1 // SPDX-License-Identifier: GPL-2.0-only
3 * PRU-ICSS remoteproc driver for various TI SoCs
5 * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
8 * Suman Anna <s-anna@ti.com>
9 * Andrew F. Davis <afd@ti.com>
10 * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11 * Puranjay Mohan <p-mohan@ti.com>
12 * Md Danish Anwar <danishanwar@ti.com>
15 #include <linux/bitops.h>
16 #include <linux/debugfs.h>
17 #include <linux/irqdomain.h>
18 #include <linux/module.h>
20 #include <linux/of_irq.h>
21 #include <linux/platform_device.h>
22 #include <linux/remoteproc/pruss.h>
23 #include <linux/pruss_driver.h>
24 #include <linux/remoteproc.h>
26 #include "remoteproc_internal.h"
27 #include "remoteproc_elf_helpers.h"
28 #include "pru_rproc.h"
30 /* PRU_ICSS_PRU_CTRL registers */
31 #define PRU_CTRL_CTRL 0x0000
32 #define PRU_CTRL_STS 0x0004
33 #define PRU_CTRL_WAKEUP_EN 0x0008
34 #define PRU_CTRL_CYCLE 0x000C
35 #define PRU_CTRL_STALL 0x0010
36 #define PRU_CTRL_CTBIR0 0x0020
37 #define PRU_CTRL_CTBIR1 0x0024
38 #define PRU_CTRL_CTPPR0 0x0028
39 #define PRU_CTRL_CTPPR1 0x002C
41 /* CTRL register bit-fields */
42 #define CTRL_CTRL_SOFT_RST_N BIT(0)
43 #define CTRL_CTRL_EN BIT(1)
44 #define CTRL_CTRL_SLEEPING BIT(2)
45 #define CTRL_CTRL_CTR_EN BIT(3)
46 #define CTRL_CTRL_SINGLE_STEP BIT(8)
47 #define CTRL_CTRL_RUNSTATE BIT(15)
49 /* PRU_ICSS_PRU_DEBUG registers */
50 #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4)
51 #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4)
53 /* PRU/RTU/Tx_PRU Core IRAM address masks */
54 #define PRU_IRAM_ADDR_MASK 0x3ffff
55 #define PRU0_IRAM_ADDR_MASK 0x34000
56 #define PRU1_IRAM_ADDR_MASK 0x38000
57 #define RTU0_IRAM_ADDR_MASK 0x4000
58 #define RTU1_IRAM_ADDR_MASK 0x6000
59 #define TX_PRU0_IRAM_ADDR_MASK 0xa000
60 #define TX_PRU1_IRAM_ADDR_MASK 0xc000
62 /* PRU device addresses for various type of PRU RAMs */
63 #define PRU_IRAM_DA 0 /* Instruction RAM */
64 #define PRU_PDRAM_DA 0 /* Primary Data RAM */
65 #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */
66 #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */
68 #define MAX_PRU_SYS_EVENTS 160
71 * enum pru_iomem - PRU core memory/register range identifiers
73 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
74 * @PRU_IOMEM_CTRL: PRU Control register range
75 * @PRU_IOMEM_DEBUG: PRU Debug register range
76 * @PRU_IOMEM_MAX: just keep this one at the end
86 * struct pru_private_data - device data for a PRU core
87 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
88 * @is_k3: flag used to identify the need for special load handling
90 struct pru_private_data {
92 unsigned int is_k3 : 1;
96 * struct pru_rproc - PRU remoteproc structure
97 * @id: id of the PRU core within the PRUSS
98 * @dev: PRU core device pointer
99 * @pruss: back-reference to parent PRUSS structure
100 * @rproc: remoteproc pointer for this PRU core
101 * @data: PRU core specific data
102 * @mem_regions: data for each of the PRU memory regions
103 * @client_np: client device node
104 * @lock: mutex to protect client usage
105 * @fw_name: name of firmware image used during loading
106 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
107 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
108 * @pru_interrupt_map_sz: pru_interrupt_map size
109 * @rmw_lock: lock for read, modify, write operations on registers
110 * @dbg_single_step: debug state variable to set PRU into single step mode
111 * @dbg_continuous: debug state variable to restore PRU execution mode
112 * @evt_count: number of mapped events
113 * @gpmux_save: saved value for gpmux config
120 const struct pru_private_data *data;
121 struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
122 struct device_node *client_np;
125 unsigned int *mapped_irq;
126 struct pru_irq_rsc *pru_interrupt_map;
127 size_t pru_interrupt_map_sz;
135 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
137 return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
141 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
143 writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
147 void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg,
153 spin_lock_irqsave(&pru->rmw_lock, flags);
155 val = pru_control_read_reg(pru, reg);
158 pru_control_write_reg(pru, reg, val);
160 spin_unlock_irqrestore(&pru->rmw_lock, flags);
164 * pru_rproc_set_firmware() - set firmware for a PRU core
165 * @rproc: the rproc instance of the PRU
166 * @fw_name: the new firmware name, or NULL if default is desired
168 * Return: 0 on success, or errno in error case.
170 static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name)
172 struct pru_rproc *pru = rproc->priv;
175 fw_name = pru->fw_name;
177 return rproc_set_firmware(rproc, fw_name);
180 static struct rproc *__pru_rproc_get(struct device_node *np, int index)
183 phandle rproc_phandle;
186 ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
190 rproc = rproc_get_by_phandle(rproc_phandle);
196 /* make sure it is PRU rproc */
197 if (!is_pru_rproc(rproc->dev.parent)) {
199 return ERR_PTR(-ENODEV);
206 * pru_rproc_get() - get the PRU rproc instance from a device node
207 * @np: the user/client device node
208 * @index: index to use for the ti,prus property
209 * @pru_id: optional pointer to return the PRU remoteproc processor id
211 * This function looks through a client device node's "ti,prus" property at
212 * index @index and returns the rproc handle for a valid PRU remote processor if
213 * found. The function allows only one user to own the PRU rproc resource at a
214 * time. Caller must call pru_rproc_put() when done with using the rproc, not
215 * required if the function returns a failure.
217 * When optional @pru_id pointer is passed the PRU remoteproc processor id is
220 * Return: rproc handle on success, and an ERR_PTR on failure using one
221 * of the following error values
222 * -ENODEV if device is not found
223 * -EBUSY if PRU is already acquired by anyone
224 * -EPROBE_DEFER is PRU device is not probed yet
226 struct rproc *pru_rproc_get(struct device_node *np, int index,
227 enum pruss_pru_id *pru_id)
230 struct pru_rproc *pru;
236 rproc = __pru_rproc_get(np, index);
243 mutex_lock(&pru->lock);
245 if (pru->client_np) {
246 mutex_unlock(&pru->lock);
248 goto err_no_rproc_handle;
252 rproc->sysfs_read_only = true;
254 mutex_unlock(&pru->lock);
259 ret = pruss_cfg_get_gpmux(pru->pruss, pru->id, &pru->gpmux_save);
261 dev_err(dev, "failed to get cfg gpmux: %d\n", ret);
265 /* An error here is acceptable for backward compatibility */
266 ret = of_property_read_u32_index(np, "ti,pruss-gp-mux-sel", index,
269 ret = pruss_cfg_set_gpmux(pru->pruss, pru->id, mux);
271 dev_err(dev, "failed to set cfg gpmux: %d\n", ret);
276 ret = of_property_read_string_index(np, "firmware-name", index,
279 ret = pru_rproc_set_firmware(rproc, fw_name);
281 dev_err(dev, "failed to set firmware: %d\n", ret);
293 pru_rproc_put(rproc);
296 EXPORT_SYMBOL_GPL(pru_rproc_get);
299 * pru_rproc_put() - release the PRU rproc resource
300 * @rproc: the rproc resource to release
302 * Releases the PRU rproc resource and makes it available to other
305 void pru_rproc_put(struct rproc *rproc)
307 struct pru_rproc *pru;
309 if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
314 pruss_cfg_set_gpmux(pru->pruss, pru->id, pru->gpmux_save);
316 pru_rproc_set_firmware(rproc, NULL);
318 mutex_lock(&pru->lock);
320 if (!pru->client_np) {
321 mutex_unlock(&pru->lock);
325 pru->client_np = NULL;
326 rproc->sysfs_read_only = false;
327 mutex_unlock(&pru->lock);
331 EXPORT_SYMBOL_GPL(pru_rproc_put);
334 * pru_rproc_set_ctable() - set the constant table index for the PRU
335 * @rproc: the rproc instance of the PRU
336 * @c: constant table index to set
337 * @addr: physical address to set it to
339 * Return: 0 on success, or errno in error case.
341 int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr)
343 struct pru_rproc *pru = rproc->priv;
349 if (IS_ERR_OR_NULL(rproc))
352 if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent))
355 /* pointer is 16 bit and index is 8-bit so mask out the rest */
356 idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
358 /* ctable uses bit 8 and upwards only */
359 idx = (addr >> 8) & idx_mask;
361 /* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
362 reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
363 mask = idx_mask << (16 * (c & 1));
364 set = idx << (16 * (c & 1));
366 pru_control_set_reg(pru, reg, mask, set);
370 EXPORT_SYMBOL_GPL(pru_rproc_set_ctable);
372 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
374 return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
377 static int regs_show(struct seq_file *s, void *data)
379 struct rproc *rproc = s->private;
380 struct pru_rproc *pru = rproc->priv;
385 seq_puts(s, "============== Control Registers ==============\n");
386 seq_printf(s, "CTRL := 0x%08x\n",
387 pru_control_read_reg(pru, PRU_CTRL_CTRL));
388 pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
389 seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
390 seq_printf(s, "WAKEUP_EN := 0x%08x\n",
391 pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
392 seq_printf(s, "CYCLE := 0x%08x\n",
393 pru_control_read_reg(pru, PRU_CTRL_CYCLE));
394 seq_printf(s, "STALL := 0x%08x\n",
395 pru_control_read_reg(pru, PRU_CTRL_STALL));
396 seq_printf(s, "CTBIR0 := 0x%08x\n",
397 pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
398 seq_printf(s, "CTBIR1 := 0x%08x\n",
399 pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
400 seq_printf(s, "CTPPR0 := 0x%08x\n",
401 pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
402 seq_printf(s, "CTPPR1 := 0x%08x\n",
403 pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
405 seq_puts(s, "=============== Debug Registers ===============\n");
406 pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
408 if (pru_is_running) {
409 seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
413 for (i = 0; i < nregs; i++) {
414 seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
415 i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
416 i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
421 DEFINE_SHOW_ATTRIBUTE(regs);
424 * Control PRU single-step mode
426 * This is a debug helper function used for controlling the single-step
427 * mode of the PRU. The PRU Debug registers are not accessible when the
428 * PRU is in RUNNING state.
430 * Writing a non-zero value sets the PRU into single-step mode irrespective
431 * of its previous state. The PRU mode is saved only on the first set into
432 * a single-step mode. Writing a zero value will restore the PRU into its
435 static int pru_rproc_debug_ss_set(void *data, u64 val)
437 struct rproc *rproc = data;
438 struct pru_rproc *pru = rproc->priv;
442 if (!val && !pru->dbg_single_step)
445 reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
447 if (val && !pru->dbg_single_step)
448 pru->dbg_continuous = reg_val;
451 reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
453 reg_val = pru->dbg_continuous;
455 pru->dbg_single_step = val;
456 pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
461 static int pru_rproc_debug_ss_get(void *data, u64 *val)
463 struct rproc *rproc = data;
464 struct pru_rproc *pru = rproc->priv;
466 *val = pru->dbg_single_step;
470 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
471 pru_rproc_debug_ss_set, "%llu\n");
474 * Create PRU-specific debugfs entries
476 * The entries are created only if the parent remoteproc debugfs directory
477 * exists, and will be cleaned up by the remoteproc core.
479 static void pru_rproc_create_debug_entries(struct rproc *rproc)
484 debugfs_create_file("regs", 0400, rproc->dbg_dir,
486 debugfs_create_file("single_step", 0600, rproc->dbg_dir,
487 rproc, &pru_rproc_debug_ss_fops);
490 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
492 if (!pru->mapped_irq)
495 while (pru->evt_count) {
497 if (pru->mapped_irq[pru->evt_count] > 0)
498 irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
501 kfree(pru->mapped_irq);
502 pru->mapped_irq = NULL;
506 * Parse the custom PRU interrupt map resource and configure the INTC
509 static int pru_handle_intrmap(struct rproc *rproc)
511 struct device *dev = rproc->dev.parent;
512 struct pru_rproc *pru = rproc->priv;
513 struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
514 struct irq_fwspec fwspec;
515 struct device_node *parent, *irq_parent;
518 /* not having pru_interrupt_map is not an error */
522 /* currently supporting only type 0 */
523 if (rsc->type != 0) {
524 dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
528 if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
531 if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
532 pru->pru_interrupt_map_sz)
535 pru->evt_count = rsc->num_evts;
536 pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
538 if (!pru->mapped_irq) {
544 * parse and fill in system event to interrupt channel and
545 * channel-to-host mapping. The interrupt controller to be used
546 * for these mappings for a given PRU remoteproc is always its
547 * corresponding sibling PRUSS INTC node.
549 parent = of_get_parent(dev_of_node(pru->dev));
551 kfree(pru->mapped_irq);
552 pru->mapped_irq = NULL;
557 irq_parent = of_get_child_by_name(parent, "interrupt-controller");
560 kfree(pru->mapped_irq);
561 pru->mapped_irq = NULL;
566 fwspec.fwnode = of_node_to_fwnode(irq_parent);
567 fwspec.param_count = 3;
568 for (i = 0; i < pru->evt_count; i++) {
569 fwspec.param[0] = rsc->pru_intc_map[i].event;
570 fwspec.param[1] = rsc->pru_intc_map[i].chnl;
571 fwspec.param[2] = rsc->pru_intc_map[i].host;
573 dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
574 i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
576 pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
577 if (!pru->mapped_irq[i]) {
578 dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
579 i, fwspec.param[0], fwspec.param[1],
585 of_node_put(irq_parent);
590 pru_dispose_irq_mapping(pru);
591 of_node_put(irq_parent);
596 static int pru_rproc_start(struct rproc *rproc)
598 struct device *dev = &rproc->dev;
599 struct pru_rproc *pru = rproc->priv;
600 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
604 dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
605 names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
607 ret = pru_handle_intrmap(rproc);
609 * reset references to pru interrupt map - they will stop being valid
610 * after rproc_start returns
612 pru->pru_interrupt_map = NULL;
613 pru->pru_interrupt_map_sz = 0;
617 val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
618 pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
623 static int pru_rproc_stop(struct rproc *rproc)
625 struct device *dev = &rproc->dev;
626 struct pru_rproc *pru = rproc->priv;
627 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
630 dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
632 val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
633 val &= ~CTRL_CTRL_EN;
634 pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
636 /* dispose irq mapping - new firmware can provide new mapping */
637 pru_dispose_irq_mapping(pru);
643 * Convert PRU device address (data spaces only) to kernel virtual address.
645 * Each PRU has access to all data memories within the PRUSS, accessible at
646 * different ranges. So, look through both its primary and secondary Data
647 * RAMs as well as any shared Data RAM to convert a PRU device address to
648 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
649 * RAM1 is primary Data RAM for PRU1.
651 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
653 struct pruss_mem_region dram0, dram1, shrd_ram;
654 struct pruss *pruss = pru->pruss;
661 dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
662 dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
663 /* PRU1 has its local RAM addresses reversed */
664 if (pru->id == PRUSS_PRU1)
666 shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
668 if (da + len <= PRU_PDRAM_DA + dram0.size) {
669 offset = da - PRU_PDRAM_DA;
670 va = (__force void *)(dram0.va + offset);
671 } else if (da >= PRU_SDRAM_DA &&
672 da + len <= PRU_SDRAM_DA + dram1.size) {
673 offset = da - PRU_SDRAM_DA;
674 va = (__force void *)(dram1.va + offset);
675 } else if (da >= PRU_SHRDRAM_DA &&
676 da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
677 offset = da - PRU_SHRDRAM_DA;
678 va = (__force void *)(shrd_ram.va + offset);
685 * Convert PRU device address (instruction space) to kernel virtual address.
687 * A PRU does not have an unified address space. Each PRU has its very own
688 * private Instruction RAM, and its device address is identical to that of
689 * its primary Data RAM device address.
691 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
700 * GNU binutils do not support multiple address spaces. The GNU
701 * linker's default linker script places IRAM at an arbitrary high
702 * offset, in order to differentiate it from DRAM. Hence we need to
703 * strip the artificial offset in the IRAM addresses coming from the
706 * The TI proprietary linker would never set those higher IRAM address
707 * bits anyway. PRU architecture limits the program counter to 16-bit
708 * word-address range. This in turn corresponds to 18-bit IRAM
709 * byte-address range for ELF.
711 * Two more bits are added just in case to make the final 20-bit mask.
712 * Idea is to have a safeguard in case TI decides to add banking
717 if (da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
718 offset = da - PRU_IRAM_DA;
719 va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
727 * Provide address translations for only PRU Data RAMs through the remoteproc
728 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
729 * only to the PRU loader code.
731 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
733 struct pru_rproc *pru = rproc->priv;
735 return pru_d_da_to_va(pru, da, len);
738 /* PRU-specific address translator used by PRU loader. */
739 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
741 struct pru_rproc *pru = rproc->priv;
745 va = pru_i_da_to_va(pru, da, len);
747 va = pru_d_da_to_va(pru, da, len);
752 static struct rproc_ops pru_rproc_ops = {
753 .start = pru_rproc_start,
754 .stop = pru_rproc_stop,
755 .da_to_va = pru_rproc_da_to_va,
759 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
761 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
762 * memories, that is not seen on previous generation SoCs. The data is reflected
763 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
764 * copies result in all the other pre-existing bytes zeroed out within that
765 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
766 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
767 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
768 * ports do not show this behavior.
770 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
774 size_t size = count / 4;
778 * TODO: relax limitation of 4-byte aligned dest addresses and copy
781 if ((long)dest % 4 || count % 4)
784 /* src offsets in ELF firmware image can be non-aligned */
786 tmp_src = kmemdup(src, count, GFP_KERNEL);
801 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
803 struct pru_rproc *pru = rproc->priv;
804 struct device *dev = &rproc->dev;
805 struct elf32_hdr *ehdr;
806 struct elf32_phdr *phdr;
808 const u8 *elf_data = fw->data;
810 ehdr = (struct elf32_hdr *)elf_data;
811 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
813 /* go through the available ELF segments */
814 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
815 u32 da = phdr->p_paddr;
816 u32 memsz = phdr->p_memsz;
817 u32 filesz = phdr->p_filesz;
818 u32 offset = phdr->p_offset;
822 if (phdr->p_type != PT_LOAD || !filesz)
825 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
826 phdr->p_type, da, memsz, filesz);
828 if (filesz > memsz) {
829 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
835 if (offset + filesz > fw->size) {
836 dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
837 offset + filesz, fw->size);
842 /* grab the kernel address for this device address */
843 is_iram = phdr->p_flags & PF_X;
844 ptr = pru_da_to_va(rproc, da, memsz, is_iram);
846 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
851 if (pru->data->is_k3) {
852 ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
855 dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
860 memcpy(ptr, elf_data + phdr->p_offset, filesz);
863 /* skip the memzero logic performed by remoteproc ELF loader */
870 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
872 struct elf32_shdr *shdr, *name_table_shdr;
873 const char *name_table;
874 const u8 *elf_data = fw->data;
875 struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
876 u16 shnum = ehdr->e_shnum;
877 u16 shstrndx = ehdr->e_shstrndx;
880 /* first, get the section header */
881 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
882 /* compute name table section header entry in shdr array */
883 name_table_shdr = shdr + shstrndx;
884 /* finally, compute the name table section address in elf */
885 name_table = elf_data + name_table_shdr->sh_offset;
887 for (i = 0; i < shnum; i++, shdr++) {
888 u32 size = shdr->sh_size;
889 u32 offset = shdr->sh_offset;
890 u32 name = shdr->sh_name;
892 if (strcmp(name_table + name, ".pru_irq_map"))
895 /* make sure we have the entire irq map */
896 if (offset + size > fw->size || offset + size < size) {
897 dev_err(dev, ".pru_irq_map section truncated\n");
898 return ERR_PTR(-EINVAL);
901 /* make sure irq map has at least the header */
902 if (sizeof(struct pru_irq_rsc) > size) {
903 dev_err(dev, "header-less .pru_irq_map section\n");
904 return ERR_PTR(-EINVAL);
910 dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
916 * Use a custom parse_fw callback function for dealing with PRU firmware
919 * The firmware blob can contain optional ELF sections: .resource_table section
920 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
921 * description, which needs to be setup before powering on the PRU core. To
922 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
923 * firmware linker) and therefore is not loaded to PRU memory.
925 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
927 struct device *dev = &rproc->dev;
928 struct pru_rproc *pru = rproc->priv;
929 const u8 *elf_data = fw->data;
931 u8 class = fw_elf_get_class(fw);
935 /* load optional rsc table */
936 ret = rproc_elf_load_rsc_table(rproc, fw);
938 dev_dbg(&rproc->dev, "no resource table found for this fw\n");
942 /* find .pru_interrupt_map section, not having it is not an error */
943 shdr = pru_rproc_find_interrupt_map(dev, fw);
945 return PTR_ERR(shdr);
950 /* preserve pointer to PRU interrupt map together with it size */
951 sh_offset = elf_shdr_get_sh_offset(class, shdr);
952 pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
953 pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
959 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
960 * always at a particular offset within the PRUSS address space.
962 static int pru_rproc_set_id(struct pru_rproc *pru)
966 switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
967 case TX_PRU0_IRAM_ADDR_MASK:
969 case RTU0_IRAM_ADDR_MASK:
971 case PRU0_IRAM_ADDR_MASK:
972 pru->id = PRUSS_PRU0;
974 case TX_PRU1_IRAM_ADDR_MASK:
976 case RTU1_IRAM_ADDR_MASK:
978 case PRU1_IRAM_ADDR_MASK:
979 pru->id = PRUSS_PRU1;
988 static int pru_rproc_probe(struct platform_device *pdev)
990 struct device *dev = &pdev->dev;
991 struct device_node *np = dev->of_node;
992 struct platform_device *ppdev = to_platform_device(dev->parent);
993 struct pru_rproc *pru;
995 struct rproc *rproc = NULL;
996 struct resource *res;
998 const struct pru_private_data *data;
999 const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
1001 data = of_device_get_match_data(&pdev->dev);
1005 ret = of_property_read_string(np, "firmware-name", &fw_name);
1007 dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
1011 rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
1014 dev_err(dev, "rproc_alloc failed\n");
1017 /* use a custom load function to deal with PRU-specific quirks */
1018 rproc->ops->load = pru_rproc_load_elf_segments;
1020 /* use a custom parse function to deal with PRU-specific resources */
1021 rproc->ops->parse_fw = pru_rproc_parse_fw;
1023 /* error recovery is not supported for PRUs */
1024 rproc->recovery_disabled = true;
1027 * rproc_add will auto-boot the processor normally, but this is not
1028 * desired with PRU client driven boot-flow methodology. A PRU
1029 * application/client driver will boot the corresponding PRU
1030 * remote-processor as part of its state machine either through the
1031 * remoteproc sysfs interface or through the equivalent kernel API.
1033 rproc->auto_boot = false;
1038 pru->pruss = platform_get_drvdata(ppdev);
1040 pru->fw_name = fw_name;
1041 pru->client_np = NULL;
1042 spin_lock_init(&pru->rmw_lock);
1043 mutex_init(&pru->lock);
1045 for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
1046 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1048 pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
1049 if (IS_ERR(pru->mem_regions[i].va)) {
1050 dev_err(dev, "failed to parse and map memory resource %d %s\n",
1052 ret = PTR_ERR(pru->mem_regions[i].va);
1055 pru->mem_regions[i].pa = res->start;
1056 pru->mem_regions[i].size = resource_size(res);
1058 dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
1059 mem_names[i], &pru->mem_regions[i].pa,
1060 pru->mem_regions[i].size, pru->mem_regions[i].va);
1063 ret = pru_rproc_set_id(pru);
1067 platform_set_drvdata(pdev, rproc);
1069 ret = devm_rproc_add(dev, pru->rproc);
1071 dev_err(dev, "rproc_add failed: %d\n", ret);
1075 pru_rproc_create_debug_entries(rproc);
1077 dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
1082 static void pru_rproc_remove(struct platform_device *pdev)
1084 struct device *dev = &pdev->dev;
1085 struct rproc *rproc = platform_get_drvdata(pdev);
1087 dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
1090 static const struct pru_private_data pru_data = {
1091 .type = PRU_TYPE_PRU,
1094 static const struct pru_private_data k3_pru_data = {
1095 .type = PRU_TYPE_PRU,
1099 static const struct pru_private_data k3_rtu_data = {
1100 .type = PRU_TYPE_RTU,
1104 static const struct pru_private_data k3_tx_pru_data = {
1105 .type = PRU_TYPE_TX_PRU,
1109 static const struct of_device_id pru_rproc_match[] = {
1110 { .compatible = "ti,am3356-pru", .data = &pru_data },
1111 { .compatible = "ti,am4376-pru", .data = &pru_data },
1112 { .compatible = "ti,am5728-pru", .data = &pru_data },
1113 { .compatible = "ti,am642-pru", .data = &k3_pru_data },
1114 { .compatible = "ti,am642-rtu", .data = &k3_rtu_data },
1115 { .compatible = "ti,am642-tx-pru", .data = &k3_tx_pru_data },
1116 { .compatible = "ti,k2g-pru", .data = &pru_data },
1117 { .compatible = "ti,am654-pru", .data = &k3_pru_data },
1118 { .compatible = "ti,am654-rtu", .data = &k3_rtu_data },
1119 { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data },
1120 { .compatible = "ti,j721e-pru", .data = &k3_pru_data },
1121 { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data },
1122 { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data },
1123 { .compatible = "ti,am625-pru", .data = &k3_pru_data },
1126 MODULE_DEVICE_TABLE(of, pru_rproc_match);
1128 static struct platform_driver pru_rproc_driver = {
1130 .name = PRU_RPROC_DRVNAME,
1131 .of_match_table = pru_rproc_match,
1132 .suppress_bind_attrs = true,
1134 .probe = pru_rproc_probe,
1135 .remove_new = pru_rproc_remove,
1137 module_platform_driver(pru_rproc_driver);
1139 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1140 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
1141 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1142 MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
1143 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1144 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
1145 MODULE_LICENSE("GPL v2");