 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1633 platform_set_drvdata(pdev, NULL);
1634 devres_release_group(dev, k3_r5_core_of_init);
1637 static void k3_r5_cluster_of_exit(void *data)
1639 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1640 struct platform_device *cpdev;
1641 struct k3_r5_core *core, *temp;
1643 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1644 list_del(&core->elem);
1645 cpdev = to_platform_device(core->dev);
1646 k3_r5_core_of_exit(cpdev);
1650 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1652 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1653 struct device *dev = &pdev->dev;
1654 struct device_node *np = dev_of_node(dev);
1655 struct platform_device *cpdev;
1656 struct device_node *child;
1657 struct k3_r5_core *core;
1660 for_each_available_child_of_node(np, child) {
1661 cpdev = of_find_device_by_node(child);
1664 dev_err(dev, "could not get R5 core platform device\n");
1669 ret = k3_r5_core_of_init(cpdev);
1671 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1673 put_device(&cpdev->dev);
1678 core = platform_get_drvdata(cpdev);
1679 put_device(&cpdev->dev);
1680 list_add_tail(&core->elem, &cluster->cores);
1686 k3_r5_cluster_of_exit(pdev);
1690 static int k3_r5_probe(struct platform_device *pdev)
1692 struct device *dev = &pdev->dev;
1693 struct device_node *np = dev_of_node(dev);
1694 struct k3_r5_cluster *cluster;
1695 const struct k3_r5_soc_data *data;
1699 data = of_device_get_match_data(&pdev->dev);
1701 dev_err(dev, "SoC-specific data is not defined\n");
1705 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1710 cluster->soc_data = data;
1711 INIT_LIST_HEAD(&cluster->cores);
1713 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1714 if (ret < 0 && ret != -EINVAL) {
1715 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1720 if (ret == -EINVAL) {
1722 * default to most common efuse configurations - Split-mode on AM64x
1723 * and LockStep-mode on all others
1724 * default to most common efuse configurations -
1725 * Split-mode on AM64x
1726 * Single core on AM62x
1727 * LockStep-mode on all others
1729 if (!data->is_single_core)
1730 cluster->mode = data->single_cpu_mode ?
1731 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1733 cluster->mode = CLUSTER_MODE_SINGLECORE;
1736 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1737 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
1738 dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
1742 num_cores = of_get_available_child_count(np);
1743 if (num_cores != 2 && !data->is_single_core) {
1744 dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1749 if (num_cores != 1 && data->is_single_core) {
1750 dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
1755 platform_set_drvdata(pdev, cluster);
1757 ret = devm_of_platform_populate(dev);
1759 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1764 ret = k3_r5_cluster_of_init(pdev);
1766 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1770 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1774 ret = k3_r5_cluster_rproc_init(pdev);
1776 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1781 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1788 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1789 .tcm_is_double = false,
1790 .tcm_ecc_autoinit = false,
1791 .single_cpu_mode = false,
1792 .is_single_core = false,
1795 static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1796 .tcm_is_double = true,
1797 .tcm_ecc_autoinit = true,
1798 .single_cpu_mode = false,
1799 .is_single_core = false,
1802 static const struct k3_r5_soc_data am64_soc_data = {
1803 .tcm_is_double = true,
1804 .tcm_ecc_autoinit = true,
1805 .single_cpu_mode = true,
1806 .is_single_core = false,
1809 static const struct k3_r5_soc_data am62_soc_data = {
1810 .tcm_is_double = false,
1811 .tcm_ecc_autoinit = true,
1812 .single_cpu_mode = false,
1813 .is_single_core = true,
1816 static const struct of_device_id k3_r5_of_match[] = {
1817 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1818 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1819 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1820 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
1821 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
1822 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
1825 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1827 static struct platform_driver k3_r5_rproc_driver = {
1828 .probe = k3_r5_probe,
1830 .name = "k3_r5_rproc",
1831 .of_match_table = k3_r5_of_match,
1835 module_platform_driver(k3_r5_rproc_driver);
1837 MODULE_LICENSE("GPL v2");
1838 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1839 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");