1 // SPDX-License-Identifier: GPL-2.0-only
3 * PRU-ICSS remoteproc driver for various TI SoCs
5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
8 * Suman Anna <s-anna@ti.com>
9 * Andrew F. Davis <afd@ti.com>
10 * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
13 #include <linux/bitops.h>
14 #include <linux/debugfs.h>
15 #include <linux/irqdomain.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/of_irq.h>
19 #include <linux/pruss_driver.h>
20 #include <linux/remoteproc.h>
22 #include "remoteproc_internal.h"
23 #include "remoteproc_elf_helpers.h"
24 #include "pru_rproc.h"
26 /* PRU_ICSS_PRU_CTRL registers */
27 #define PRU_CTRL_CTRL 0x0000
28 #define PRU_CTRL_STS 0x0004
29 #define PRU_CTRL_WAKEUP_EN 0x0008
30 #define PRU_CTRL_CYCLE 0x000C
31 #define PRU_CTRL_STALL 0x0010
32 #define PRU_CTRL_CTBIR0 0x0020
33 #define PRU_CTRL_CTBIR1 0x0024
34 #define PRU_CTRL_CTPPR0 0x0028
35 #define PRU_CTRL_CTPPR1 0x002C
37 /* CTRL register bit-fields */
38 #define CTRL_CTRL_SOFT_RST_N BIT(0)
39 #define CTRL_CTRL_EN BIT(1)
40 #define CTRL_CTRL_SLEEPING BIT(2)
41 #define CTRL_CTRL_CTR_EN BIT(3)
42 #define CTRL_CTRL_SINGLE_STEP BIT(8)
43 #define CTRL_CTRL_RUNSTATE BIT(15)
45 /* PRU_ICSS_PRU_DEBUG registers */
46 #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4)
47 #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4)
49 /* PRU/RTU/Tx_PRU Core IRAM address masks */
50 #define PRU_IRAM_ADDR_MASK 0x3ffff
51 #define PRU0_IRAM_ADDR_MASK 0x34000
52 #define PRU1_IRAM_ADDR_MASK 0x38000
53 #define RTU0_IRAM_ADDR_MASK 0x4000
54 #define RTU1_IRAM_ADDR_MASK 0x6000
55 #define TX_PRU0_IRAM_ADDR_MASK 0xa000
56 #define TX_PRU1_IRAM_ADDR_MASK 0xc000
58 /* PRU device addresses for various type of PRU RAMs */
59 #define PRU_IRAM_DA 0 /* Instruction RAM */
60 #define PRU_PDRAM_DA 0 /* Primary Data RAM */
61 #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */
62 #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */
64 #define MAX_PRU_SYS_EVENTS 160
67 * enum pru_iomem - PRU core memory/register range identifiers
69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
70 * @PRU_IOMEM_CTRL: PRU Control register range
71 * @PRU_IOMEM_DEBUG: PRU Debug register range
72 * @PRU_IOMEM_MAX: just keep this one at the end
82 * enum pru_type - PRU core type identifier
84 * @PRU_TYPE_PRU: Programmable Real-time Unit
85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
87 * @PRU_TYPE_MAX: just keep this one at the end
97 * struct pru_private_data - device data for a PRU core
98 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
99 * @is_k3: flag used to identify the need for special load handling
101 struct pru_private_data {
103 unsigned int is_k3 : 1;
107 * struct pru_rproc - PRU remoteproc structure
108 * @id: id of the PRU core within the PRUSS
109 * @dev: PRU core device pointer
110 * @pruss: back-reference to parent PRUSS structure
111 * @rproc: remoteproc pointer for this PRU core
112 * @data: PRU core specific data
113 * @mem_regions: data for each of the PRU memory regions
114 * @fw_name: name of firmware image used during loading
115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
117 * @pru_interrupt_map_sz: pru_interrupt_map size
118 * @dbg_single_step: debug state variable to set PRU into single step mode
119 * @dbg_continuous: debug state variable to restore PRU execution mode
120 * @evt_count: number of mapped events
127 const struct pru_private_data *data;
128 struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
130 unsigned int *mapped_irq;
131 struct pru_irq_rsc *pru_interrupt_map;
132 size_t pru_interrupt_map_sz;
138 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
140 return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
144 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
146 writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
149 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
151 return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
154 static int regs_show(struct seq_file *s, void *data)
156 struct rproc *rproc = s->private;
157 struct pru_rproc *pru = rproc->priv;
162 seq_puts(s, "============== Control Registers ==============\n");
163 seq_printf(s, "CTRL := 0x%08x\n",
164 pru_control_read_reg(pru, PRU_CTRL_CTRL));
165 pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
166 seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
167 seq_printf(s, "WAKEUP_EN := 0x%08x\n",
168 pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
169 seq_printf(s, "CYCLE := 0x%08x\n",
170 pru_control_read_reg(pru, PRU_CTRL_CYCLE));
171 seq_printf(s, "STALL := 0x%08x\n",
172 pru_control_read_reg(pru, PRU_CTRL_STALL));
173 seq_printf(s, "CTBIR0 := 0x%08x\n",
174 pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
175 seq_printf(s, "CTBIR1 := 0x%08x\n",
176 pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
177 seq_printf(s, "CTPPR0 := 0x%08x\n",
178 pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
179 seq_printf(s, "CTPPR1 := 0x%08x\n",
180 pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
182 seq_puts(s, "=============== Debug Registers ===============\n");
183 pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
185 if (pru_is_running) {
186 seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
190 for (i = 0; i < nregs; i++) {
191 seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
192 i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
193 i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
198 DEFINE_SHOW_ATTRIBUTE(regs);
201 * Control PRU single-step mode
203 * This is a debug helper function used for controlling the single-step
204 * mode of the PRU. The PRU Debug registers are not accessible when the
205 * PRU is in RUNNING state.
207 * Writing a non-zero value sets the PRU into single-step mode irrespective
208 * of its previous state. The PRU mode is saved only on the first set into
209 * a single-step mode. Writing a zero value will restore the PRU into its
212 static int pru_rproc_debug_ss_set(void *data, u64 val)
214 struct rproc *rproc = data;
215 struct pru_rproc *pru = rproc->priv;
219 if (!val && !pru->dbg_single_step)
222 reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
224 if (val && !pru->dbg_single_step)
225 pru->dbg_continuous = reg_val;
228 reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
230 reg_val = pru->dbg_continuous;
232 pru->dbg_single_step = val;
233 pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
238 static int pru_rproc_debug_ss_get(void *data, u64 *val)
240 struct rproc *rproc = data;
241 struct pru_rproc *pru = rproc->priv;
243 *val = pru->dbg_single_step;
247 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
248 pru_rproc_debug_ss_set, "%llu\n");
251 * Create PRU-specific debugfs entries
253 * The entries are created only if the parent remoteproc debugfs directory
254 * exists, and will be cleaned up by the remoteproc core.
256 static void pru_rproc_create_debug_entries(struct rproc *rproc)
261 debugfs_create_file("regs", 0400, rproc->dbg_dir,
263 debugfs_create_file("single_step", 0600, rproc->dbg_dir,
264 rproc, &pru_rproc_debug_ss_fops);
267 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
269 if (!pru->mapped_irq)
272 while (pru->evt_count) {
274 if (pru->mapped_irq[pru->evt_count] > 0)
275 irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
278 kfree(pru->mapped_irq);
279 pru->mapped_irq = NULL;
283 * Parse the custom PRU interrupt map resource and configure the INTC
286 static int pru_handle_intrmap(struct rproc *rproc)
288 struct device *dev = rproc->dev.parent;
289 struct pru_rproc *pru = rproc->priv;
290 struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
291 struct irq_fwspec fwspec;
292 struct device_node *parent, *irq_parent;
295 /* not having pru_interrupt_map is not an error */
299 /* currently supporting only type 0 */
300 if (rsc->type != 0) {
301 dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
305 if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
308 if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
309 pru->pru_interrupt_map_sz)
312 pru->evt_count = rsc->num_evts;
313 pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
315 if (!pru->mapped_irq) {
321 * parse and fill in system event to interrupt channel and
322 * channel-to-host mapping. The interrupt controller to be used
323 * for these mappings for a given PRU remoteproc is always its
324 * corresponding sibling PRUSS INTC node.
326 parent = of_get_parent(dev_of_node(pru->dev));
328 kfree(pru->mapped_irq);
329 pru->mapped_irq = NULL;
334 irq_parent = of_get_child_by_name(parent, "interrupt-controller");
337 kfree(pru->mapped_irq);
338 pru->mapped_irq = NULL;
343 fwspec.fwnode = of_node_to_fwnode(irq_parent);
344 fwspec.param_count = 3;
345 for (i = 0; i < pru->evt_count; i++) {
346 fwspec.param[0] = rsc->pru_intc_map[i].event;
347 fwspec.param[1] = rsc->pru_intc_map[i].chnl;
348 fwspec.param[2] = rsc->pru_intc_map[i].host;
350 dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
351 i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
353 pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
354 if (!pru->mapped_irq[i]) {
355 dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
356 i, fwspec.param[0], fwspec.param[1],
362 of_node_put(irq_parent);
367 pru_dispose_irq_mapping(pru);
368 of_node_put(irq_parent);
373 static int pru_rproc_start(struct rproc *rproc)
375 struct device *dev = &rproc->dev;
376 struct pru_rproc *pru = rproc->priv;
377 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
381 dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
382 names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
384 ret = pru_handle_intrmap(rproc);
386 * reset references to pru interrupt map - they will stop being valid
387 * after rproc_start returns
389 pru->pru_interrupt_map = NULL;
390 pru->pru_interrupt_map_sz = 0;
394 val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
395 pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
400 static int pru_rproc_stop(struct rproc *rproc)
402 struct device *dev = &rproc->dev;
403 struct pru_rproc *pru = rproc->priv;
404 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
407 dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
409 val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
410 val &= ~CTRL_CTRL_EN;
411 pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
413 /* dispose irq mapping - new firmware can provide new mapping */
414 pru_dispose_irq_mapping(pru);
420 * Convert PRU device address (data spaces only) to kernel virtual address.
422 * Each PRU has access to all data memories within the PRUSS, accessible at
423 * different ranges. So, look through both its primary and secondary Data
424 * RAMs as well as any shared Data RAM to convert a PRU device address to
425 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
426 * RAM1 is primary Data RAM for PRU1.
428 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
430 struct pruss_mem_region dram0, dram1, shrd_ram;
431 struct pruss *pruss = pru->pruss;
438 dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
439 dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
440 /* PRU1 has its local RAM addresses reversed */
443 shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
445 if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
446 offset = da - PRU_PDRAM_DA;
447 va = (__force void *)(dram0.va + offset);
448 } else if (da >= PRU_SDRAM_DA &&
449 da + len <= PRU_SDRAM_DA + dram1.size) {
450 offset = da - PRU_SDRAM_DA;
451 va = (__force void *)(dram1.va + offset);
452 } else if (da >= PRU_SHRDRAM_DA &&
453 da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
454 offset = da - PRU_SHRDRAM_DA;
455 va = (__force void *)(shrd_ram.va + offset);
462 * Convert PRU device address (instruction space) to kernel virtual address.
464 * A PRU does not have an unified address space. Each PRU has its very own
465 * private Instruction RAM, and its device address is identical to that of
466 * its primary Data RAM device address.
468 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
477 * GNU binutils do not support multiple address spaces. The GNU
478 * linker's default linker script places IRAM at an arbitrary high
479 * offset, in order to differentiate it from DRAM. Hence we need to
480 * strip the artificial offset in the IRAM addresses coming from the
483 * The TI proprietary linker would never set those higher IRAM address
484 * bits anyway. PRU architecture limits the program counter to 16-bit
485 * word-address range. This in turn corresponds to 18-bit IRAM
486 * byte-address range for ELF.
488 * Two more bits are added just in case to make the final 20-bit mask.
489 * Idea is to have a safeguard in case TI decides to add banking
494 if (da >= PRU_IRAM_DA &&
495 da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
496 offset = da - PRU_IRAM_DA;
497 va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
505 * Provide address translations for only PRU Data RAMs through the remoteproc
506 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
507 * only to the PRU loader code.
509 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
511 struct pru_rproc *pru = rproc->priv;
513 return pru_d_da_to_va(pru, da, len);
516 /* PRU-specific address translator used by PRU loader. */
517 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
519 struct pru_rproc *pru = rproc->priv;
523 va = pru_i_da_to_va(pru, da, len);
525 va = pru_d_da_to_va(pru, da, len);
530 static struct rproc_ops pru_rproc_ops = {
531 .start = pru_rproc_start,
532 .stop = pru_rproc_stop,
533 .da_to_va = pru_rproc_da_to_va,
537 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
539 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
540 * memories, that is not seen on previous generation SoCs. The data is reflected
541 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
542 * copies result in all the other pre-existing bytes zeroed out within that
543 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
544 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
545 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
546 * ports do not show this behavior.
548 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
552 size_t size = count / 4;
556 * TODO: relax limitation of 4-byte aligned dest addresses and copy
559 if ((long)dest % 4 || count % 4)
562 /* src offsets in ELF firmware image can be non-aligned */
564 tmp_src = kmemdup(src, count, GFP_KERNEL);
579 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
581 struct pru_rproc *pru = rproc->priv;
582 struct device *dev = &rproc->dev;
583 struct elf32_hdr *ehdr;
584 struct elf32_phdr *phdr;
586 const u8 *elf_data = fw->data;
588 ehdr = (struct elf32_hdr *)elf_data;
589 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
591 /* go through the available ELF segments */
592 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
593 u32 da = phdr->p_paddr;
594 u32 memsz = phdr->p_memsz;
595 u32 filesz = phdr->p_filesz;
596 u32 offset = phdr->p_offset;
600 if (phdr->p_type != PT_LOAD || !filesz)
603 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
604 phdr->p_type, da, memsz, filesz);
606 if (filesz > memsz) {
607 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
613 if (offset + filesz > fw->size) {
614 dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
615 offset + filesz, fw->size);
620 /* grab the kernel address for this device address */
621 is_iram = phdr->p_flags & PF_X;
622 ptr = pru_da_to_va(rproc, da, memsz, is_iram);
624 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
629 if (pru->data->is_k3) {
630 ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
633 dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
638 memcpy(ptr, elf_data + phdr->p_offset, filesz);
641 /* skip the memzero logic performed by remoteproc ELF loader */
648 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
650 struct elf32_shdr *shdr, *name_table_shdr;
651 const char *name_table;
652 const u8 *elf_data = fw->data;
653 struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
654 u16 shnum = ehdr->e_shnum;
655 u16 shstrndx = ehdr->e_shstrndx;
658 /* first, get the section header */
659 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
660 /* compute name table section header entry in shdr array */
661 name_table_shdr = shdr + shstrndx;
662 /* finally, compute the name table section address in elf */
663 name_table = elf_data + name_table_shdr->sh_offset;
665 for (i = 0; i < shnum; i++, shdr++) {
666 u32 size = shdr->sh_size;
667 u32 offset = shdr->sh_offset;
668 u32 name = shdr->sh_name;
670 if (strcmp(name_table + name, ".pru_irq_map"))
673 /* make sure we have the entire irq map */
674 if (offset + size > fw->size || offset + size < size) {
675 dev_err(dev, ".pru_irq_map section truncated\n");
676 return ERR_PTR(-EINVAL);
679 /* make sure irq map has at least the header */
680 if (sizeof(struct pru_irq_rsc) > size) {
681 dev_err(dev, "header-less .pru_irq_map section\n");
682 return ERR_PTR(-EINVAL);
688 dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
694 * Use a custom parse_fw callback function for dealing with PRU firmware
697 * The firmware blob can contain optional ELF sections: .resource_table section
698 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
699 * description, which needs to be setup before powering on the PRU core. To
700 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
701 * firmware linker) and therefore is not loaded to PRU memory.
703 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
705 struct device *dev = &rproc->dev;
706 struct pru_rproc *pru = rproc->priv;
707 const u8 *elf_data = fw->data;
709 u8 class = fw_elf_get_class(fw);
713 /* load optional rsc table */
714 ret = rproc_elf_load_rsc_table(rproc, fw);
716 dev_dbg(&rproc->dev, "no resource table found for this fw\n");
720 /* find .pru_interrupt_map section, not having it is not an error */
721 shdr = pru_rproc_find_interrupt_map(dev, fw);
723 return PTR_ERR(shdr);
728 /* preserve pointer to PRU interrupt map together with it size */
729 sh_offset = elf_shdr_get_sh_offset(class, shdr);
730 pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
731 pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
737 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
738 * always at a particular offset within the PRUSS address space.
740 static int pru_rproc_set_id(struct pru_rproc *pru)
744 switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
745 case TX_PRU0_IRAM_ADDR_MASK:
747 case RTU0_IRAM_ADDR_MASK:
749 case PRU0_IRAM_ADDR_MASK:
752 case TX_PRU1_IRAM_ADDR_MASK:
754 case RTU1_IRAM_ADDR_MASK:
756 case PRU1_IRAM_ADDR_MASK:
766 static int pru_rproc_probe(struct platform_device *pdev)
768 struct device *dev = &pdev->dev;
769 struct device_node *np = dev->of_node;
770 struct platform_device *ppdev = to_platform_device(dev->parent);
771 struct pru_rproc *pru;
773 struct rproc *rproc = NULL;
774 struct resource *res;
776 const struct pru_private_data *data;
777 const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
779 data = of_device_get_match_data(&pdev->dev);
783 ret = of_property_read_string(np, "firmware-name", &fw_name);
785 dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
789 rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
792 dev_err(dev, "rproc_alloc failed\n");
795 /* use a custom load function to deal with PRU-specific quirks */
796 rproc->ops->load = pru_rproc_load_elf_segments;
798 /* use a custom parse function to deal with PRU-specific resources */
799 rproc->ops->parse_fw = pru_rproc_parse_fw;
801 /* error recovery is not supported for PRUs */
802 rproc->recovery_disabled = true;
805 * rproc_add will auto-boot the processor normally, but this is not
806 * desired with PRU client driven boot-flow methodology. A PRU
807 * application/client driver will boot the corresponding PRU
808 * remote-processor as part of its state machine either through the
809 * remoteproc sysfs interface or through the equivalent kernel API.
811 rproc->auto_boot = false;
816 pru->pruss = platform_get_drvdata(ppdev);
818 pru->fw_name = fw_name;
820 for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
821 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
823 pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
824 if (IS_ERR(pru->mem_regions[i].va)) {
825 dev_err(dev, "failed to parse and map memory resource %d %s\n",
827 ret = PTR_ERR(pru->mem_regions[i].va);
830 pru->mem_regions[i].pa = res->start;
831 pru->mem_regions[i].size = resource_size(res);
833 dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
834 mem_names[i], &pru->mem_regions[i].pa,
835 pru->mem_regions[i].size, pru->mem_regions[i].va);
838 ret = pru_rproc_set_id(pru);
842 platform_set_drvdata(pdev, rproc);
844 ret = devm_rproc_add(dev, pru->rproc);
846 dev_err(dev, "rproc_add failed: %d\n", ret);
850 pru_rproc_create_debug_entries(rproc);
852 dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
857 static int pru_rproc_remove(struct platform_device *pdev)
859 struct device *dev = &pdev->dev;
860 struct rproc *rproc = platform_get_drvdata(pdev);
862 dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
867 static const struct pru_private_data pru_data = {
868 .type = PRU_TYPE_PRU,
871 static const struct pru_private_data k3_pru_data = {
872 .type = PRU_TYPE_PRU,
876 static const struct pru_private_data k3_rtu_data = {
877 .type = PRU_TYPE_RTU,
881 static const struct pru_private_data k3_tx_pru_data = {
882 .type = PRU_TYPE_TX_PRU,
886 static const struct of_device_id pru_rproc_match[] = {
887 { .compatible = "ti,am3356-pru", .data = &pru_data },
888 { .compatible = "ti,am4376-pru", .data = &pru_data },
889 { .compatible = "ti,am5728-pru", .data = &pru_data },
890 { .compatible = "ti,k2g-pru", .data = &pru_data },
891 { .compatible = "ti,am654-pru", .data = &k3_pru_data },
892 { .compatible = "ti,am654-rtu", .data = &k3_rtu_data },
893 { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data },
894 { .compatible = "ti,j721e-pru", .data = &k3_pru_data },
895 { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data },
896 { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data },
899 MODULE_DEVICE_TABLE(of, pru_rproc_match);
901 static struct platform_driver pru_rproc_driver = {
904 .of_match_table = pru_rproc_match,
905 .suppress_bind_attrs = true,
907 .probe = pru_rproc_probe,
908 .remove = pru_rproc_remove,
910 module_platform_driver(pru_rproc_driver);
912 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
913 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
914 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
915 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
916 MODULE_LICENSE("GPL v2");