1 // SPDX-License-Identifier: GPL-2.0-only
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
42 #include "remoteproc_internal.h"
44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46 static DEFINE_MUTEX(rproc_list_mutex);
47 static LIST_HEAD(rproc_list);
48 static struct notifier_block rproc_panic_nb;
50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 void *, int offset, int avail);
53 static int rproc_alloc_carveout(struct rproc *rproc,
54 struct rproc_mem_entry *mem);
55 static int rproc_release_carveout(struct rproc *rproc,
56 struct rproc_mem_entry *mem);
58 /* Unique indices for remoteproc devices */
59 static DEFINE_IDA(rproc_dev_index);
60 static struct workqueue_struct *rproc_recovery_wq;
62 static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
87 struct rproc *rproc = token;
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
100 static int rproc_enable_iommu(struct rproc *rproc)
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
111 domain = iommu_domain_alloc(dev->bus);
113 dev_err(dev, "can't alloc iommu domain\n");
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119 ret = iommu_attach_device(domain, dev);
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
125 rproc->domain = domain;
130 iommu_domain_free(domain);
134 static void rproc_disable_iommu(struct rproc *rproc)
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
161 EXPORT_SYMBOL(rproc_va_to_pa);
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170 * Some remote processors will ask us to allocate them physically contiguous
171 * memory regions (which we call "carveouts"), and map them to specific
172 * device addresses (which are hardcoded in the firmware). They may also have
173 * dedicated memory regions internal to the processors, and use them either
174 * exclusively or alongside carveouts.
176 * They may then ask us to copy objects into specific device addresses (e.g.
177 * code/data sections) or expose us certain symbols in other device address
178 * (e.g. their trace buffer).
180 * This function is a helper function with which we can go over the allocated
181 * carveouts and translate specific device addresses to kernel virtual addresses
182 * so we can access the referenced memory. This function also allows to perform
183 * translations on the internal remoteproc memory regions through a platform
184 * implementation specific da_to_va ops, if present.
186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187 * but only on kernel direct mapped RAM memory. Instead, we're just using
188 * here the output of the DMA API for the carveouts, which should be more
191 * Return: a valid kernel address on success or NULL on failure
193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 struct rproc_mem_entry *carveout;
198 if (rproc->ops->da_to_va) {
199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
204 list_for_each_entry(carveout, &rproc->carveouts, node) {
205 int offset = da - carveout->da;
207 /* Verify that carveout is allocated */
211 /* try next carveout if da is too small */
215 /* try next carveout if da is too large */
216 if (offset + len > carveout->len)
219 ptr = carveout->va + offset;
222 *is_iomem = carveout->is_iomem;
230 EXPORT_SYMBOL(rproc_da_to_va);
233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
234 * @rproc: handle of a remote processor
235 * @name: carveout name to find (format string)
236 * @...: optional parameters matching @name string
238 * Platform driver has the capability to register some pre-allacoted carveout
239 * (physically contiguous memory regions) before rproc firmware loading and
240 * associated resource table analysis. These regions may be dedicated memory
241 * regions internal to the coprocessor or specified DDR region with specific
244 * This function is a helper function with which we can go over the
245 * allocated carveouts and return associated region characteristics like
246 * coprocessor address, length or processor virtual address.
248 * Return: a valid pointer on carveout entry on success or NULL on failure.
251 struct rproc_mem_entry *
252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
256 struct rproc_mem_entry *carveout, *mem = NULL;
261 va_start(args, name);
262 vsnprintf(_name, sizeof(_name), name, args);
265 list_for_each_entry(carveout, &rproc->carveouts, node) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout->name, _name)) {
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carveout.
285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
288 * Return: 0 if carveout matches request else error
290 static int rproc_check_carveout_da(struct rproc *rproc,
291 struct rproc_mem_entry *mem, u32 da, u32 len)
293 struct device *dev = &rproc->dev;
296 /* Check requested resource length */
297 if (len > mem->len) {
298 dev_err(dev, "Registered carveout doesn't fit len request\n");
302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 /* Address doesn't match registered carveout configuration */
305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 delta = da - mem->da;
308 /* Check requested resource belongs to registered carveout */
311 "Registered carveout doesn't fit da request\n");
315 if (delta + len > mem->len) {
317 "Registered carveout doesn't fit len request\n");
325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 struct rproc *rproc = rvdev->rproc;
328 struct device *dev = &rproc->dev;
329 struct rproc_vring *rvring = &rvdev->vring[i];
330 struct fw_rsc_vdev *rsc;
332 struct rproc_mem_entry *mem;
335 /* actual size of vring (in bytes) */
336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340 /* Search for pre-registered carveout */
341 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
344 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
347 /* Register carveout in list */
348 mem = rproc_mem_entry_init(dev, NULL, 0,
349 size, rsc->vring[i].da,
350 rproc_alloc_carveout,
351 rproc_release_carveout,
355 dev_err(dev, "Can't allocate memory entry structure\n");
359 rproc_add_carveout(rproc, mem);
363 * Assign an rproc-wide unique index for this vring
364 * TODO: assign a notifyid for rvdev updates as well
365 * TODO: support predefined notifyids (via resource table)
367 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 dev_err(dev, "idr_alloc failed: %d\n", ret);
374 /* Potentially bump max_notifyid */
375 if (notifyid > rproc->max_notifyid)
376 rproc->max_notifyid = notifyid;
378 rvring->notifyid = notifyid;
380 /* Let the rproc know the notifyid of this vring.*/
381 rsc->vring[i].notifyid = notifyid;
386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 struct rproc *rproc = rvdev->rproc;
389 struct device *dev = &rproc->dev;
390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 struct rproc_vring *rvring = &rvdev->vring[i];
393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 i, vring->da, vring->num, vring->align);
396 /* verify queue size and vring alignment are sane */
397 if (!vring->num || !vring->align) {
398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 vring->num, vring->align);
403 rvring->num = vring->num;
404 rvring->align = vring->align;
405 rvring->rvdev = rvdev;
410 void rproc_free_vring(struct rproc_vring *rvring)
412 struct rproc *rproc = rvring->rvdev->rproc;
413 int idx = rvring - rvring->rvdev->vring;
414 struct fw_rsc_vdev *rsc;
416 idr_remove(&rproc->notifyids, rvring->notifyid);
419 * At this point rproc_stop() has been called and the installed resource
420 * table in the remote processor memory may no longer be accessible. As
421 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 * resource table (rproc->cached_table). The cached resource table is
423 * only available when a remote processor has been booted by the
424 * remoteproc core, otherwise it is NULL.
426 * Based on the above, reset the virtio device section in the cached
427 * resource table only if there is one to work with.
429 if (rproc->table_ptr) {
430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 rsc->vring[idx].da = 0;
432 rsc->vring[idx].notifyid = -1;
436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
439 list_add_tail(&rvdev->node, &rproc->rvdevs);
442 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
445 list_del(&rvdev->node);
448 * rproc_handle_vdev() - handle a vdev fw resource
449 * @rproc: the remote processor
450 * @ptr: the vring resource descriptor
451 * @offset: offset of the resource entry
452 * @avail: size of available data (for sanity checking the image)
454 * This resource entry requests the host to statically register a virtio
455 * device (vdev), and setup everything needed to support it. It contains
456 * everything needed to make it possible: the virtio device id, virtio
457 * device features, vrings information, virtio config space, etc...
459 * Before registering the vdev, the vrings are allocated from non-cacheable
460 * physically contiguous memory. Currently we only support two vrings per
461 * remote processor (temporary limitation). We might also want to consider
462 * doing the vring allocation only later when ->find_vqs() is invoked, and
463 * then release them upon ->del_vqs().
465 * Note: @da is currently not really handled correctly: we dynamically
466 * allocate it using the DMA API, ignoring requested hard coded addresses,
467 * and we don't take care of any required IOMMU programming. This is all
468 * going to be taken care of when the generic iommu-based DMA API will be
469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
470 * use RSC_DEVMEM resource entries to map their required @da to the physical
471 * address of their base CMA region (ouch, hacky!).
473 * Return: 0 on success, or an appropriate error code otherwise
475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 int offset, int avail)
478 struct fw_rsc_vdev *rsc = ptr;
479 struct device *dev = &rproc->dev;
480 struct rproc_vdev *rvdev;
482 struct rproc_vdev_data rvdev_data;
483 struct platform_device *pdev;
485 /* make sure resource isn't truncated */
486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 if (size_add(rsc_size, rsc->config_len) > avail) {
488 dev_err(dev, "vdev rsc is truncated\n");
492 /* make sure reserved bytes are zeroes */
493 if (rsc->reserved[0] || rsc->reserved[1]) {
494 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501 /* we currently support only two vrings per rvdev */
502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
507 rvdev_data.id = rsc->id;
508 rvdev_data.index = rproc->nb_vdev++;
509 rvdev_data.rsc_offset = offset;
510 rvdev_data.rsc = rsc;
513 * When there is more than one remote processor, rproc->nb_vdev number is
514 * same for each separate instances of "rproc". If rvdev_data.index is used
515 * as device id, then we get duplication in sysfs, so need to use
516 * PLATFORM_DEVID_AUTO to auto select device id.
518 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
521 dev_err(dev, "failed to create rproc-virtio device\n");
522 return PTR_ERR(pdev);
529 * rproc_handle_trace() - handle a shared trace buffer resource
530 * @rproc: the remote processor
531 * @ptr: the trace resource descriptor
532 * @offset: offset of the resource entry
533 * @avail: size of available data (for sanity checking the image)
535 * In case the remote processor dumps trace logs into memory,
536 * export it via debugfs.
538 * Currently, the 'da' member of @rsc should contain the device address
539 * where the remote processor is dumping the traces. Later we could also
540 * support dynamically allocating this address using the generic
541 * DMA API (but currently there isn't a use case for that).
543 * Return: 0 on success, or an appropriate error code otherwise
545 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
546 int offset, int avail)
548 struct fw_rsc_trace *rsc = ptr;
549 struct rproc_debug_trace *trace;
550 struct device *dev = &rproc->dev;
553 if (sizeof(*rsc) > avail) {
554 dev_err(dev, "trace rsc is truncated\n");
558 /* make sure reserved bytes are zeroes */
560 dev_err(dev, "trace rsc has non zero reserved bytes\n");
564 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
568 /* set the trace buffer dma properties */
569 trace->trace_mem.len = rsc->len;
570 trace->trace_mem.da = rsc->da;
572 /* set pointer on rproc device */
573 trace->rproc = rproc;
575 /* make sure snprintf always null terminates, even if truncating */
576 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
578 /* create the debugfs entry */
579 trace->tfile = rproc_create_trace_file(name, rproc, trace);
581 list_add_tail(&trace->node, &rproc->traces);
585 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
586 name, rsc->da, rsc->len);
592 * rproc_handle_devmem() - handle devmem resource entry
593 * @rproc: remote processor handle
594 * @ptr: the devmem resource entry
595 * @offset: offset of the resource entry
596 * @avail: size of available data (for sanity checking the image)
598 * Remote processors commonly need to access certain on-chip peripherals.
600 * Some of these remote processors access memory via an iommu device,
601 * and might require us to configure their iommu before they can access
602 * the on-chip peripherals they need.
604 * This resource entry is a request to map such a peripheral device.
606 * These devmem entries will contain the physical address of the device in
607 * the 'pa' member. If a specific device address is expected, then 'da' will
608 * contain it (currently this is the only use case supported). 'len' will
609 * contain the size of the physical region we need to map.
611 * Currently we just "trust" those devmem entries to contain valid physical
612 * addresses, but this is going to change: we want the implementations to
613 * tell us ranges of physical addresses the firmware is allowed to request,
614 * and not allow firmwares to request access to physical addresses that
615 * are outside those ranges.
617 * Return: 0 on success, or an appropriate error code otherwise
619 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
620 int offset, int avail)
622 struct fw_rsc_devmem *rsc = ptr;
623 struct rproc_mem_entry *mapping;
624 struct device *dev = &rproc->dev;
627 /* no point in handling this resource without a valid iommu domain */
631 if (sizeof(*rsc) > avail) {
632 dev_err(dev, "devmem rsc is truncated\n");
636 /* make sure reserved bytes are zeroes */
638 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
642 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
646 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
649 dev_err(dev, "failed to map devmem: %d\n", ret);
654 * We'll need this info later when we'll want to unmap everything
655 * (e.g. on shutdown).
657 * We can't trust the remote processor not to change the resource
658 * table, so we must maintain this info independently.
660 mapping->da = rsc->da;
661 mapping->len = rsc->len;
662 list_add_tail(&mapping->node, &rproc->mappings);
664 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
665 rsc->pa, rsc->da, rsc->len);
675 * rproc_alloc_carveout() - allocated specified carveout
676 * @rproc: rproc handle
677 * @mem: the memory entry to allocate
679 * This function allocate specified memory entry @mem using
680 * dma_alloc_coherent() as default allocator
682 * Return: 0 on success, or an appropriate error code otherwise
684 static int rproc_alloc_carveout(struct rproc *rproc,
685 struct rproc_mem_entry *mem)
687 struct rproc_mem_entry *mapping = NULL;
688 struct device *dev = &rproc->dev;
693 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
696 "failed to allocate dma memory: len 0x%zx\n",
701 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
704 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
706 * Check requested da is equal to dma address
707 * and print a warn message in case of missalignment.
708 * Don't stop rproc_start sequence as coprocessor may
709 * build pa to da translation on its side.
711 if (mem->da != (u32)dma)
712 dev_warn(dev->parent,
713 "Allocated carveout doesn't fit device address request\n");
717 * Ok, this is non-standard.
719 * Sometimes we can't rely on the generic iommu-based DMA API
720 * to dynamically allocate the device address and then set the IOMMU
721 * tables accordingly, because some remote processors might
722 * _require_ us to use hard coded device addresses that their
723 * firmware was compiled with.
725 * In this case, we must use the IOMMU API directly and map
726 * the memory to the device address as expected by the remote
729 * Obviously such remote processor devices should not be configured
730 * to use the iommu-based DMA API: we expect 'dma' to contain the
731 * physical address in this case.
733 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
734 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
740 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
741 mem->flags, GFP_KERNEL);
743 dev_err(dev, "iommu_map failed: %d\n", ret);
748 * We'll need this info later when we'll want to unmap
749 * everything (e.g. on shutdown).
751 * We can't trust the remote processor not to change the
752 * resource table, so we must maintain this info independently.
754 mapping->da = mem->da;
755 mapping->len = mem->len;
756 list_add_tail(&mapping->node, &rproc->mappings);
758 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
762 if (mem->da == FW_RSC_ADDR_ANY) {
763 /* Update device address as undefined by requester */
764 if ((u64)dma & HIGH_BITS_MASK)
765 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
778 dma_free_coherent(dev->parent, mem->len, va, dma);
783 * rproc_release_carveout() - release acquired carveout
784 * @rproc: rproc handle
785 * @mem: the memory entry to release
787 * This function releases specified memory entry @mem allocated via
788 * rproc_alloc_carveout() function by @rproc.
790 * Return: 0 on success, or an appropriate error code otherwise
792 static int rproc_release_carveout(struct rproc *rproc,
793 struct rproc_mem_entry *mem)
795 struct device *dev = &rproc->dev;
797 /* clean up carveout allocations */
798 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
803 * rproc_handle_carveout() - handle phys contig memory allocation requests
804 * @rproc: rproc handle
805 * @ptr: the resource entry
806 * @offset: offset of the resource entry
807 * @avail: size of available data (for image validation)
809 * This function will handle firmware requests for allocation of physically
810 * contiguous memory regions.
812 * These request entries should come first in the firmware's resource table,
813 * as other firmware entries might request placing other data objects inside
814 * these memory regions (e.g. data/code segments, trace resource entries, ...).
816 * Allocating memory this way helps utilizing the reserved physical memory
817 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
818 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
819 * pressure is important; it may have a substantial impact on performance.
821 * Return: 0 on success, or an appropriate error code otherwise
823 static int rproc_handle_carveout(struct rproc *rproc,
824 void *ptr, int offset, int avail)
826 struct fw_rsc_carveout *rsc = ptr;
827 struct rproc_mem_entry *carveout;
828 struct device *dev = &rproc->dev;
830 if (sizeof(*rsc) > avail) {
831 dev_err(dev, "carveout rsc is truncated\n");
835 /* make sure reserved bytes are zeroes */
837 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
841 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
842 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
845 * Check carveout rsc already part of a registered carveout,
846 * Search by name, then check the da and length
848 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
851 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
853 "Carveout already associated to resource table\n");
857 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
860 /* Update memory carveout with resource table info */
861 carveout->rsc_offset = offset;
862 carveout->flags = rsc->flags;
867 /* Register carveout in list */
868 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
869 rproc_alloc_carveout,
870 rproc_release_carveout, rsc->name);
872 dev_err(dev, "Can't allocate memory entry structure\n");
876 carveout->flags = rsc->flags;
877 carveout->rsc_offset = offset;
878 rproc_add_carveout(rproc, carveout);
884 * rproc_add_carveout() - register an allocated carveout region
885 * @rproc: rproc handle
886 * @mem: memory entry to register
888 * This function registers specified memory entry in @rproc carveouts list.
889 * Specified carveout should have been allocated before registering.
891 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
893 list_add_tail(&mem->node, &rproc->carveouts);
895 EXPORT_SYMBOL(rproc_add_carveout);
898 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
899 * @dev: pointer on device struct
900 * @va: virtual address
902 * @len: memory carveout length
903 * @da: device address
904 * @alloc: memory carveout allocation function
905 * @release: memory carveout release function
906 * @name: carveout name
908 * This function allocates a rproc_mem_entry struct and fill it with parameters
909 * provided by client.
911 * Return: a valid pointer on success, or NULL on failure
914 struct rproc_mem_entry *
915 rproc_mem_entry_init(struct device *dev,
916 void *va, dma_addr_t dma, size_t len, u32 da,
917 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
918 int (*release)(struct rproc *, struct rproc_mem_entry *),
919 const char *name, ...)
921 struct rproc_mem_entry *mem;
924 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
933 mem->release = release;
934 mem->rsc_offset = FW_RSC_ADDR_ANY;
935 mem->of_resm_idx = -1;
937 va_start(args, name);
938 vsnprintf(mem->name, sizeof(mem->name), name, args);
943 EXPORT_SYMBOL(rproc_mem_entry_init);
946 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947 * from a reserved memory phandle
948 * @dev: pointer on device struct
949 * @of_resm_idx: reserved memory phandle index in "memory-region"
950 * @len: memory carveout length
951 * @da: device address
952 * @name: carveout name
954 * This function allocates a rproc_mem_entry struct and fill it with parameters
955 * provided by client.
957 * Return: a valid pointer on success, or NULL on failure
960 struct rproc_mem_entry *
961 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
962 u32 da, const char *name, ...)
964 struct rproc_mem_entry *mem;
967 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
973 mem->rsc_offset = FW_RSC_ADDR_ANY;
974 mem->of_resm_idx = of_resm_idx;
976 va_start(args, name);
977 vsnprintf(mem->name, sizeof(mem->name), name, args);
982 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
985 * rproc_of_parse_firmware() - parse and return the firmware-name
986 * @dev: pointer on device struct representing a rproc
987 * @index: index to use for the firmware-name retrieval
988 * @fw_name: pointer to a character string, in which the firmware
989 * name is returned on success and unmodified otherwise.
991 * This is an OF helper function that parses a device's DT node for
992 * the "firmware-name" property and returns the firmware name pointer
993 * in @fw_name on success.
995 * Return: 0 on success, or an appropriate failure.
997 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1001 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1003 return ret ? ret : 0;
1005 EXPORT_SYMBOL(rproc_of_parse_firmware);
1008 * A lookup table for resource handlers. The indices are defined in
1009 * enum fw_resource_type.
1011 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1012 [RSC_CARVEOUT] = rproc_handle_carveout,
1013 [RSC_DEVMEM] = rproc_handle_devmem,
1014 [RSC_TRACE] = rproc_handle_trace,
1015 [RSC_VDEV] = rproc_handle_vdev,
1018 /* handle firmware resource entries before booting the remote processor */
1019 static int rproc_handle_resources(struct rproc *rproc,
1020 rproc_handle_resource_t handlers[RSC_LAST])
1022 struct device *dev = &rproc->dev;
1023 rproc_handle_resource_t handler;
1026 if (!rproc->table_ptr)
1029 for (i = 0; i < rproc->table_ptr->num; i++) {
1030 int offset = rproc->table_ptr->offset[i];
1031 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1032 int avail = rproc->table_sz - offset - sizeof(*hdr);
1033 void *rsc = (void *)hdr + sizeof(*hdr);
1035 /* make sure table isn't truncated */
1037 dev_err(dev, "rsc table is truncated\n");
1041 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1043 if (hdr->type >= RSC_VENDOR_START &&
1044 hdr->type <= RSC_VENDOR_END) {
1045 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1046 offset + sizeof(*hdr), avail);
1047 if (ret == RSC_HANDLED)
1052 dev_warn(dev, "unsupported vendor resource %d\n",
1057 if (hdr->type >= RSC_LAST) {
1058 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1062 handler = handlers[hdr->type];
1066 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1074 static int rproc_prepare_subdevices(struct rproc *rproc)
1076 struct rproc_subdev *subdev;
1079 list_for_each_entry(subdev, &rproc->subdevs, node) {
1080 if (subdev->prepare) {
1081 ret = subdev->prepare(subdev);
1083 goto unroll_preparation;
1090 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1091 if (subdev->unprepare)
1092 subdev->unprepare(subdev);
1098 static int rproc_start_subdevices(struct rproc *rproc)
1100 struct rproc_subdev *subdev;
1103 list_for_each_entry(subdev, &rproc->subdevs, node) {
1104 if (subdev->start) {
1105 ret = subdev->start(subdev);
1107 goto unroll_registration;
1113 unroll_registration:
1114 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1116 subdev->stop(subdev, true);
1122 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1124 struct rproc_subdev *subdev;
1126 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1128 subdev->stop(subdev, crashed);
1132 static void rproc_unprepare_subdevices(struct rproc *rproc)
1134 struct rproc_subdev *subdev;
1136 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137 if (subdev->unprepare)
1138 subdev->unprepare(subdev);
1143 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1145 * @rproc: the remote processor handle
1147 * This function parses registered carveout list, performs allocation
1148 * if alloc() ops registered and updates resource table information
1149 * if rsc_offset set.
1151 * Return: 0 on success
1153 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1155 struct rproc_mem_entry *entry, *tmp;
1156 struct fw_rsc_carveout *rsc;
1157 struct device *dev = &rproc->dev;
1161 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1163 ret = entry->alloc(rproc, entry);
1165 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1171 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1172 /* update resource table */
1173 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1176 * Some remote processors might need to know the pa
1177 * even though they are behind an IOMMU. E.g., OMAP4's
1178 * remote M3 processor needs this so it can control
1179 * on-chip hardware accelerators that are not behind
1180 * the IOMMU, and therefor must know the pa.
1182 * Generally we don't want to expose physical addresses
1183 * if we don't have to (remote processors are generally
1184 * _not_ trusted), so we might want to do this only for
1185 * remote processor that _must_ have this (e.g. OMAP4's
1186 * dual M3 subsystem).
1188 * Non-IOMMU processors might also want to have this info.
1189 * In this case, the device address and the physical address
1193 /* Use va if defined else dma to generate pa */
1195 pa = (u64)rproc_va_to_pa(entry->va);
1197 pa = (u64)entry->dma;
1199 if (((u64)pa) & HIGH_BITS_MASK)
1201 "Physical address cast in 32bit to fit resource table format\n");
1204 rsc->da = entry->da;
1205 rsc->len = entry->len;
1214 * rproc_resource_cleanup() - clean up and free all acquired resources
1215 * @rproc: rproc handle
1217 * This function will free all resources acquired for @rproc, and it
1218 * is called whenever @rproc either shuts down or fails to boot.
1220 void rproc_resource_cleanup(struct rproc *rproc)
1222 struct rproc_mem_entry *entry, *tmp;
1223 struct rproc_debug_trace *trace, *ttmp;
1224 struct rproc_vdev *rvdev, *rvtmp;
1225 struct device *dev = &rproc->dev;
1227 /* clean up debugfs trace entries */
1228 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1229 rproc_remove_trace_file(trace->tfile);
1230 rproc->num_traces--;
1231 list_del(&trace->node);
1235 /* clean up iommu mapping entries */
1236 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1239 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1240 if (unmapped != entry->len) {
1241 /* nothing much to do besides complaining */
1242 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1246 list_del(&entry->node);
1250 /* clean up carveout allocations */
1251 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1253 entry->release(rproc, entry);
1254 list_del(&entry->node);
1258 /* clean up remote vdev entries */
1259 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1260 platform_device_unregister(rvdev->pdev);
1262 rproc_coredump_cleanup(rproc);
1264 EXPORT_SYMBOL(rproc_resource_cleanup);
1266 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268 struct resource_table *loaded_table;
1269 struct device *dev = &rproc->dev;
1272 /* load the ELF segments to memory */
1273 ret = rproc_load_segments(rproc, fw);
1275 dev_err(dev, "Failed to load program segments: %d\n", ret);
1280 * The starting device has been given the rproc->cached_table as the
1281 * resource table. The address of the vring along with the other
1282 * allocated resources (carveouts etc) is stored in cached_table.
1283 * In order to pass this information to the remote device we must copy
1284 * this information to device memory. We also update the table_ptr so
1285 * that any subsequent changes will be applied to the loaded version.
1287 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1290 rproc->table_ptr = loaded_table;
1293 ret = rproc_prepare_subdevices(rproc);
1295 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297 goto reset_table_ptr;
1300 /* power up the remote processor */
1301 ret = rproc->ops->start(rproc);
1303 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1304 goto unprepare_subdevices;
1307 /* Start any subdevices for the remote processor */
1308 ret = rproc_start_subdevices(rproc);
1310 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1315 rproc->state = RPROC_RUNNING;
1317 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1322 rproc->ops->stop(rproc);
1323 unprepare_subdevices:
1324 rproc_unprepare_subdevices(rproc);
1326 rproc->table_ptr = rproc->cached_table;
1331 static int __rproc_attach(struct rproc *rproc)
1333 struct device *dev = &rproc->dev;
1336 ret = rproc_prepare_subdevices(rproc);
1338 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1343 /* Attach to the remote processor */
1344 ret = rproc_attach_device(rproc);
1346 dev_err(dev, "can't attach to rproc %s: %d\n",
1348 goto unprepare_subdevices;
1351 /* Start any subdevices for the remote processor */
1352 ret = rproc_start_subdevices(rproc);
1354 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1359 rproc->state = RPROC_ATTACHED;
1361 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1366 rproc->ops->stop(rproc);
1367 unprepare_subdevices:
1368 rproc_unprepare_subdevices(rproc);
1374 * take a firmware and boot a remote processor with it.
1376 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1378 struct device *dev = &rproc->dev;
1379 const char *name = rproc->firmware;
1382 ret = rproc_fw_sanity_check(rproc, fw);
1386 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1389 * if enabling an IOMMU isn't relevant for this rproc, this is
1392 ret = rproc_enable_iommu(rproc);
1394 dev_err(dev, "can't enable iommu: %d\n", ret);
1398 /* Prepare rproc for firmware loading if needed */
1399 ret = rproc_prepare_device(rproc);
1401 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1405 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1407 /* Load resource table, core dump segment list etc from the firmware */
1408 ret = rproc_parse_fw(rproc, fw);
1410 goto unprepare_rproc;
1412 /* reset max_notifyid */
1413 rproc->max_notifyid = -1;
1415 /* reset handled vdev */
1418 /* handle fw resources which are required to boot rproc */
1419 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1421 dev_err(dev, "Failed to process resources: %d\n", ret);
1422 goto clean_up_resources;
1425 /* Allocate carveout resources associated to rproc */
1426 ret = rproc_alloc_registered_carveouts(rproc);
1428 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1430 goto clean_up_resources;
1433 ret = rproc_start(rproc, fw);
1435 goto clean_up_resources;
1440 rproc_resource_cleanup(rproc);
1441 kfree(rproc->cached_table);
1442 rproc->cached_table = NULL;
1443 rproc->table_ptr = NULL;
1445 /* release HW resources if needed */
1446 rproc_unprepare_device(rproc);
1448 rproc_disable_iommu(rproc);
1452 static int rproc_set_rsc_table(struct rproc *rproc)
1454 struct resource_table *table_ptr;
1455 struct device *dev = &rproc->dev;
1459 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1461 /* Not having a resource table is acceptable */
1465 if (IS_ERR(table_ptr)) {
1466 ret = PTR_ERR(table_ptr);
1467 dev_err(dev, "can't load resource table: %d\n", ret);
1472 * If it is possible to detach the remote processor, keep an untouched
1473 * copy of the resource table. That way we can start fresh again when
1474 * the remote processor is re-attached, that is:
1476 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1478 * Free'd in rproc_reset_rsc_table_on_detach() and
1479 * rproc_reset_rsc_table_on_stop().
1481 if (rproc->ops->detach) {
1482 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1483 if (!rproc->clean_table)
1486 rproc->clean_table = NULL;
1489 rproc->cached_table = NULL;
1490 rproc->table_ptr = table_ptr;
1491 rproc->table_sz = table_sz;
1496 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1498 struct resource_table *table_ptr;
1500 /* A resource table was never retrieved, nothing to do here */
1501 if (!rproc->table_ptr)
1505 * If we made it to this point a clean_table _must_ have been
1506 * allocated in rproc_set_rsc_table(). If one isn't present
1507 * something went really wrong and we must complain.
1509 if (WARN_ON(!rproc->clean_table))
1512 /* Remember where the external entity installed the resource table */
1513 table_ptr = rproc->table_ptr;
1516 * If we made it here the remote processor was started by another
1517 * entity and a cache table doesn't exist. As such make a copy of
1518 * the resource table currently used by the remote processor and
1519 * use that for the rest of the shutdown process. The memory
1520 * allocated here is free'd in rproc_detach().
1522 rproc->cached_table = kmemdup(rproc->table_ptr,
1523 rproc->table_sz, GFP_KERNEL);
1524 if (!rproc->cached_table)
1528 * Use a copy of the resource table for the remainder of the
1531 rproc->table_ptr = rproc->cached_table;
1534 * Reset the memory area where the firmware loaded the resource table
1535 * to its original value. That way when we re-attach the remote
1536 * processor the resource table is clean and ready to be used again.
1538 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1541 * The clean resource table is no longer needed. Allocated in
1542 * rproc_set_rsc_table().
1544 kfree(rproc->clean_table);
1549 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1551 /* A resource table was never retrieved, nothing to do here */
1552 if (!rproc->table_ptr)
1556 * If a cache table exists the remote processor was started by
1557 * the remoteproc core. That cache table should be used for
1558 * the rest of the shutdown process.
1560 if (rproc->cached_table)
1564 * If we made it here the remote processor was started by another
1565 * entity and a cache table doesn't exist. As such make a copy of
1566 * the resource table currently used by the remote processor and
1567 * use that for the rest of the shutdown process. The memory
1568 * allocated here is free'd in rproc_shutdown().
1570 rproc->cached_table = kmemdup(rproc->table_ptr,
1571 rproc->table_sz, GFP_KERNEL);
1572 if (!rproc->cached_table)
1576 * Since the remote processor is being switched off the clean table
1577 * won't be needed. Allocated in rproc_set_rsc_table().
1579 kfree(rproc->clean_table);
1583 * Use a copy of the resource table for the remainder of the
1586 rproc->table_ptr = rproc->cached_table;
1591 * Attach to remote processor - similar to rproc_fw_boot() but without
1592 * the steps that deal with the firmware image.
1594 static int rproc_attach(struct rproc *rproc)
1596 struct device *dev = &rproc->dev;
1600 * if enabling an IOMMU isn't relevant for this rproc, this is
1603 ret = rproc_enable_iommu(rproc);
1605 dev_err(dev, "can't enable iommu: %d\n", ret);
1609 /* Do anything that is needed to boot the remote processor */
1610 ret = rproc_prepare_device(rproc);
1612 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1616 ret = rproc_set_rsc_table(rproc);
1618 dev_err(dev, "can't load resource table: %d\n", ret);
1619 goto unprepare_device;
1622 /* reset max_notifyid */
1623 rproc->max_notifyid = -1;
1625 /* reset handled vdev */
1629 * Handle firmware resources required to attach to a remote processor.
1630 * Because we are attaching rather than booting the remote processor,
1631 * we expect the platform driver to properly set rproc->table_ptr.
1633 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1635 dev_err(dev, "Failed to process resources: %d\n", ret);
1636 goto unprepare_device;
1639 /* Allocate carveout resources associated to rproc */
1640 ret = rproc_alloc_registered_carveouts(rproc);
1642 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1644 goto clean_up_resources;
1647 ret = __rproc_attach(rproc);
1649 goto clean_up_resources;
1654 rproc_resource_cleanup(rproc);
1656 /* release HW resources if needed */
1657 rproc_unprepare_device(rproc);
1659 rproc_disable_iommu(rproc);
1664 * take a firmware and boot it up.
1666 * Note: this function is called asynchronously upon registration of the
1667 * remote processor (so we must wait until it completes before we try
1668 * to unregister the device. one other option is just to use kref here,
1669 * that might be cleaner).
1671 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1673 struct rproc *rproc = context;
1677 release_firmware(fw);
1680 static int rproc_trigger_auto_boot(struct rproc *rproc)
1685 * Since the remote processor is in a detached state, it has already
1686 * been booted by another entity. As such there is no point in waiting
1687 * for a firmware image to be loaded, we can simply initiate the process
1688 * of attaching to it immediately.
1690 if (rproc->state == RPROC_DETACHED)
1691 return rproc_boot(rproc);
1694 * We're initiating an asynchronous firmware loading, so we can
1695 * be built-in kernel code, without hanging the boot process.
1697 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1698 rproc->firmware, &rproc->dev, GFP_KERNEL,
1699 rproc, rproc_auto_boot_callback);
1701 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1706 static int rproc_stop(struct rproc *rproc, bool crashed)
1708 struct device *dev = &rproc->dev;
1711 /* No need to continue if a stop() operation has not been provided */
1712 if (!rproc->ops->stop)
1715 /* Stop any subdevices for the remote processor */
1716 rproc_stop_subdevices(rproc, crashed);
1718 /* the installed resource table is no longer accessible */
1719 ret = rproc_reset_rsc_table_on_stop(rproc);
1721 dev_err(dev, "can't reset resource table: %d\n", ret);
1726 /* power off the remote processor */
1727 ret = rproc->ops->stop(rproc);
1729 dev_err(dev, "can't stop rproc: %d\n", ret);
1733 rproc_unprepare_subdevices(rproc);
1735 rproc->state = RPROC_OFFLINE;
1737 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1743 * __rproc_detach(): Does the opposite of __rproc_attach()
1745 static int __rproc_detach(struct rproc *rproc)
1747 struct device *dev = &rproc->dev;
1750 /* No need to continue if a detach() operation has not been provided */
1751 if (!rproc->ops->detach)
1754 /* Stop any subdevices for the remote processor */
1755 rproc_stop_subdevices(rproc, false);
1757 /* the installed resource table is no longer accessible */
1758 ret = rproc_reset_rsc_table_on_detach(rproc);
1760 dev_err(dev, "can't reset resource table: %d\n", ret);
1764 /* Tell the remote processor the core isn't available anymore */
1765 ret = rproc->ops->detach(rproc);
1767 dev_err(dev, "can't detach from rproc: %d\n", ret);
1771 rproc_unprepare_subdevices(rproc);
1773 rproc->state = RPROC_DETACHED;
1775 dev_info(dev, "detached remote processor %s\n", rproc->name);
1780 static int rproc_attach_recovery(struct rproc *rproc)
1784 ret = __rproc_detach(rproc);
1788 return __rproc_attach(rproc);
1791 static int rproc_boot_recovery(struct rproc *rproc)
1793 const struct firmware *firmware_p;
1794 struct device *dev = &rproc->dev;
1797 ret = rproc_stop(rproc, true);
1801 /* generate coredump */
1802 rproc->ops->coredump(rproc);
1805 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807 dev_err(dev, "request_firmware failed: %d\n", ret);
1811 /* boot the remote processor up again */
1812 ret = rproc_start(rproc, firmware_p);
1814 release_firmware(firmware_p);
1820 * rproc_trigger_recovery() - recover a remoteproc
1821 * @rproc: the remote processor
1823 * The recovery is done by resetting all the virtio devices, that way all the
1824 * rpmsg drivers will be reseted along with the remote processor making the
1825 * remoteproc functional again.
1827 * This function can sleep, so it cannot be called from atomic context.
1829 * Return: 0 on success or a negative value upon failure
1831 int rproc_trigger_recovery(struct rproc *rproc)
1833 struct device *dev = &rproc->dev;
1836 ret = mutex_lock_interruptible(&rproc->lock);
1840 /* State could have changed before we got the mutex */
1841 if (rproc->state != RPROC_CRASHED)
1844 dev_err(dev, "recovering %s\n", rproc->name);
1846 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1847 ret = rproc_attach_recovery(rproc);
1849 ret = rproc_boot_recovery(rproc);
1852 mutex_unlock(&rproc->lock);
1857 * rproc_crash_handler_work() - handle a crash
1858 * @work: work treating the crash
1860 * This function needs to handle everything related to a crash, like cpu
1861 * registers and stack dump, information to help to debug the fatal error, etc.
1863 static void rproc_crash_handler_work(struct work_struct *work)
1865 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1866 struct device *dev = &rproc->dev;
1868 dev_dbg(dev, "enter %s\n", __func__);
1870 mutex_lock(&rproc->lock);
1872 if (rproc->state == RPROC_CRASHED) {
1873 /* handle only the first crash detected */
1874 mutex_unlock(&rproc->lock);
1878 if (rproc->state == RPROC_OFFLINE) {
1879 /* Don't recover if the remote processor was stopped */
1880 mutex_unlock(&rproc->lock);
1884 rproc->state = RPROC_CRASHED;
1885 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1888 mutex_unlock(&rproc->lock);
1890 if (!rproc->recovery_disabled)
1891 rproc_trigger_recovery(rproc);
1894 pm_relax(rproc->dev.parent);
1898 * rproc_boot() - boot a remote processor
1899 * @rproc: handle of a remote processor
1901 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903 * If the remote processor is already powered on, this function immediately
1904 * returns (successfully).
1906 * Return: 0 on success, and an appropriate error value otherwise
1908 int rproc_boot(struct rproc *rproc)
1910 const struct firmware *firmware_p;
1915 pr_err("invalid rproc handle\n");
1921 ret = mutex_lock_interruptible(&rproc->lock);
1923 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1927 if (rproc->state == RPROC_DELETED) {
1929 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1933 /* skip the boot or attach process if rproc is already powered up */
1934 if (atomic_inc_return(&rproc->power) > 1) {
1939 if (rproc->state == RPROC_DETACHED) {
1940 dev_info(dev, "attaching to %s\n", rproc->name);
1942 ret = rproc_attach(rproc);
1944 dev_info(dev, "powering up %s\n", rproc->name);
1947 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949 dev_err(dev, "request_firmware failed: %d\n", ret);
1953 ret = rproc_fw_boot(rproc, firmware_p);
1955 release_firmware(firmware_p);
1960 atomic_dec(&rproc->power);
1962 mutex_unlock(&rproc->lock);
1965 EXPORT_SYMBOL(rproc_boot);
1968 * rproc_shutdown() - power off the remote processor
1969 * @rproc: the remote processor
1971 * Power off a remote processor (previously booted with rproc_boot()).
1973 * In case @rproc is still being used by an additional user(s), then
1974 * this function will just decrement the power refcount and exit,
1975 * without really powering off the device.
1977 * Every call to rproc_boot() must (eventually) be accompanied by a call
1978 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1981 * - we're not decrementing the rproc's refcount, only the power refcount.
1982 * which means that the @rproc handle stays valid even after rproc_shutdown()
1983 * returns, and users can still use it with a subsequent rproc_boot(), if
1986 * Return: 0 on success, and an appropriate error value otherwise
1988 int rproc_shutdown(struct rproc *rproc)
1990 struct device *dev = &rproc->dev;
1993 ret = mutex_lock_interruptible(&rproc->lock);
1995 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1999 if (rproc->state != RPROC_RUNNING &&
2000 rproc->state != RPROC_ATTACHED) {
2005 /* if the remote proc is still needed, bail out */
2006 if (!atomic_dec_and_test(&rproc->power))
2009 ret = rproc_stop(rproc, false);
2011 atomic_inc(&rproc->power);
2015 /* clean up all acquired resources */
2016 rproc_resource_cleanup(rproc);
2018 /* release HW resources if needed */
2019 rproc_unprepare_device(rproc);
2021 rproc_disable_iommu(rproc);
2023 /* Free the copy of the resource table */
2024 kfree(rproc->cached_table);
2025 rproc->cached_table = NULL;
2026 rproc->table_ptr = NULL;
2028 mutex_unlock(&rproc->lock);
2031 EXPORT_SYMBOL(rproc_shutdown);
2034 * rproc_detach() - Detach the remote processor from the
2037 * @rproc: the remote processor
2039 * Detach a remote processor (previously attached to with rproc_attach()).
2041 * In case @rproc is still being used by an additional user(s), then
2042 * this function will just decrement the power refcount and exit,
2043 * without disconnecting the device.
2045 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2046 * processor know that services provided by the application processor are
2047 * no longer available. From there it should be possible to remove the
2048 * platform driver and even power cycle the application processor (if the HW
2049 * supports it) without needing to switch off the remote processor.
2051 * Return: 0 on success, and an appropriate error value otherwise
2053 int rproc_detach(struct rproc *rproc)
2055 struct device *dev = &rproc->dev;
2058 ret = mutex_lock_interruptible(&rproc->lock);
2060 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2064 if (rproc->state != RPROC_ATTACHED) {
2069 /* if the remote proc is still needed, bail out */
2070 if (!atomic_dec_and_test(&rproc->power)) {
2075 ret = __rproc_detach(rproc);
2077 atomic_inc(&rproc->power);
2081 /* clean up all acquired resources */
2082 rproc_resource_cleanup(rproc);
2084 /* release HW resources if needed */
2085 rproc_unprepare_device(rproc);
2087 rproc_disable_iommu(rproc);
2089 /* Free the copy of the resource table */
2090 kfree(rproc->cached_table);
2091 rproc->cached_table = NULL;
2092 rproc->table_ptr = NULL;
2094 mutex_unlock(&rproc->lock);
2097 EXPORT_SYMBOL(rproc_detach);
2100 * rproc_get_by_phandle() - find a remote processor by phandle
2101 * @phandle: phandle to the rproc
2103 * Finds an rproc handle using the remote processor's phandle, and then
2104 * return a handle to the rproc.
2106 * This function increments the remote processor's refcount, so always
2107 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109 * Return: rproc handle on success, and NULL on failure
2112 struct rproc *rproc_get_by_phandle(phandle phandle)
2114 struct rproc *rproc = NULL, *r;
2115 struct device_node *np;
2117 np = of_find_node_by_phandle(phandle);
2122 list_for_each_entry_rcu(r, &rproc_list, node) {
2123 if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2124 /* prevent underlying implementation from being removed */
2125 if (!try_module_get(r->dev.parent->driver->owner)) {
2126 dev_err(&r->dev, "can't get owner\n");
2131 get_device(&rproc->dev);
2142 struct rproc *rproc_get_by_phandle(phandle phandle)
2147 EXPORT_SYMBOL(rproc_get_by_phandle);
2150 * rproc_set_firmware() - assign a new firmware
2151 * @rproc: rproc handle to which the new firmware is being assigned
2152 * @fw_name: new firmware name to be assigned
2154 * This function allows remoteproc drivers or clients to configure a custom
2155 * firmware name that is different from the default name used during remoteproc
2156 * registration. The function does not trigger a remote processor boot,
2157 * only sets the firmware name used for a subsequent boot. This function
2158 * should also be called only when the remote processor is offline.
2160 * This allows either the userspace to configure a different name through
2161 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2162 * a specific firmware when it is controlling the boot and shutdown of the
2165 * Return: 0 on success or a negative value upon failure
2167 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2173 if (!rproc || !fw_name)
2176 dev = rproc->dev.parent;
2178 ret = mutex_lock_interruptible(&rproc->lock);
2180 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2184 if (rproc->state != RPROC_OFFLINE) {
2185 dev_err(dev, "can't change firmware while running\n");
2190 len = strcspn(fw_name, "\n");
2192 dev_err(dev, "can't provide empty string for firmware name\n");
2197 p = kstrndup(fw_name, len, GFP_KERNEL);
2203 kfree_const(rproc->firmware);
2204 rproc->firmware = p;
2207 mutex_unlock(&rproc->lock);
2210 EXPORT_SYMBOL(rproc_set_firmware);
2212 static int rproc_validate(struct rproc *rproc)
2214 switch (rproc->state) {
2217 * An offline processor without a start()
2218 * function makes no sense.
2220 if (!rproc->ops->start)
2223 case RPROC_DETACHED:
2225 * A remote processor in a detached state without an
2226 * attach() function makes not sense.
2228 if (!rproc->ops->attach)
2231 * When attaching to a remote processor the device memory
2232 * is already available and as such there is no need to have a
2235 if (rproc->cached_table)
2240 * When adding a remote processor, the state of the device
2241 * can be offline or detached, nothing else.
2250 * rproc_add() - register a remote processor
2251 * @rproc: the remote processor handle to register
2253 * Registers @rproc with the remoteproc framework, after it has been
2254 * allocated with rproc_alloc().
2256 * This is called by the platform-specific rproc implementation, whenever
2257 * a new remote processor device is probed.
2259 * Note: this function initiates an asynchronous firmware loading
2260 * context, which will look for virtio devices supported by the rproc's
2263 * If found, those virtio devices will be created and added, so as a result
2264 * of registering this remote processor, additional virtio drivers might be
2267 * Return: 0 on success and an appropriate error code otherwise
2269 int rproc_add(struct rproc *rproc)
2271 struct device *dev = &rproc->dev;
2274 ret = rproc_validate(rproc);
2278 /* add char device for this remoteproc */
2279 ret = rproc_char_device_add(rproc);
2283 ret = device_add(dev);
2286 goto rproc_remove_cdev;
2289 dev_info(dev, "%s is available\n", rproc->name);
2291 /* create debugfs entries */
2292 rproc_create_debug_dir(rproc);
2294 /* if rproc is marked always-on, request it to boot */
2295 if (rproc->auto_boot) {
2296 ret = rproc_trigger_auto_boot(rproc);
2298 goto rproc_remove_dev;
2301 /* expose to rproc_get_by_phandle users */
2302 mutex_lock(&rproc_list_mutex);
2303 list_add_rcu(&rproc->node, &rproc_list);
2304 mutex_unlock(&rproc_list_mutex);
2309 rproc_delete_debug_dir(rproc);
2312 rproc_char_device_remove(rproc);
2315 EXPORT_SYMBOL(rproc_add);
2317 static void devm_rproc_remove(void *rproc)
2323 * devm_rproc_add() - resource managed rproc_add()
2324 * @dev: the underlying device
2325 * @rproc: the remote processor handle to register
2327 * This function performs like rproc_add() but the registered rproc device will
2328 * automatically be removed on driver detach.
2330 * Return: 0 on success, negative errno on failure
2332 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2336 err = rproc_add(rproc);
2340 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2342 EXPORT_SYMBOL(devm_rproc_add);
2345 * rproc_type_release() - release a remote processor instance
2346 * @dev: the rproc's device
2348 * This function should _never_ be called directly.
2350 * It will be called by the driver core when no one holds a valid pointer
2353 static void rproc_type_release(struct device *dev)
2355 struct rproc *rproc = container_of(dev, struct rproc, dev);
2357 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2359 idr_destroy(&rproc->notifyids);
2361 if (rproc->index >= 0)
2362 ida_free(&rproc_dev_index, rproc->index);
2364 kfree_const(rproc->firmware);
2365 kfree_const(rproc->name);
2370 static const struct device_type rproc_type = {
2371 .name = "remoteproc",
2372 .release = rproc_type_release,
2375 static int rproc_alloc_firmware(struct rproc *rproc,
2376 const char *name, const char *firmware)
2381 * Allocate a firmware name if the caller gave us one to work
2382 * with. Otherwise construct a new one using a default pattern.
2385 p = kstrdup_const(firmware, GFP_KERNEL);
2387 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2392 rproc->firmware = p;
2397 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2399 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2403 /* Default to rproc_coredump if no coredump function is specified */
2404 if (!rproc->ops->coredump)
2405 rproc->ops->coredump = rproc_coredump;
2407 if (rproc->ops->load)
2410 /* Default to ELF loader if no load function is specified */
2411 rproc->ops->load = rproc_elf_load_segments;
2412 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2413 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2414 rproc->ops->sanity_check = rproc_elf_sanity_check;
2415 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2421 * rproc_alloc() - allocate a remote processor handle
2422 * @dev: the underlying device
2423 * @name: name of this remote processor
2424 * @ops: platform-specific handlers (mainly start/stop)
2425 * @firmware: name of firmware file to load, can be NULL
2426 * @len: length of private data needed by the rproc driver (in bytes)
2428 * Allocates a new remote processor handle, but does not register
2429 * it yet. if @firmware is NULL, a default name is used.
2431 * This function should be used by rproc implementations during initialization
2432 * of the remote processor.
2434 * After creating an rproc handle using this function, and when ready,
2435 * implementations should then call rproc_add() to complete
2436 * the registration of the remote processor.
2438 * Note: _never_ directly deallocate @rproc, even if it was not registered
2439 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2441 * Return: new rproc pointer on success, and NULL on failure
2443 struct rproc *rproc_alloc(struct device *dev, const char *name,
2444 const struct rproc_ops *ops,
2445 const char *firmware, int len)
2447 struct rproc *rproc;
2449 if (!dev || !name || !ops)
2452 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2456 rproc->priv = &rproc[1];
2457 rproc->auto_boot = true;
2458 rproc->elf_class = ELFCLASSNONE;
2459 rproc->elf_machine = EM_NONE;
2461 device_initialize(&rproc->dev);
2462 rproc->dev.parent = dev;
2463 rproc->dev.type = &rproc_type;
2464 rproc->dev.class = &rproc_class;
2465 rproc->dev.driver_data = rproc;
2466 idr_init(&rproc->notifyids);
2468 rproc->name = kstrdup_const(name, GFP_KERNEL);
2472 if (rproc_alloc_firmware(rproc, name, firmware))
2475 if (rproc_alloc_ops(rproc, ops))
2478 /* Assign a unique device index and name */
2479 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2480 if (rproc->index < 0) {
2481 dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2485 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2487 atomic_set(&rproc->power, 0);
2489 mutex_init(&rproc->lock);
2491 INIT_LIST_HEAD(&rproc->carveouts);
2492 INIT_LIST_HEAD(&rproc->mappings);
2493 INIT_LIST_HEAD(&rproc->traces);
2494 INIT_LIST_HEAD(&rproc->rvdevs);
2495 INIT_LIST_HEAD(&rproc->subdevs);
2496 INIT_LIST_HEAD(&rproc->dump_segments);
2498 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2500 rproc->state = RPROC_OFFLINE;
2505 put_device(&rproc->dev);
2508 EXPORT_SYMBOL(rproc_alloc);
2511 * rproc_free() - unroll rproc_alloc()
2512 * @rproc: the remote processor handle
2514 * This function decrements the rproc dev refcount.
2516 * If no one holds any reference to rproc anymore, then its refcount would
2517 * now drop to zero, and it would be freed.
2519 void rproc_free(struct rproc *rproc)
2521 put_device(&rproc->dev);
2523 EXPORT_SYMBOL(rproc_free);
2526 * rproc_put() - release rproc reference
2527 * @rproc: the remote processor handle
2529 * This function decrements the rproc dev refcount.
2531 * If no one holds any reference to rproc anymore, then its refcount would
2532 * now drop to zero, and it would be freed.
2534 void rproc_put(struct rproc *rproc)
2536 module_put(rproc->dev.parent->driver->owner);
2537 put_device(&rproc->dev);
2539 EXPORT_SYMBOL(rproc_put);
2542 * rproc_del() - unregister a remote processor
2543 * @rproc: rproc handle to unregister
2545 * This function should be called when the platform specific rproc
2546 * implementation decides to remove the rproc device. it should
2547 * _only_ be called if a previous invocation of rproc_add()
2548 * has completed successfully.
2550 * After rproc_del() returns, @rproc isn't freed yet, because
2551 * of the outstanding reference created by rproc_alloc. To decrement that
2552 * one last refcount, one still needs to call rproc_free().
2554 * Return: 0 on success and -EINVAL if @rproc isn't valid
2556 int rproc_del(struct rproc *rproc)
2561 /* TODO: make sure this works with rproc->power > 1 */
2562 rproc_shutdown(rproc);
2564 mutex_lock(&rproc->lock);
2565 rproc->state = RPROC_DELETED;
2566 mutex_unlock(&rproc->lock);
2568 rproc_delete_debug_dir(rproc);
2570 /* the rproc is downref'ed as soon as it's removed from the klist */
2571 mutex_lock(&rproc_list_mutex);
2572 list_del_rcu(&rproc->node);
2573 mutex_unlock(&rproc_list_mutex);
2575 /* Ensure that no readers of rproc_list are still active */
2578 device_del(&rproc->dev);
2579 rproc_char_device_remove(rproc);
2583 EXPORT_SYMBOL(rproc_del);
2585 static void devm_rproc_free(struct device *dev, void *res)
2587 rproc_free(*(struct rproc **)res);
2591 * devm_rproc_alloc() - resource managed rproc_alloc()
2592 * @dev: the underlying device
2593 * @name: name of this remote processor
2594 * @ops: platform-specific handlers (mainly start/stop)
2595 * @firmware: name of firmware file to load, can be NULL
2596 * @len: length of private data needed by the rproc driver (in bytes)
2598 * This function performs like rproc_alloc() but the acquired rproc device will
2599 * automatically be released on driver detach.
2601 * Return: new rproc instance, or NULL on failure
2603 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2604 const struct rproc_ops *ops,
2605 const char *firmware, int len)
2607 struct rproc **ptr, *rproc;
2609 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2613 rproc = rproc_alloc(dev, name, ops, firmware, len);
2616 devres_add(dev, ptr);
2623 EXPORT_SYMBOL(devm_rproc_alloc);
2626 * rproc_add_subdev() - add a subdevice to a remoteproc
2627 * @rproc: rproc handle to add the subdevice to
2628 * @subdev: subdev handle to register
2630 * Caller is responsible for populating optional subdevice function pointers.
2632 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2634 list_add_tail(&subdev->node, &rproc->subdevs);
2636 EXPORT_SYMBOL(rproc_add_subdev);
2639 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2640 * @rproc: rproc handle to remove the subdevice from
2641 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2643 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2645 list_del(&subdev->node);
2647 EXPORT_SYMBOL(rproc_remove_subdev);
2650 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2651 * @dev: child device to find ancestor of
2653 * Return: the ancestor rproc instance, or NULL if not found
2655 struct rproc *rproc_get_by_child(struct device *dev)
2657 for (dev = dev->parent; dev; dev = dev->parent) {
2658 if (dev->type == &rproc_type)
2659 return dev->driver_data;
2664 EXPORT_SYMBOL(rproc_get_by_child);
2667 * rproc_report_crash() - rproc crash reporter function
2668 * @rproc: remote processor
2671 * This function must be called every time a crash is detected by the low-level
2672 * drivers implementing a specific remoteproc. This should not be called from a
2673 * non-remoteproc driver.
2675 * This function can be called from atomic/interrupt context.
2677 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2680 pr_err("NULL rproc pointer\n");
2684 /* Prevent suspend while the remoteproc is being recovered */
2685 pm_stay_awake(rproc->dev.parent);
2687 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2688 rproc->name, rproc_crash_to_string(type));
2690 queue_work(rproc_recovery_wq, &rproc->crash_handler);
2692 EXPORT_SYMBOL(rproc_report_crash);
2694 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2697 unsigned int longest = 0;
2698 struct rproc *rproc;
2702 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2703 if (!rproc->ops->panic)
2706 if (rproc->state != RPROC_RUNNING &&
2707 rproc->state != RPROC_ATTACHED)
2710 d = rproc->ops->panic(rproc);
2711 longest = max(longest, d);
2716 * Delay for the longest requested duration before returning. This can
2717 * be used by the remoteproc drivers to give the remote processor time
2718 * to perform any requested operations (such as flush caches), when
2719 * it's not possible to signal the Linux side due to the panic.
2726 static void __init rproc_init_panic(void)
2728 rproc_panic_nb.notifier_call = rproc_panic_handler;
2729 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2732 static void __exit rproc_exit_panic(void)
2734 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2737 static int __init remoteproc_init(void)
2739 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2740 WQ_UNBOUND | WQ_FREEZABLE, 0);
2741 if (!rproc_recovery_wq) {
2742 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2747 rproc_init_debugfs();
2753 subsys_initcall(remoteproc_init);
2755 static void __exit remoteproc_exit(void)
2757 ida_destroy(&rproc_dev_index);
2759 if (!rproc_recovery_wq)
2763 rproc_exit_debugfs();
2765 destroy_workqueue(rproc_recovery_wq);
2767 module_exit(remoteproc_exit);
2769 MODULE_DESCRIPTION("Generic Remote Processor Framework");