octeontx2-pf: consider both Rx and Tx packet stats for adaptive interrupt coalescing
[platform/kernel/linux-starfive.git] / drivers / regulator / qcom-labibb-regulator.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (c) 2020, The Linux Foundation. All rights reserved.
3
4 #include <linux/module.h>
5 #include <linux/of_irq.h>
6 #include <linux/of.h>
7 #include <linux/of_device.h>
8 #include <linux/platform_device.h>
9 #include <linux/regmap.h>
10 #include <linux/regulator/driver.h>
11 #include <linux/regulator/of_regulator.h>
12
13 #define REG_PERPH_TYPE                  0x04
14
15 #define QCOM_LAB_TYPE                   0x24
16 #define QCOM_IBB_TYPE                   0x20
17
18 #define PMI8998_LAB_REG_BASE            0xde00
19 #define PMI8998_IBB_REG_BASE            0xdc00
20 #define PMI8998_IBB_LAB_REG_OFFSET      0x200
21
22 #define REG_LABIBB_STATUS1              0x08
23  #define LABIBB_STATUS1_SC_BIT          BIT(6)
24  #define LABIBB_STATUS1_VREG_OK_BIT     BIT(7)
25
26 #define REG_LABIBB_INT_SET_TYPE         0x11
27 #define REG_LABIBB_INT_POLARITY_HIGH    0x12
28 #define REG_LABIBB_INT_POLARITY_LOW     0x13
29 #define REG_LABIBB_INT_LATCHED_CLR      0x14
30 #define REG_LABIBB_INT_EN_SET           0x15
31 #define REG_LABIBB_INT_EN_CLR           0x16
32  #define LABIBB_INT_VREG_OK             BIT(0)
33  #define LABIBB_INT_VREG_TYPE_LEVEL     0
34
35 #define REG_LABIBB_VOLTAGE              0x41
36  #define LABIBB_VOLTAGE_OVERRIDE_EN     BIT(7)
37  #define LAB_VOLTAGE_SET_MASK           GENMASK(3, 0)
38  #define IBB_VOLTAGE_SET_MASK           GENMASK(5, 0)
39
40 #define REG_LABIBB_ENABLE_CTL           0x46
41  #define LABIBB_CONTROL_ENABLE          BIT(7)
42
43 #define REG_LABIBB_PD_CTL               0x47
44  #define LAB_PD_CTL_MASK                GENMASK(1, 0)
45  #define IBB_PD_CTL_MASK                (BIT(0) | BIT(7))
46  #define LAB_PD_CTL_STRONG_PULL         BIT(0)
47  #define IBB_PD_CTL_HALF_STRENGTH       BIT(0)
48  #define IBB_PD_CTL_EN                  BIT(7)
49
50 #define REG_LABIBB_CURRENT_LIMIT        0x4b
51  #define LAB_CURRENT_LIMIT_MASK         GENMASK(2, 0)
52  #define IBB_CURRENT_LIMIT_MASK         GENMASK(4, 0)
53  #define LAB_CURRENT_LIMIT_OVERRIDE_EN  BIT(3)
54  #define LABIBB_CURRENT_LIMIT_EN        BIT(7)
55
56 #define REG_IBB_PWRUP_PWRDN_CTL_1       0x58
57  #define IBB_CTL_1_DISCHARGE_EN         BIT(2)
58
59 #define REG_LABIBB_SOFT_START_CTL       0x5f
60 #define REG_LABIBB_SEC_ACCESS           0xd0
61  #define LABIBB_SEC_UNLOCK_CODE         0xa5
62
63 #define LAB_ENABLE_CTL_MASK             BIT(7)
64 #define IBB_ENABLE_CTL_MASK             (BIT(7) | BIT(6))
65
66 #define LABIBB_OFF_ON_DELAY             1000
67 #define LAB_ENABLE_TIME                 (LABIBB_OFF_ON_DELAY * 2)
68 #define IBB_ENABLE_TIME                 (LABIBB_OFF_ON_DELAY * 10)
69 #define LABIBB_POLL_ENABLED_TIME        1000
70 #define OCP_RECOVERY_INTERVAL_MS        500
71 #define SC_RECOVERY_INTERVAL_MS         250
72 #define LABIBB_MAX_OCP_COUNT            4
73 #define LABIBB_MAX_SC_COUNT             3
74 #define LABIBB_MAX_FATAL_COUNT          2
75
76 struct labibb_current_limits {
77         u32                             uA_min;
78         u32                             uA_step;
79         u8                              ovr_val;
80 };
81
82 struct labibb_regulator {
83         struct regulator_desc           desc;
84         struct device                   *dev;
85         struct regmap                   *regmap;
86         struct regulator_dev            *rdev;
87         struct labibb_current_limits    uA_limits;
88         struct delayed_work             ocp_recovery_work;
89         struct delayed_work             sc_recovery_work;
90         u16                             base;
91         u8                              type;
92         u8                              dischg_sel;
93         u8                              soft_start_sel;
94         int                             sc_irq;
95         int                             sc_count;
96         int                             ocp_irq;
97         int                             ocp_irq_count;
98         int                             fatal_count;
99 };
100
101 struct labibb_regulator_data {
102         const char                      *name;
103         u8                              type;
104         u16                             base;
105         const struct regulator_desc     *desc;
106 };
107
108 static int qcom_labibb_ocp_hw_enable(struct regulator_dev *rdev)
109 {
110         struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
111         int ret;
112
113         /* Clear irq latch status to avoid spurious event */
114         ret = regmap_update_bits(rdev->regmap,
115                                  vreg->base + REG_LABIBB_INT_LATCHED_CLR,
116                                  LABIBB_INT_VREG_OK, 1);
117         if (ret)
118                 return ret;
119
120         /* Enable OCP HW interrupt */
121         return regmap_update_bits(rdev->regmap,
122                                   vreg->base + REG_LABIBB_INT_EN_SET,
123                                   LABIBB_INT_VREG_OK, 1);
124 }
125
126 static int qcom_labibb_ocp_hw_disable(struct regulator_dev *rdev)
127 {
128         struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
129
130         return regmap_update_bits(rdev->regmap,
131                                   vreg->base + REG_LABIBB_INT_EN_CLR,
132                                   LABIBB_INT_VREG_OK, 1);
133 }
134
135 /**
136  * qcom_labibb_check_ocp_status - Check the Over-Current Protection status
137  * @vreg: Main driver structure
138  *
139  * This function checks the STATUS1 register for the VREG_OK bit: if it is
140  * set, then there is no Over-Current event.
141  *
142  * Returns: Zero if there is no over-current, 1 if in over-current or
143  *          negative number for error
144  */
145 static int qcom_labibb_check_ocp_status(struct labibb_regulator *vreg)
146 {
147         u32 cur_status;
148         int ret;
149
150         ret = regmap_read(vreg->rdev->regmap, vreg->base + REG_LABIBB_STATUS1,
151                           &cur_status);
152         if (ret)
153                 return ret;
154
155         return !(cur_status & LABIBB_STATUS1_VREG_OK_BIT);
156 }
157
158 /**
159  * qcom_labibb_ocp_recovery_worker - Handle OCP event
160  * @work: OCP work structure
161  *
162  * This is the worker function to handle the Over Current Protection
163  * hardware event; This will check if the hardware is still
164  * signaling an over-current condition and will eventually stop
165  * the regulator if such condition is still signaled after
166  * LABIBB_MAX_OCP_COUNT times.
167  *
168  * If the driver that is consuming the regulator did not take action
169  * for the OCP condition, or the hardware did not stabilize, a cut
170  * of the LAB and IBB regulators will be forced (regulators will be
171  * disabled).
172  *
173  * As last, if the writes to shut down the LAB/IBB regulators fail
174  * for more than LABIBB_MAX_FATAL_COUNT, then a kernel panic will be
175  * triggered, as a last resort to protect the hardware from burning;
176  * this, however, is expected to never happen, but this is kept to
177  * try to further ensure that we protect the hardware at all costs.
178  */
179 static void qcom_labibb_ocp_recovery_worker(struct work_struct *work)
180 {
181         struct labibb_regulator *vreg;
182         const struct regulator_ops *ops;
183         int ret;
184
185         vreg = container_of(work, struct labibb_regulator,
186                             ocp_recovery_work.work);
187         ops = vreg->rdev->desc->ops;
188
189         if (vreg->ocp_irq_count >= LABIBB_MAX_OCP_COUNT) {
190                 /*
191                  * If we tried to disable the regulator multiple times but
192                  * we kept failing, there's only one last hope to save our
193                  * hardware from the death: raise a kernel bug, reboot and
194                  * hope that the bootloader kindly saves us. This, though
195                  * is done only as paranoid checking, because failing the
196                  * regmap write to disable the vreg is almost impossible,
197                  * since we got here after multiple regmap R/W.
198                  */
199                 BUG_ON(vreg->fatal_count > LABIBB_MAX_FATAL_COUNT);
200                 dev_err(&vreg->rdev->dev, "LABIBB: CRITICAL: Disabling regulator\n");
201
202                 /* Disable the regulator immediately to avoid damage */
203                 ret = ops->disable(vreg->rdev);
204                 if (ret) {
205                         vreg->fatal_count++;
206                         goto reschedule;
207                 }
208                 enable_irq(vreg->ocp_irq);
209                 vreg->fatal_count = 0;
210                 return;
211         }
212
213         ret = qcom_labibb_check_ocp_status(vreg);
214         if (ret != 0) {
215                 vreg->ocp_irq_count++;
216                 goto reschedule;
217         }
218
219         ret = qcom_labibb_ocp_hw_enable(vreg->rdev);
220         if (ret) {
221                 /* We cannot trust it without OCP enabled. */
222                 dev_err(vreg->dev, "Cannot enable OCP IRQ\n");
223                 vreg->ocp_irq_count++;
224                 goto reschedule;
225         }
226
227         enable_irq(vreg->ocp_irq);
228         /* Everything went fine: reset the OCP count! */
229         vreg->ocp_irq_count = 0;
230         return;
231
232 reschedule:
233         mod_delayed_work(system_wq, &vreg->ocp_recovery_work,
234                          msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
235 }
236
237 /**
238  * qcom_labibb_ocp_isr - Interrupt routine for OverCurrent Protection
239  * @irq:  Interrupt number
240  * @chip: Main driver structure
241  *
242  * Over Current Protection (OCP) will signal to the client driver
243  * that an over-current event has happened and then will schedule
244  * a recovery worker.
245  *
246  * Disabling and eventually re-enabling the regulator is expected
247  * to be done by the driver, as some hardware may be triggering an
248  * over-current condition only at first initialization or it may
249  * be expected only for a very brief amount of time, after which
250  * the attached hardware may be expected to stabilize its current
251  * draw.
252  *
253  * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
254  */
255 static irqreturn_t qcom_labibb_ocp_isr(int irq, void *chip)
256 {
257         struct labibb_regulator *vreg = chip;
258         const struct regulator_ops *ops = vreg->rdev->desc->ops;
259         int ret;
260
261         /* If the regulator is not enabled, this is a fake event */
262         if (!ops->is_enabled(vreg->rdev))
263                 return IRQ_HANDLED;
264
265         /* If we tried to recover for too many times it's not getting better */
266         if (vreg->ocp_irq_count > LABIBB_MAX_OCP_COUNT)
267                 return IRQ_NONE;
268
269         /*
270          * If we (unlikely) can't read this register, to prevent hardware
271          * damage at all costs, we assume that the overcurrent event was
272          * real; Moreover, if the status register is not signaling OCP,
273          * it was a spurious event, so it's all ok.
274          */
275         ret = qcom_labibb_check_ocp_status(vreg);
276         if (ret == 0) {
277                 vreg->ocp_irq_count = 0;
278                 goto end;
279         }
280         vreg->ocp_irq_count++;
281
282         /*
283          * Disable the interrupt temporarily, or it will fire continuously;
284          * we will re-enable it in the recovery worker function.
285          */
286         disable_irq_nosync(irq);
287
288         /* Warn the user for overcurrent */
289         dev_warn(vreg->dev, "Over-Current interrupt fired!\n");
290
291         /* Disable the interrupt to avoid hogging */
292         ret = qcom_labibb_ocp_hw_disable(vreg->rdev);
293         if (ret)
294                 goto end;
295
296         /* Signal overcurrent event to drivers */
297         regulator_notifier_call_chain(vreg->rdev,
298                                       REGULATOR_EVENT_OVER_CURRENT, NULL);
299
300 end:
301         /* Schedule the recovery work */
302         schedule_delayed_work(&vreg->ocp_recovery_work,
303                               msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
304         if (ret)
305                 return IRQ_NONE;
306
307         return IRQ_HANDLED;
308 }
309
310 static int qcom_labibb_set_ocp(struct regulator_dev *rdev, int lim,
311                                int severity, bool enable)
312 {
313         struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
314         char *ocp_irq_name;
315         u32 irq_flags = IRQF_ONESHOT;
316         int irq_trig_low, ret;
317
318         /*
319          * labibb supports only protection - and does not support setting
320          * limit. Furthermore, we don't support disabling protection.
321          */
322         if (lim || severity != REGULATOR_SEVERITY_PROT || !enable)
323                 return -EINVAL;
324
325         /* If there is no OCP interrupt, there's nothing to set */
326         if (vreg->ocp_irq <= 0)
327                 return -EINVAL;
328
329         ocp_irq_name = devm_kasprintf(vreg->dev, GFP_KERNEL, "%s-over-current",
330                                       vreg->desc.name);
331         if (!ocp_irq_name)
332                 return -ENOMEM;
333
334         /* IRQ polarities - LAB: trigger-low, IBB: trigger-high */
335         switch (vreg->type) {
336         case QCOM_LAB_TYPE:
337                 irq_flags |= IRQF_TRIGGER_LOW;
338                 irq_trig_low = 1;
339                 break;
340         case QCOM_IBB_TYPE:
341                 irq_flags |= IRQF_TRIGGER_HIGH;
342                 irq_trig_low = 0;
343                 break;
344         default:
345                 return -EINVAL;
346         }
347
348         /* Activate OCP HW level interrupt */
349         ret = regmap_update_bits(rdev->regmap,
350                                  vreg->base + REG_LABIBB_INT_SET_TYPE,
351                                  LABIBB_INT_VREG_OK,
352                                  LABIBB_INT_VREG_TYPE_LEVEL);
353         if (ret)
354                 return ret;
355
356         /* Set OCP interrupt polarity */
357         ret = regmap_update_bits(rdev->regmap,
358                                  vreg->base + REG_LABIBB_INT_POLARITY_HIGH,
359                                  LABIBB_INT_VREG_OK, !irq_trig_low);
360         if (ret)
361                 return ret;
362         ret = regmap_update_bits(rdev->regmap,
363                                  vreg->base + REG_LABIBB_INT_POLARITY_LOW,
364                                  LABIBB_INT_VREG_OK, irq_trig_low);
365         if (ret)
366                 return ret;
367
368         ret = qcom_labibb_ocp_hw_enable(rdev);
369         if (ret)
370                 return ret;
371
372         return devm_request_threaded_irq(vreg->dev, vreg->ocp_irq, NULL,
373                                          qcom_labibb_ocp_isr, irq_flags,
374                                          ocp_irq_name, vreg);
375 }
376
377 /**
378  * qcom_labibb_check_sc_status - Check the Short Circuit Protection status
379  * @vreg: Main driver structure
380  *
381  * This function checks the STATUS1 register on both LAB and IBB regulators
382  * for the ShortCircuit bit: if it is set on *any* of them, then we have
383  * experienced a short-circuit event.
384  *
385  * Returns: Zero if there is no short-circuit, 1 if in short-circuit or
386  *          negative number for error
387  */
388 static int qcom_labibb_check_sc_status(struct labibb_regulator *vreg)
389 {
390         u32 ibb_status, ibb_reg, lab_status, lab_reg;
391         int ret;
392
393         /* We have to work on both regulators due to PBS... */
394         lab_reg = ibb_reg = vreg->base + REG_LABIBB_STATUS1;
395         if (vreg->type == QCOM_LAB_TYPE)
396                 ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
397         else
398                 lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
399
400         ret = regmap_read(vreg->rdev->regmap, lab_reg, &lab_status);
401         if (ret)
402                 return ret;
403         ret = regmap_read(vreg->rdev->regmap, ibb_reg, &ibb_status);
404         if (ret)
405                 return ret;
406
407         return !!(lab_status & LABIBB_STATUS1_SC_BIT) ||
408                !!(ibb_status & LABIBB_STATUS1_SC_BIT);
409 }
410
411 /**
412  * qcom_labibb_sc_recovery_worker - Handle Short Circuit event
413  * @work: SC work structure
414  *
415  * This is the worker function to handle the Short Circuit Protection
416  * hardware event; This will check if the hardware is still
417  * signaling a short-circuit condition and will eventually never
418  * re-enable the regulator if such condition is still signaled after
419  * LABIBB_MAX_SC_COUNT times.
420  *
421  * If the driver that is consuming the regulator did not take action
422  * for the SC condition, or the hardware did not stabilize, this
423  * worker will stop rescheduling, leaving the regulators disabled
424  * as already done by the Portable Batch System (PBS).
425  *
426  * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
427  */
428 static void qcom_labibb_sc_recovery_worker(struct work_struct *work)
429 {
430         struct labibb_regulator *vreg;
431         const struct regulator_ops *ops;
432         u32 lab_reg, ibb_reg, lab_val, ibb_val, val;
433         bool pbs_cut = false;
434         int i, sc, ret;
435
436         vreg = container_of(work, struct labibb_regulator,
437                             sc_recovery_work.work);
438         ops = vreg->rdev->desc->ops;
439
440         /*
441          * If we tried to check the regulator status multiple times but we
442          * kept failing, then just bail out, as the Portable Batch System
443          * (PBS) will disable the vregs for us, preventing hardware damage.
444          */
445         if (vreg->fatal_count > LABIBB_MAX_FATAL_COUNT)
446                 return;
447
448         /* Too many short-circuit events. Throw in the towel. */
449         if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
450                 return;
451
452         /*
453          * The Portable Batch System (PBS) automatically disables LAB
454          * and IBB when a short-circuit event is detected, so we have to
455          * check and work on both of them at the same time.
456          */
457         lab_reg = ibb_reg = vreg->base + REG_LABIBB_ENABLE_CTL;
458         if (vreg->type == QCOM_LAB_TYPE)
459                 ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
460         else
461                 lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
462
463         sc = qcom_labibb_check_sc_status(vreg);
464         if (sc)
465                 goto reschedule;
466
467         for (i = 0; i < LABIBB_MAX_SC_COUNT; i++) {
468                 ret = regmap_read(vreg->regmap, lab_reg, &lab_val);
469                 if (ret) {
470                         vreg->fatal_count++;
471                         goto reschedule;
472                 }
473
474                 ret = regmap_read(vreg->regmap, ibb_reg, &ibb_val);
475                 if (ret) {
476                         vreg->fatal_count++;
477                         goto reschedule;
478                 }
479                 val = lab_val & ibb_val;
480
481                 if (!(val & LABIBB_CONTROL_ENABLE)) {
482                         pbs_cut = true;
483                         break;
484                 }
485                 usleep_range(5000, 6000);
486         }
487         if (pbs_cut)
488                 goto reschedule;
489
490
491         /*
492          * If we have reached this point, we either have successfully
493          * recovered from the SC condition or we had a spurious SC IRQ,
494          * which means that we can re-enable the regulators, if they
495          * have ever been disabled by the PBS.
496          */
497         ret = ops->enable(vreg->rdev);
498         if (ret)
499                 goto reschedule;
500
501         /* Everything went fine: reset the OCP count! */
502         vreg->sc_count = 0;
503         enable_irq(vreg->sc_irq);
504         return;
505
506 reschedule:
507         /*
508          * Now that we have done basic handling of the short-circuit,
509          * reschedule this worker in the regular system workqueue, as
510          * taking action is not truly urgent anymore.
511          */
512         vreg->sc_count++;
513         mod_delayed_work(system_wq, &vreg->sc_recovery_work,
514                          msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
515 }
516
517 /**
518  * qcom_labibb_sc_isr - Interrupt routine for Short Circuit Protection
519  * @irq:  Interrupt number
520  * @chip: Main driver structure
521  *
522  * Short Circuit Protection (SCP) will signal to the client driver
523  * that a regulation-out event has happened and then will schedule
524  * a recovery worker.
525  *
526  * The LAB and IBB regulators will be automatically disabled by the
527  * Portable Batch System (PBS) and they will be enabled again by
528  * the worker function if the hardware stops signaling the short
529  * circuit event.
530  *
531  * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
532  */
533 static irqreturn_t qcom_labibb_sc_isr(int irq, void *chip)
534 {
535         struct labibb_regulator *vreg = chip;
536
537         if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
538                 return IRQ_NONE;
539
540         /* Warn the user for short circuit */
541         dev_warn(vreg->dev, "Short-Circuit interrupt fired!\n");
542
543         /*
544          * Disable the interrupt temporarily, or it will fire continuously;
545          * we will re-enable it in the recovery worker function.
546          */
547         disable_irq_nosync(irq);
548
549         /* Signal out of regulation event to drivers */
550         regulator_notifier_call_chain(vreg->rdev,
551                                       REGULATOR_EVENT_REGULATION_OUT, NULL);
552
553         /* Schedule the short-circuit handling as high-priority work */
554         mod_delayed_work(system_highpri_wq, &vreg->sc_recovery_work,
555                          msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
556         return IRQ_HANDLED;
557 }
558
559
560 static int qcom_labibb_set_current_limit(struct regulator_dev *rdev,
561                                          int min_uA, int max_uA)
562 {
563         struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
564         struct regulator_desc *desc = &vreg->desc;
565         struct labibb_current_limits *lim = &vreg->uA_limits;
566         u32 mask, val;
567         int i, ret, sel = -1;
568
569         if (min_uA < lim->uA_min || max_uA < lim->uA_min)
570                 return -EINVAL;
571
572         for (i = 0; i < desc->n_current_limits; i++) {
573                 int uA_limit = (lim->uA_step * i) + lim->uA_min;
574
575                 if (max_uA >= uA_limit && min_uA <= uA_limit)
576                         sel = i;
577         }
578         if (sel < 0)
579                 return -EINVAL;
580
581         /* Current limit setting needs secure access */
582         ret = regmap_write(vreg->regmap, vreg->base + REG_LABIBB_SEC_ACCESS,
583                            LABIBB_SEC_UNLOCK_CODE);
584         if (ret)
585                 return ret;
586
587         mask = desc->csel_mask | lim->ovr_val;
588         mask |= LABIBB_CURRENT_LIMIT_EN;
589         val = (u32)sel | lim->ovr_val;
590         val |= LABIBB_CURRENT_LIMIT_EN;
591
592         return regmap_update_bits(vreg->regmap, desc->csel_reg, mask, val);
593 }
594
595 static int qcom_labibb_get_current_limit(struct regulator_dev *rdev)
596 {
597         struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
598         struct regulator_desc *desc = &vreg->desc;
599         struct labibb_current_limits *lim = &vreg->uA_limits;
600         unsigned int cur_step;
601         int ret;
602
603         ret = regmap_read(vreg->regmap, desc->csel_reg, &cur_step);
604         if (ret)
605                 return ret;
606         cur_step &= desc->csel_mask;
607
608         return (cur_step * lim->uA_step) + lim->uA_min;
609 }
610
611 static int qcom_labibb_set_soft_start(struct regulator_dev *rdev)
612 {
613         struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
614         u32 val = 0;
615
616         if (vreg->type == QCOM_IBB_TYPE)
617                 val = vreg->dischg_sel;
618         else
619                 val = vreg->soft_start_sel;
620
621         return regmap_write(rdev->regmap, rdev->desc->soft_start_reg, val);
622 }
623
624 static int qcom_labibb_get_table_sel(const int *table, int sz, u32 value)
625 {
626         int i;
627
628         for (i = 0; i < sz; i++)
629                 if (table[i] == value)
630                         return i;
631         return -EINVAL;
632 }
633
634 /* IBB discharge resistor values in KOhms */
635 static const int dischg_resistor_values[] = { 300, 64, 32, 16 };
636
637 /* Soft start time in microseconds */
638 static const int soft_start_values[] = { 200, 400, 600, 800 };
639
640 static int qcom_labibb_of_parse_cb(struct device_node *np,
641                                    const struct regulator_desc *desc,
642                                    struct regulator_config *config)
643 {
644         struct labibb_regulator *vreg = config->driver_data;
645         u32 dischg_kohms, soft_start_time;
646         int ret;
647
648         ret = of_property_read_u32(np, "qcom,discharge-resistor-kohms",
649                                        &dischg_kohms);
650         if (ret)
651                 dischg_kohms = 300;
652
653         ret = qcom_labibb_get_table_sel(dischg_resistor_values,
654                                         ARRAY_SIZE(dischg_resistor_values),
655                                         dischg_kohms);
656         if (ret < 0)
657                 return ret;
658         vreg->dischg_sel = (u8)ret;
659
660         ret = of_property_read_u32(np, "qcom,soft-start-us",
661                                    &soft_start_time);
662         if (ret)
663                 soft_start_time = 200;
664
665         ret = qcom_labibb_get_table_sel(soft_start_values,
666                                         ARRAY_SIZE(soft_start_values),
667                                         soft_start_time);
668         if (ret < 0)
669                 return ret;
670         vreg->soft_start_sel = (u8)ret;
671
672         return 0;
673 }
674
675 static const struct regulator_ops qcom_labibb_ops = {
676         .enable                 = regulator_enable_regmap,
677         .disable                = regulator_disable_regmap,
678         .is_enabled             = regulator_is_enabled_regmap,
679         .set_voltage_sel        = regulator_set_voltage_sel_regmap,
680         .get_voltage_sel        = regulator_get_voltage_sel_regmap,
681         .list_voltage           = regulator_list_voltage_linear,
682         .map_voltage            = regulator_map_voltage_linear,
683         .set_active_discharge   = regulator_set_active_discharge_regmap,
684         .set_pull_down          = regulator_set_pull_down_regmap,
685         .set_current_limit      = qcom_labibb_set_current_limit,
686         .get_current_limit      = qcom_labibb_get_current_limit,
687         .set_soft_start         = qcom_labibb_set_soft_start,
688         .set_over_current_protection = qcom_labibb_set_ocp,
689 };
690
691 static const struct regulator_desc pmi8998_lab_desc = {
692         .enable_mask            = LAB_ENABLE_CTL_MASK,
693         .enable_reg             = (PMI8998_LAB_REG_BASE + REG_LABIBB_ENABLE_CTL),
694         .enable_val             = LABIBB_CONTROL_ENABLE,
695         .enable_time            = LAB_ENABLE_TIME,
696         .poll_enabled_time      = LABIBB_POLL_ENABLED_TIME,
697         .soft_start_reg         = (PMI8998_LAB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
698         .pull_down_reg          = (PMI8998_LAB_REG_BASE + REG_LABIBB_PD_CTL),
699         .pull_down_mask         = LAB_PD_CTL_MASK,
700         .pull_down_val_on       = LAB_PD_CTL_STRONG_PULL,
701         .vsel_reg               = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
702         .vsel_mask              = LAB_VOLTAGE_SET_MASK,
703         .apply_reg              = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
704         .apply_bit              = LABIBB_VOLTAGE_OVERRIDE_EN,
705         .csel_reg               = (PMI8998_LAB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
706         .csel_mask              = LAB_CURRENT_LIMIT_MASK,
707         .n_current_limits       = 8,
708         .off_on_delay           = LABIBB_OFF_ON_DELAY,
709         .owner                  = THIS_MODULE,
710         .type                   = REGULATOR_VOLTAGE,
711         .min_uV                 = 4600000,
712         .uV_step                = 100000,
713         .n_voltages             = 16,
714         .ops                    = &qcom_labibb_ops,
715         .of_parse_cb            = qcom_labibb_of_parse_cb,
716 };
717
718 static const struct regulator_desc pmi8998_ibb_desc = {
719         .enable_mask            = IBB_ENABLE_CTL_MASK,
720         .enable_reg             = (PMI8998_IBB_REG_BASE + REG_LABIBB_ENABLE_CTL),
721         .enable_val             = LABIBB_CONTROL_ENABLE,
722         .enable_time            = IBB_ENABLE_TIME,
723         .poll_enabled_time      = LABIBB_POLL_ENABLED_TIME,
724         .soft_start_reg         = (PMI8998_IBB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
725         .active_discharge_off   = 0,
726         .active_discharge_on    = IBB_CTL_1_DISCHARGE_EN,
727         .active_discharge_mask  = IBB_CTL_1_DISCHARGE_EN,
728         .active_discharge_reg   = (PMI8998_IBB_REG_BASE + REG_IBB_PWRUP_PWRDN_CTL_1),
729         .pull_down_reg          = (PMI8998_IBB_REG_BASE + REG_LABIBB_PD_CTL),
730         .pull_down_mask         = IBB_PD_CTL_MASK,
731         .pull_down_val_on       = IBB_PD_CTL_HALF_STRENGTH | IBB_PD_CTL_EN,
732         .vsel_reg               = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
733         .vsel_mask              = IBB_VOLTAGE_SET_MASK,
734         .apply_reg              = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
735         .apply_bit              = LABIBB_VOLTAGE_OVERRIDE_EN,
736         .csel_reg               = (PMI8998_IBB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
737         .csel_mask              = IBB_CURRENT_LIMIT_MASK,
738         .n_current_limits       = 32,
739         .off_on_delay           = LABIBB_OFF_ON_DELAY,
740         .owner                  = THIS_MODULE,
741         .type                   = REGULATOR_VOLTAGE,
742         .min_uV                 = 1400000,
743         .uV_step                = 100000,
744         .n_voltages             = 64,
745         .ops                    = &qcom_labibb_ops,
746         .of_parse_cb            = qcom_labibb_of_parse_cb,
747 };
748
749 static const struct labibb_regulator_data pmi8998_labibb_data[] = {
750         {"lab", QCOM_LAB_TYPE, PMI8998_LAB_REG_BASE, &pmi8998_lab_desc},
751         {"ibb", QCOM_IBB_TYPE, PMI8998_IBB_REG_BASE, &pmi8998_ibb_desc},
752         { },
753 };
754
755 static const struct of_device_id qcom_labibb_match[] = {
756         { .compatible = "qcom,pmi8998-lab-ibb", .data = &pmi8998_labibb_data},
757         { },
758 };
759 MODULE_DEVICE_TABLE(of, qcom_labibb_match);
760
761 static int qcom_labibb_regulator_probe(struct platform_device *pdev)
762 {
763         struct labibb_regulator *vreg;
764         struct device *dev = &pdev->dev;
765         struct regulator_config cfg = {};
766         struct device_node *reg_node;
767         const struct of_device_id *match;
768         const struct labibb_regulator_data *reg_data;
769         struct regmap *reg_regmap;
770         unsigned int type;
771         int ret;
772
773         reg_regmap = dev_get_regmap(pdev->dev.parent, NULL);
774         if (!reg_regmap) {
775                 dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
776                 return -ENODEV;
777         }
778
779         match = of_match_device(qcom_labibb_match, &pdev->dev);
780         if (!match)
781                 return -ENODEV;
782
783         for (reg_data = match->data; reg_data->name; reg_data++) {
784                 char *sc_irq_name;
785                 int irq = 0;
786
787                 /* Validate if the type of regulator is indeed
788                  * what's mentioned in DT.
789                  */
790                 ret = regmap_read(reg_regmap, reg_data->base + REG_PERPH_TYPE,
791                                   &type);
792                 if (ret < 0) {
793                         dev_err(dev,
794                                 "Peripheral type read failed ret=%d\n",
795                                 ret);
796                         return -EINVAL;
797                 }
798
799                 if (WARN_ON((type != QCOM_LAB_TYPE) && (type != QCOM_IBB_TYPE)) ||
800                     WARN_ON(type != reg_data->type))
801                         return -EINVAL;
802
803                 vreg  = devm_kzalloc(&pdev->dev, sizeof(*vreg),
804                                            GFP_KERNEL);
805                 if (!vreg)
806                         return -ENOMEM;
807
808                 sc_irq_name = devm_kasprintf(dev, GFP_KERNEL,
809                                              "%s-short-circuit",
810                                              reg_data->name);
811                 if (!sc_irq_name)
812                         return -ENOMEM;
813
814                 reg_node = of_get_child_by_name(pdev->dev.of_node,
815                                                 reg_data->name);
816                 if (!reg_node)
817                         return -EINVAL;
818
819                 /* The Short Circuit interrupt is critical */
820                 irq = of_irq_get_byname(reg_node, "sc-err");
821                 if (irq <= 0) {
822                         if (irq == 0)
823                                 irq = -EINVAL;
824
825                         of_node_put(reg_node);
826                         return dev_err_probe(vreg->dev, irq,
827                                              "Short-circuit irq not found.\n");
828                 }
829                 vreg->sc_irq = irq;
830
831                 /* OverCurrent Protection IRQ is optional */
832                 irq = of_irq_get_byname(reg_node, "ocp");
833                 vreg->ocp_irq = irq;
834                 vreg->ocp_irq_count = 0;
835                 of_node_put(reg_node);
836
837                 vreg->regmap = reg_regmap;
838                 vreg->dev = dev;
839                 vreg->base = reg_data->base;
840                 vreg->type = reg_data->type;
841                 INIT_DELAYED_WORK(&vreg->sc_recovery_work,
842                                   qcom_labibb_sc_recovery_worker);
843
844                 if (vreg->ocp_irq > 0)
845                         INIT_DELAYED_WORK(&vreg->ocp_recovery_work,
846                                           qcom_labibb_ocp_recovery_worker);
847
848                 switch (vreg->type) {
849                 case QCOM_LAB_TYPE:
850                         /* LAB Limits: 200-1600mA */
851                         vreg->uA_limits.uA_min  = 200000;
852                         vreg->uA_limits.uA_step = 200000;
853                         vreg->uA_limits.ovr_val = LAB_CURRENT_LIMIT_OVERRIDE_EN;
854                         break;
855                 case QCOM_IBB_TYPE:
856                         /* IBB Limits: 0-1550mA */
857                         vreg->uA_limits.uA_min  = 0;
858                         vreg->uA_limits.uA_step = 50000;
859                         vreg->uA_limits.ovr_val = 0; /* No override bit */
860                         break;
861                 default:
862                         return -EINVAL;
863                 }
864
865                 memcpy(&vreg->desc, reg_data->desc, sizeof(vreg->desc));
866                 vreg->desc.of_match = reg_data->name;
867                 vreg->desc.name = reg_data->name;
868
869                 cfg.dev = vreg->dev;
870                 cfg.driver_data = vreg;
871                 cfg.regmap = vreg->regmap;
872
873                 vreg->rdev = devm_regulator_register(vreg->dev, &vreg->desc,
874                                                         &cfg);
875
876                 if (IS_ERR(vreg->rdev)) {
877                         dev_err(dev, "qcom_labibb: error registering %s : %d\n",
878                                         reg_data->name, ret);
879                         return PTR_ERR(vreg->rdev);
880                 }
881
882                 ret = devm_request_threaded_irq(vreg->dev, vreg->sc_irq, NULL,
883                                                 qcom_labibb_sc_isr,
884                                                 IRQF_ONESHOT |
885                                                 IRQF_TRIGGER_RISING,
886                                                 sc_irq_name, vreg);
887                 if (ret)
888                         return ret;
889         }
890
891         return 0;
892 }
893
894 static struct platform_driver qcom_labibb_regulator_driver = {
895         .driver = {
896                 .name = "qcom-lab-ibb-regulator",
897                 .of_match_table = qcom_labibb_match,
898         },
899         .probe = qcom_labibb_regulator_probe,
900 };
901 module_platform_driver(qcom_labibb_regulator_driver);
902
903 MODULE_DESCRIPTION("Qualcomm labibb driver");
904 MODULE_AUTHOR("Nisha Kumari <nishakumari@codeaurora.org>");
905 MODULE_AUTHOR("Sumit Semwal <sumit.semwal@linaro.org>");
906 MODULE_LICENSE("GPL v2");