Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[profile/ivi/kernel-x86-ivi.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124         return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 static int machine_constraints_current(struct regulator_dev *rdev,
927         struct regulation_constraints *constraints)
928 {
929         struct regulator_ops *ops = rdev->desc->ops;
930         int ret;
931
932         if (!constraints->min_uA && !constraints->max_uA)
933                 return 0;
934
935         if (constraints->min_uA > constraints->max_uA) {
936                 rdev_err(rdev, "Invalid current constraints\n");
937                 return -EINVAL;
938         }
939
940         if (!ops->set_current_limit || !ops->get_current_limit) {
941                 rdev_warn(rdev, "Operation of current configuration missing\n");
942                 return 0;
943         }
944
945         /* Set regulator current in constraints range */
946         ret = ops->set_current_limit(rdev, constraints->min_uA,
947                         constraints->max_uA);
948         if (ret < 0) {
949                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950                 return ret;
951         }
952
953         return 0;
954 }
955
956 static int _regulator_do_enable(struct regulator_dev *rdev);
957
958 /**
959  * set_machine_constraints - sets regulator constraints
960  * @rdev: regulator source
961  * @constraints: constraints to apply
962  *
963  * Allows platform initialisation code to define and constrain
964  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
965  * Constraints *must* be set by platform code in order for some
966  * regulator operations to proceed i.e. set_voltage, set_current_limit,
967  * set_mode.
968  */
969 static int set_machine_constraints(struct regulator_dev *rdev,
970         const struct regulation_constraints *constraints)
971 {
972         int ret = 0;
973         struct regulator_ops *ops = rdev->desc->ops;
974
975         if (constraints)
976                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977                                             GFP_KERNEL);
978         else
979                 rdev->constraints = kzalloc(sizeof(*constraints),
980                                             GFP_KERNEL);
981         if (!rdev->constraints)
982                 return -ENOMEM;
983
984         ret = machine_constraints_voltage(rdev, rdev->constraints);
985         if (ret != 0)
986                 goto out;
987
988         ret = machine_constraints_current(rdev, rdev->constraints);
989         if (ret != 0)
990                 goto out;
991
992         /* do we need to setup our suspend state */
993         if (rdev->constraints->initial_state) {
994                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995                 if (ret < 0) {
996                         rdev_err(rdev, "failed to set suspend state\n");
997                         goto out;
998                 }
999         }
1000
1001         if (rdev->constraints->initial_mode) {
1002                 if (!ops->set_mode) {
1003                         rdev_err(rdev, "no set_mode operation\n");
1004                         ret = -EINVAL;
1005                         goto out;
1006                 }
1007
1008                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009                 if (ret < 0) {
1010                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011                         goto out;
1012                 }
1013         }
1014
1015         /* If the constraints say the regulator should be on at this point
1016          * and we have control then make sure it is enabled.
1017          */
1018         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019                 ret = _regulator_do_enable(rdev);
1020                 if (ret < 0 && ret != -EINVAL) {
1021                         rdev_err(rdev, "failed to enable\n");
1022                         goto out;
1023                 }
1024         }
1025
1026         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027                 && ops->set_ramp_delay) {
1028                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029                 if (ret < 0) {
1030                         rdev_err(rdev, "failed to set ramp_delay\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         print_constraints(rdev);
1036         return 0;
1037 out:
1038         kfree(rdev->constraints);
1039         rdev->constraints = NULL;
1040         return ret;
1041 }
1042
1043 /**
1044  * set_supply - set regulator supply regulator
1045  * @rdev: regulator name
1046  * @supply_rdev: supply regulator name
1047  *
1048  * Called by platform initialisation code to set the supply regulator for this
1049  * regulator. This ensures that a regulators supply will also be enabled by the
1050  * core if it's child is enabled.
1051  */
1052 static int set_supply(struct regulator_dev *rdev,
1053                       struct regulator_dev *supply_rdev)
1054 {
1055         int err;
1056
1057         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060         if (rdev->supply == NULL) {
1061                 err = -ENOMEM;
1062                 return err;
1063         }
1064         supply_rdev->open_count++;
1065
1066         return 0;
1067 }
1068
1069 /**
1070  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071  * @rdev:         regulator source
1072  * @consumer_dev_name: dev_name() string for device supply applies to
1073  * @supply:       symbolic name for supply
1074  *
1075  * Allows platform initialisation code to map physical regulator
1076  * sources to symbolic names for supplies for use by devices.  Devices
1077  * should use these symbolic names to request regulators, avoiding the
1078  * need to provide board-specific regulator names as platform data.
1079  */
1080 static int set_consumer_device_supply(struct regulator_dev *rdev,
1081                                       const char *consumer_dev_name,
1082                                       const char *supply)
1083 {
1084         struct regulator_map *node;
1085         int has_dev;
1086
1087         if (supply == NULL)
1088                 return -EINVAL;
1089
1090         if (consumer_dev_name != NULL)
1091                 has_dev = 1;
1092         else
1093                 has_dev = 0;
1094
1095         list_for_each_entry(node, &regulator_map_list, list) {
1096                 if (node->dev_name && consumer_dev_name) {
1097                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098                                 continue;
1099                 } else if (node->dev_name || consumer_dev_name) {
1100                         continue;
1101                 }
1102
1103                 if (strcmp(node->supply, supply) != 0)
1104                         continue;
1105
1106                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107                          consumer_dev_name,
1108                          dev_name(&node->regulator->dev),
1109                          node->regulator->desc->name,
1110                          supply,
1111                          dev_name(&rdev->dev), rdev_get_name(rdev));
1112                 return -EBUSY;
1113         }
1114
1115         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116         if (node == NULL)
1117                 return -ENOMEM;
1118
1119         node->regulator = rdev;
1120         node->supply = supply;
1121
1122         if (has_dev) {
1123                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124                 if (node->dev_name == NULL) {
1125                         kfree(node);
1126                         return -ENOMEM;
1127                 }
1128         }
1129
1130         list_add(&node->list, &regulator_map_list);
1131         return 0;
1132 }
1133
1134 static void unset_regulator_supplies(struct regulator_dev *rdev)
1135 {
1136         struct regulator_map *node, *n;
1137
1138         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139                 if (rdev == node->regulator) {
1140                         list_del(&node->list);
1141                         kfree(node->dev_name);
1142                         kfree(node);
1143                 }
1144         }
1145 }
1146
1147 #define REG_STR_SIZE    64
1148
1149 static struct regulator *create_regulator(struct regulator_dev *rdev,
1150                                           struct device *dev,
1151                                           const char *supply_name)
1152 {
1153         struct regulator *regulator;
1154         char buf[REG_STR_SIZE];
1155         int err, size;
1156
1157         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158         if (regulator == NULL)
1159                 return NULL;
1160
1161         mutex_lock(&rdev->mutex);
1162         regulator->rdev = rdev;
1163         list_add(&regulator->list, &rdev->consumer_list);
1164
1165         if (dev) {
1166                 regulator->dev = dev;
1167
1168                 /* Add a link to the device sysfs entry */
1169                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170                                  dev->kobj.name, supply_name);
1171                 if (size >= REG_STR_SIZE)
1172                         goto overflow_err;
1173
1174                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175                 if (regulator->supply_name == NULL)
1176                         goto overflow_err;
1177
1178                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179                                         buf);
1180                 if (err) {
1181                         rdev_warn(rdev, "could not add device link %s err %d\n",
1182                                   dev->kobj.name, err);
1183                         /* non-fatal */
1184                 }
1185         } else {
1186                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187                 if (regulator->supply_name == NULL)
1188                         goto overflow_err;
1189         }
1190
1191         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192                                                 rdev->debugfs);
1193         if (!regulator->debugfs) {
1194                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1195         } else {
1196                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197                                    &regulator->uA_load);
1198                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199                                    &regulator->min_uV);
1200                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201                                    &regulator->max_uV);
1202         }
1203
1204         /*
1205          * Check now if the regulator is an always on regulator - if
1206          * it is then we don't need to do nearly so much work for
1207          * enable/disable calls.
1208          */
1209         if (!_regulator_can_change_status(rdev) &&
1210             _regulator_is_enabled(rdev))
1211                 regulator->always_on = true;
1212
1213         mutex_unlock(&rdev->mutex);
1214         return regulator;
1215 overflow_err:
1216         list_del(&regulator->list);
1217         kfree(regulator);
1218         mutex_unlock(&rdev->mutex);
1219         return NULL;
1220 }
1221
1222 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223 {
1224         if (rdev->constraints && rdev->constraints->enable_time)
1225                 return rdev->constraints->enable_time;
1226         if (!rdev->desc->ops->enable_time)
1227                 return rdev->desc->enable_time;
1228         return rdev->desc->ops->enable_time(rdev);
1229 }
1230
1231 static struct regulator_supply_alias *regulator_find_supply_alias(
1232                 struct device *dev, const char *supply)
1233 {
1234         struct regulator_supply_alias *map;
1235
1236         list_for_each_entry(map, &regulator_supply_alias_list, list)
1237                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238                         return map;
1239
1240         return NULL;
1241 }
1242
1243 static void regulator_supply_alias(struct device **dev, const char **supply)
1244 {
1245         struct regulator_supply_alias *map;
1246
1247         map = regulator_find_supply_alias(*dev, *supply);
1248         if (map) {
1249                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250                                 *supply, map->alias_supply,
1251                                 dev_name(map->alias_dev));
1252                 *dev = map->alias_dev;
1253                 *supply = map->alias_supply;
1254         }
1255 }
1256
1257 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258                                                   const char *supply,
1259                                                   int *ret)
1260 {
1261         struct regulator_dev *r;
1262         struct device_node *node;
1263         struct regulator_map *map;
1264         const char *devname = NULL;
1265
1266         regulator_supply_alias(&dev, &supply);
1267
1268         /* first do a dt based lookup */
1269         if (dev && dev->of_node) {
1270                 node = of_get_regulator(dev, supply);
1271                 if (node) {
1272                         list_for_each_entry(r, &regulator_list, list)
1273                                 if (r->dev.parent &&
1274                                         node == r->dev.of_node)
1275                                         return r;
1276                         *ret = -EPROBE_DEFER;
1277                         return NULL;
1278                 } else {
1279                         /*
1280                          * If we couldn't even get the node then it's
1281                          * not just that the device didn't register
1282                          * yet, there's no node and we'll never
1283                          * succeed.
1284                          */
1285                         *ret = -ENODEV;
1286                 }
1287         }
1288
1289         /* if not found, try doing it non-dt way */
1290         if (dev)
1291                 devname = dev_name(dev);
1292
1293         list_for_each_entry(r, &regulator_list, list)
1294                 if (strcmp(rdev_get_name(r), supply) == 0)
1295                         return r;
1296
1297         list_for_each_entry(map, &regulator_map_list, list) {
1298                 /* If the mapping has a device set up it must match */
1299                 if (map->dev_name &&
1300                     (!devname || strcmp(map->dev_name, devname)))
1301                         continue;
1302
1303                 if (strcmp(map->supply, supply) == 0)
1304                         return map->regulator;
1305         }
1306
1307
1308         return NULL;
1309 }
1310
1311 /* Internal regulator request function */
1312 static struct regulator *_regulator_get(struct device *dev, const char *id,
1313                                         bool exclusive, bool allow_dummy)
1314 {
1315         struct regulator_dev *rdev;
1316         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317         const char *devname = NULL;
1318         int ret;
1319
1320         if (id == NULL) {
1321                 pr_err("get() with no identifier\n");
1322                 return ERR_PTR(-EINVAL);
1323         }
1324
1325         if (dev)
1326                 devname = dev_name(dev);
1327
1328         if (have_full_constraints())
1329                 ret = -ENODEV;
1330         else
1331                 ret = -EPROBE_DEFER;
1332
1333         mutex_lock(&regulator_list_mutex);
1334
1335         rdev = regulator_dev_lookup(dev, id, &ret);
1336         if (rdev)
1337                 goto found;
1338
1339         regulator = ERR_PTR(ret);
1340
1341         /*
1342          * If we have return value from dev_lookup fail, we do not expect to
1343          * succeed, so, quit with appropriate error value
1344          */
1345         if (ret && ret != -ENODEV)
1346                 goto out;
1347
1348         if (!devname)
1349                 devname = "deviceless";
1350
1351         /*
1352          * Assume that a regulator is physically present and enabled
1353          * even if it isn't hooked up and just provide a dummy.
1354          */
1355         if (have_full_constraints() && allow_dummy) {
1356                 pr_warn("%s supply %s not found, using dummy regulator\n",
1357                         devname, id);
1358
1359                 rdev = dummy_regulator_rdev;
1360                 goto found;
1361         /* Don't log an error when called from regulator_get_optional() */
1362         } else if (!have_full_constraints() || exclusive) {
1363                 dev_warn(dev, "dummy supplies not allowed\n");
1364         }
1365
1366         mutex_unlock(&regulator_list_mutex);
1367         return regulator;
1368
1369 found:
1370         if (rdev->exclusive) {
1371                 regulator = ERR_PTR(-EPERM);
1372                 goto out;
1373         }
1374
1375         if (exclusive && rdev->open_count) {
1376                 regulator = ERR_PTR(-EBUSY);
1377                 goto out;
1378         }
1379
1380         if (!try_module_get(rdev->owner))
1381                 goto out;
1382
1383         regulator = create_regulator(rdev, dev, id);
1384         if (regulator == NULL) {
1385                 regulator = ERR_PTR(-ENOMEM);
1386                 module_put(rdev->owner);
1387                 goto out;
1388         }
1389
1390         rdev->open_count++;
1391         if (exclusive) {
1392                 rdev->exclusive = 1;
1393
1394                 ret = _regulator_is_enabled(rdev);
1395                 if (ret > 0)
1396                         rdev->use_count = 1;
1397                 else
1398                         rdev->use_count = 0;
1399         }
1400
1401 out:
1402         mutex_unlock(&regulator_list_mutex);
1403
1404         return regulator;
1405 }
1406
1407 /**
1408  * regulator_get - lookup and obtain a reference to a regulator.
1409  * @dev: device for regulator "consumer"
1410  * @id: Supply name or regulator ID.
1411  *
1412  * Returns a struct regulator corresponding to the regulator producer,
1413  * or IS_ERR() condition containing errno.
1414  *
1415  * Use of supply names configured via regulator_set_device_supply() is
1416  * strongly encouraged.  It is recommended that the supply name used
1417  * should match the name used for the supply and/or the relevant
1418  * device pins in the datasheet.
1419  */
1420 struct regulator *regulator_get(struct device *dev, const char *id)
1421 {
1422         return _regulator_get(dev, id, false, true);
1423 }
1424 EXPORT_SYMBOL_GPL(regulator_get);
1425
1426 /**
1427  * regulator_get_exclusive - obtain exclusive access to a regulator.
1428  * @dev: device for regulator "consumer"
1429  * @id: Supply name or regulator ID.
1430  *
1431  * Returns a struct regulator corresponding to the regulator producer,
1432  * or IS_ERR() condition containing errno.  Other consumers will be
1433  * unable to obtain this reference is held and the use count for the
1434  * regulator will be initialised to reflect the current state of the
1435  * regulator.
1436  *
1437  * This is intended for use by consumers which cannot tolerate shared
1438  * use of the regulator such as those which need to force the
1439  * regulator off for correct operation of the hardware they are
1440  * controlling.
1441  *
1442  * Use of supply names configured via regulator_set_device_supply() is
1443  * strongly encouraged.  It is recommended that the supply name used
1444  * should match the name used for the supply and/or the relevant
1445  * device pins in the datasheet.
1446  */
1447 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448 {
1449         return _regulator_get(dev, id, true, false);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453 /**
1454  * regulator_get_optional - obtain optional access to a regulator.
1455  * @dev: device for regulator "consumer"
1456  * @id: Supply name or regulator ID.
1457  *
1458  * Returns a struct regulator corresponding to the regulator producer,
1459  * or IS_ERR() condition containing errno.  Other consumers will be
1460  * unable to obtain this reference is held and the use count for the
1461  * regulator will be initialised to reflect the current state of the
1462  * regulator.
1463  *
1464  * This is intended for use by consumers for devices which can have
1465  * some supplies unconnected in normal use, such as some MMC devices.
1466  * It can allow the regulator core to provide stub supplies for other
1467  * supplies requested using normal regulator_get() calls without
1468  * disrupting the operation of drivers that can handle absent
1469  * supplies.
1470  *
1471  * Use of supply names configured via regulator_set_device_supply() is
1472  * strongly encouraged.  It is recommended that the supply name used
1473  * should match the name used for the supply and/or the relevant
1474  * device pins in the datasheet.
1475  */
1476 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477 {
1478         return _regulator_get(dev, id, false, false);
1479 }
1480 EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482 /* Locks held by regulator_put() */
1483 static void _regulator_put(struct regulator *regulator)
1484 {
1485         struct regulator_dev *rdev;
1486
1487         if (regulator == NULL || IS_ERR(regulator))
1488                 return;
1489
1490         rdev = regulator->rdev;
1491
1492         debugfs_remove_recursive(regulator->debugfs);
1493
1494         /* remove any sysfs entries */
1495         if (regulator->dev)
1496                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497         kfree(regulator->supply_name);
1498         list_del(&regulator->list);
1499         kfree(regulator);
1500
1501         rdev->open_count--;
1502         rdev->exclusive = 0;
1503
1504         module_put(rdev->owner);
1505 }
1506
1507 /**
1508  * regulator_put - "free" the regulator source
1509  * @regulator: regulator source
1510  *
1511  * Note: drivers must ensure that all regulator_enable calls made on this
1512  * regulator source are balanced by regulator_disable calls prior to calling
1513  * this function.
1514  */
1515 void regulator_put(struct regulator *regulator)
1516 {
1517         mutex_lock(&regulator_list_mutex);
1518         _regulator_put(regulator);
1519         mutex_unlock(&regulator_list_mutex);
1520 }
1521 EXPORT_SYMBOL_GPL(regulator_put);
1522
1523 /**
1524  * regulator_register_supply_alias - Provide device alias for supply lookup
1525  *
1526  * @dev: device that will be given as the regulator "consumer"
1527  * @id: Supply name or regulator ID
1528  * @alias_dev: device that should be used to lookup the supply
1529  * @alias_id: Supply name or regulator ID that should be used to lookup the
1530  * supply
1531  *
1532  * All lookups for id on dev will instead be conducted for alias_id on
1533  * alias_dev.
1534  */
1535 int regulator_register_supply_alias(struct device *dev, const char *id,
1536                                     struct device *alias_dev,
1537                                     const char *alias_id)
1538 {
1539         struct regulator_supply_alias *map;
1540
1541         map = regulator_find_supply_alias(dev, id);
1542         if (map)
1543                 return -EEXIST;
1544
1545         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546         if (!map)
1547                 return -ENOMEM;
1548
1549         map->src_dev = dev;
1550         map->src_supply = id;
1551         map->alias_dev = alias_dev;
1552         map->alias_supply = alias_id;
1553
1554         list_add(&map->list, &regulator_supply_alias_list);
1555
1556         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559         return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563 /**
1564  * regulator_unregister_supply_alias - Remove device alias
1565  *
1566  * @dev: device that will be given as the regulator "consumer"
1567  * @id: Supply name or regulator ID
1568  *
1569  * Remove a lookup alias if one exists for id on dev.
1570  */
1571 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572 {
1573         struct regulator_supply_alias *map;
1574
1575         map = regulator_find_supply_alias(dev, id);
1576         if (map) {
1577                 list_del(&map->list);
1578                 kfree(map);
1579         }
1580 }
1581 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583 /**
1584  * regulator_bulk_register_supply_alias - register multiple aliases
1585  *
1586  * @dev: device that will be given as the regulator "consumer"
1587  * @id: List of supply names or regulator IDs
1588  * @alias_dev: device that should be used to lookup the supply
1589  * @alias_id: List of supply names or regulator IDs that should be used to
1590  * lookup the supply
1591  * @num_id: Number of aliases to register
1592  *
1593  * @return 0 on success, an errno on failure.
1594  *
1595  * This helper function allows drivers to register several supply
1596  * aliases in one operation.  If any of the aliases cannot be
1597  * registered any aliases that were registered will be removed
1598  * before returning to the caller.
1599  */
1600 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601                                          struct device *alias_dev,
1602                                          const char **alias_id,
1603                                          int num_id)
1604 {
1605         int i;
1606         int ret;
1607
1608         for (i = 0; i < num_id; ++i) {
1609                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610                                                       alias_id[i]);
1611                 if (ret < 0)
1612                         goto err;
1613         }
1614
1615         return 0;
1616
1617 err:
1618         dev_err(dev,
1619                 "Failed to create supply alias %s,%s -> %s,%s\n",
1620                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622         while (--i >= 0)
1623                 regulator_unregister_supply_alias(dev, id[i]);
1624
1625         return ret;
1626 }
1627 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629 /**
1630  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631  *
1632  * @dev: device that will be given as the regulator "consumer"
1633  * @id: List of supply names or regulator IDs
1634  * @num_id: Number of aliases to unregister
1635  *
1636  * This helper function allows drivers to unregister several supply
1637  * aliases in one operation.
1638  */
1639 void regulator_bulk_unregister_supply_alias(struct device *dev,
1640                                             const char **id,
1641                                             int num_id)
1642 {
1643         int i;
1644
1645         for (i = 0; i < num_id; ++i)
1646                 regulator_unregister_supply_alias(dev, id[i]);
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653                                 const struct regulator_config *config)
1654 {
1655         struct regulator_enable_gpio *pin;
1656         int ret;
1657
1658         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659                 if (pin->gpio == config->ena_gpio) {
1660                         rdev_dbg(rdev, "GPIO %d is already used\n",
1661                                 config->ena_gpio);
1662                         goto update_ena_gpio_to_rdev;
1663                 }
1664         }
1665
1666         ret = gpio_request_one(config->ena_gpio,
1667                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1668                                 rdev_get_name(rdev));
1669         if (ret)
1670                 return ret;
1671
1672         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673         if (pin == NULL) {
1674                 gpio_free(config->ena_gpio);
1675                 return -ENOMEM;
1676         }
1677
1678         pin->gpio = config->ena_gpio;
1679         pin->ena_gpio_invert = config->ena_gpio_invert;
1680         list_add(&pin->list, &regulator_ena_gpio_list);
1681
1682 update_ena_gpio_to_rdev:
1683         pin->request_count++;
1684         rdev->ena_pin = pin;
1685         return 0;
1686 }
1687
1688 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689 {
1690         struct regulator_enable_gpio *pin, *n;
1691
1692         if (!rdev->ena_pin)
1693                 return;
1694
1695         /* Free the GPIO only in case of no use */
1696         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697                 if (pin->gpio == rdev->ena_pin->gpio) {
1698                         if (pin->request_count <= 1) {
1699                                 pin->request_count = 0;
1700                                 gpio_free(pin->gpio);
1701                                 list_del(&pin->list);
1702                                 kfree(pin);
1703                         } else {
1704                                 pin->request_count--;
1705                         }
1706                 }
1707         }
1708 }
1709
1710 /**
1711  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712  * @rdev: regulator_dev structure
1713  * @enable: enable GPIO at initial use?
1714  *
1715  * GPIO is enabled in case of initial use. (enable_count is 0)
1716  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717  */
1718 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719 {
1720         struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722         if (!pin)
1723                 return -EINVAL;
1724
1725         if (enable) {
1726                 /* Enable GPIO at initial use */
1727                 if (pin->enable_count == 0)
1728                         gpio_set_value_cansleep(pin->gpio,
1729                                                 !pin->ena_gpio_invert);
1730
1731                 pin->enable_count++;
1732         } else {
1733                 if (pin->enable_count > 1) {
1734                         pin->enable_count--;
1735                         return 0;
1736                 }
1737
1738                 /* Disable GPIO if not used */
1739                 if (pin->enable_count <= 1) {
1740                         gpio_set_value_cansleep(pin->gpio,
1741                                                 pin->ena_gpio_invert);
1742                         pin->enable_count = 0;
1743                 }
1744         }
1745
1746         return 0;
1747 }
1748
1749 static int _regulator_do_enable(struct regulator_dev *rdev)
1750 {
1751         int ret, delay;
1752
1753         /* Query before enabling in case configuration dependent.  */
1754         ret = _regulator_get_enable_time(rdev);
1755         if (ret >= 0) {
1756                 delay = ret;
1757         } else {
1758                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759                 delay = 0;
1760         }
1761
1762         trace_regulator_enable(rdev_get_name(rdev));
1763
1764         if (rdev->ena_pin) {
1765                 ret = regulator_ena_gpio_ctrl(rdev, true);
1766                 if (ret < 0)
1767                         return ret;
1768                 rdev->ena_gpio_state = 1;
1769         } else if (rdev->desc->ops->enable) {
1770                 ret = rdev->desc->ops->enable(rdev);
1771                 if (ret < 0)
1772                         return ret;
1773         } else {
1774                 return -EINVAL;
1775         }
1776
1777         /* Allow the regulator to ramp; it would be useful to extend
1778          * this for bulk operations so that the regulators can ramp
1779          * together.  */
1780         trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782         /*
1783          * Delay for the requested amount of time as per the guidelines in:
1784          *
1785          *     Documentation/timers/timers-howto.txt
1786          *
1787          * The assumption here is that regulators will never be enabled in
1788          * atomic context and therefore sleeping functions can be used.
1789          */
1790         if (delay) {
1791                 unsigned int ms = delay / 1000;
1792                 unsigned int us = delay % 1000;
1793
1794                 if (ms > 0) {
1795                         /*
1796                          * For small enough values, handle super-millisecond
1797                          * delays in the usleep_range() call below.
1798                          */
1799                         if (ms < 20)
1800                                 us += ms * 1000;
1801                         else
1802                                 msleep(ms);
1803                 }
1804
1805                 /*
1806                  * Give the scheduler some room to coalesce with any other
1807                  * wakeup sources. For delays shorter than 10 us, don't even
1808                  * bother setting up high-resolution timers and just busy-
1809                  * loop.
1810                  */
1811                 if (us >= 10)
1812                         usleep_range(us, us + 100);
1813                 else
1814                         udelay(us);
1815         }
1816
1817         trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819         return 0;
1820 }
1821
1822 /* locks held by regulator_enable() */
1823 static int _regulator_enable(struct regulator_dev *rdev)
1824 {
1825         int ret;
1826
1827         /* check voltage and requested load before enabling */
1828         if (rdev->constraints &&
1829             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830                 drms_uA_update(rdev);
1831
1832         if (rdev->use_count == 0) {
1833                 /* The regulator may on if it's not switchable or left on */
1834                 ret = _regulator_is_enabled(rdev);
1835                 if (ret == -EINVAL || ret == 0) {
1836                         if (!_regulator_can_change_status(rdev))
1837                                 return -EPERM;
1838
1839                         ret = _regulator_do_enable(rdev);
1840                         if (ret < 0)
1841                                 return ret;
1842
1843                 } else if (ret < 0) {
1844                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845                         return ret;
1846                 }
1847                 /* Fallthrough on positive return values - already enabled */
1848         }
1849
1850         rdev->use_count++;
1851
1852         return 0;
1853 }
1854
1855 /**
1856  * regulator_enable - enable regulator output
1857  * @regulator: regulator source
1858  *
1859  * Request that the regulator be enabled with the regulator output at
1860  * the predefined voltage or current value.  Calls to regulator_enable()
1861  * must be balanced with calls to regulator_disable().
1862  *
1863  * NOTE: the output value can be set by other drivers, boot loader or may be
1864  * hardwired in the regulator.
1865  */
1866 int regulator_enable(struct regulator *regulator)
1867 {
1868         struct regulator_dev *rdev = regulator->rdev;
1869         int ret = 0;
1870
1871         if (regulator->always_on)
1872                 return 0;
1873
1874         if (rdev->supply) {
1875                 ret = regulator_enable(rdev->supply);
1876                 if (ret != 0)
1877                         return ret;
1878         }
1879
1880         mutex_lock(&rdev->mutex);
1881         ret = _regulator_enable(rdev);
1882         mutex_unlock(&rdev->mutex);
1883
1884         if (ret != 0 && rdev->supply)
1885                 regulator_disable(rdev->supply);
1886
1887         return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891 static int _regulator_do_disable(struct regulator_dev *rdev)
1892 {
1893         int ret;
1894
1895         trace_regulator_disable(rdev_get_name(rdev));
1896
1897         if (rdev->ena_pin) {
1898                 ret = regulator_ena_gpio_ctrl(rdev, false);
1899                 if (ret < 0)
1900                         return ret;
1901                 rdev->ena_gpio_state = 0;
1902
1903         } else if (rdev->desc->ops->disable) {
1904                 ret = rdev->desc->ops->disable(rdev);
1905                 if (ret != 0)
1906                         return ret;
1907         }
1908
1909         trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911         return 0;
1912 }
1913
1914 /* locks held by regulator_disable() */
1915 static int _regulator_disable(struct regulator_dev *rdev)
1916 {
1917         int ret = 0;
1918
1919         if (WARN(rdev->use_count <= 0,
1920                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921                 return -EIO;
1922
1923         /* are we the last user and permitted to disable ? */
1924         if (rdev->use_count == 1 &&
1925             (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927                 /* we are last user */
1928                 if (_regulator_can_change_status(rdev)) {
1929                         ret = _regulator_do_disable(rdev);
1930                         if (ret < 0) {
1931                                 rdev_err(rdev, "failed to disable\n");
1932                                 return ret;
1933                         }
1934                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935                                         NULL);
1936                 }
1937
1938                 rdev->use_count = 0;
1939         } else if (rdev->use_count > 1) {
1940
1941                 if (rdev->constraints &&
1942                         (rdev->constraints->valid_ops_mask &
1943                         REGULATOR_CHANGE_DRMS))
1944                         drms_uA_update(rdev);
1945
1946                 rdev->use_count--;
1947         }
1948
1949         return ret;
1950 }
1951
1952 /**
1953  * regulator_disable - disable regulator output
1954  * @regulator: regulator source
1955  *
1956  * Disable the regulator output voltage or current.  Calls to
1957  * regulator_enable() must be balanced with calls to
1958  * regulator_disable().
1959  *
1960  * NOTE: this will only disable the regulator output if no other consumer
1961  * devices have it enabled, the regulator device supports disabling and
1962  * machine constraints permit this operation.
1963  */
1964 int regulator_disable(struct regulator *regulator)
1965 {
1966         struct regulator_dev *rdev = regulator->rdev;
1967         int ret = 0;
1968
1969         if (regulator->always_on)
1970                 return 0;
1971
1972         mutex_lock(&rdev->mutex);
1973         ret = _regulator_disable(rdev);
1974         mutex_unlock(&rdev->mutex);
1975
1976         if (ret == 0 && rdev->supply)
1977                 regulator_disable(rdev->supply);
1978
1979         return ret;
1980 }
1981 EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983 /* locks held by regulator_force_disable() */
1984 static int _regulator_force_disable(struct regulator_dev *rdev)
1985 {
1986         int ret = 0;
1987
1988         ret = _regulator_do_disable(rdev);
1989         if (ret < 0) {
1990                 rdev_err(rdev, "failed to force disable\n");
1991                 return ret;
1992         }
1993
1994         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995                         REGULATOR_EVENT_DISABLE, NULL);
1996
1997         return 0;
1998 }
1999
2000 /**
2001  * regulator_force_disable - force disable regulator output
2002  * @regulator: regulator source
2003  *
2004  * Forcibly disable the regulator output voltage or current.
2005  * NOTE: this *will* disable the regulator output even if other consumer
2006  * devices have it enabled. This should be used for situations when device
2007  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008  */
2009 int regulator_force_disable(struct regulator *regulator)
2010 {
2011         struct regulator_dev *rdev = regulator->rdev;
2012         int ret;
2013
2014         mutex_lock(&rdev->mutex);
2015         regulator->uA_load = 0;
2016         ret = _regulator_force_disable(regulator->rdev);
2017         mutex_unlock(&rdev->mutex);
2018
2019         if (rdev->supply)
2020                 while (rdev->open_count--)
2021                         regulator_disable(rdev->supply);
2022
2023         return ret;
2024 }
2025 EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027 static void regulator_disable_work(struct work_struct *work)
2028 {
2029         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030                                                   disable_work.work);
2031         int count, i, ret;
2032
2033         mutex_lock(&rdev->mutex);
2034
2035         BUG_ON(!rdev->deferred_disables);
2036
2037         count = rdev->deferred_disables;
2038         rdev->deferred_disables = 0;
2039
2040         for (i = 0; i < count; i++) {
2041                 ret = _regulator_disable(rdev);
2042                 if (ret != 0)
2043                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044         }
2045
2046         mutex_unlock(&rdev->mutex);
2047
2048         if (rdev->supply) {
2049                 for (i = 0; i < count; i++) {
2050                         ret = regulator_disable(rdev->supply);
2051                         if (ret != 0) {
2052                                 rdev_err(rdev,
2053                                          "Supply disable failed: %d\n", ret);
2054                         }
2055                 }
2056         }
2057 }
2058
2059 /**
2060  * regulator_disable_deferred - disable regulator output with delay
2061  * @regulator: regulator source
2062  * @ms: miliseconds until the regulator is disabled
2063  *
2064  * Execute regulator_disable() on the regulator after a delay.  This
2065  * is intended for use with devices that require some time to quiesce.
2066  *
2067  * NOTE: this will only disable the regulator output if no other consumer
2068  * devices have it enabled, the regulator device supports disabling and
2069  * machine constraints permit this operation.
2070  */
2071 int regulator_disable_deferred(struct regulator *regulator, int ms)
2072 {
2073         struct regulator_dev *rdev = regulator->rdev;
2074         int ret;
2075
2076         if (regulator->always_on)
2077                 return 0;
2078
2079         if (!ms)
2080                 return regulator_disable(regulator);
2081
2082         mutex_lock(&rdev->mutex);
2083         rdev->deferred_disables++;
2084         mutex_unlock(&rdev->mutex);
2085
2086         ret = queue_delayed_work(system_power_efficient_wq,
2087                                  &rdev->disable_work,
2088                                  msecs_to_jiffies(ms));
2089         if (ret < 0)
2090                 return ret;
2091         else
2092                 return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096 static int _regulator_is_enabled(struct regulator_dev *rdev)
2097 {
2098         /* A GPIO control always takes precedence */
2099         if (rdev->ena_pin)
2100                 return rdev->ena_gpio_state;
2101
2102         /* If we don't know then assume that the regulator is always on */
2103         if (!rdev->desc->ops->is_enabled)
2104                 return 1;
2105
2106         return rdev->desc->ops->is_enabled(rdev);
2107 }
2108
2109 /**
2110  * regulator_is_enabled - is the regulator output enabled
2111  * @regulator: regulator source
2112  *
2113  * Returns positive if the regulator driver backing the source/client
2114  * has requested that the device be enabled, zero if it hasn't, else a
2115  * negative errno code.
2116  *
2117  * Note that the device backing this regulator handle can have multiple
2118  * users, so it might be enabled even if regulator_enable() was never
2119  * called for this particular source.
2120  */
2121 int regulator_is_enabled(struct regulator *regulator)
2122 {
2123         int ret;
2124
2125         if (regulator->always_on)
2126                 return 1;
2127
2128         mutex_lock(&regulator->rdev->mutex);
2129         ret = _regulator_is_enabled(regulator->rdev);
2130         mutex_unlock(&regulator->rdev->mutex);
2131
2132         return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136 /**
2137  * regulator_can_change_voltage - check if regulator can change voltage
2138  * @regulator: regulator source
2139  *
2140  * Returns positive if the regulator driver backing the source/client
2141  * can change its voltage, false otherwise. Usefull for detecting fixed
2142  * or dummy regulators and disabling voltage change logic in the client
2143  * driver.
2144  */
2145 int regulator_can_change_voltage(struct regulator *regulator)
2146 {
2147         struct regulator_dev    *rdev = regulator->rdev;
2148
2149         if (rdev->constraints &&
2150             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152                         return 1;
2153
2154                 if (rdev->desc->continuous_voltage_range &&
2155                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2157                         return 1;
2158         }
2159
2160         return 0;
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164 /**
2165  * regulator_count_voltages - count regulator_list_voltage() selectors
2166  * @regulator: regulator source
2167  *
2168  * Returns number of selectors, or negative errno.  Selectors are
2169  * numbered starting at zero, and typically correspond to bitfields
2170  * in hardware registers.
2171  */
2172 int regulator_count_voltages(struct regulator *regulator)
2173 {
2174         struct regulator_dev    *rdev = regulator->rdev;
2175
2176         return rdev->desc->n_voltages ? : -EINVAL;
2177 }
2178 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180 /**
2181  * regulator_list_voltage - enumerate supported voltages
2182  * @regulator: regulator source
2183  * @selector: identify voltage to list
2184  * Context: can sleep
2185  *
2186  * Returns a voltage that can be passed to @regulator_set_voltage(),
2187  * zero if this selector code can't be used on this system, or a
2188  * negative errno.
2189  */
2190 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191 {
2192         struct regulator_dev    *rdev = regulator->rdev;
2193         struct regulator_ops    *ops = rdev->desc->ops;
2194         int                     ret;
2195
2196         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197                 return rdev->desc->fixed_uV;
2198
2199         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200                 return -EINVAL;
2201
2202         mutex_lock(&rdev->mutex);
2203         ret = ops->list_voltage(rdev, selector);
2204         mutex_unlock(&rdev->mutex);
2205
2206         if (ret > 0) {
2207                 if (ret < rdev->constraints->min_uV)
2208                         ret = 0;
2209                 else if (ret > rdev->constraints->max_uV)
2210                         ret = 0;
2211         }
2212
2213         return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217 /**
2218  * regulator_get_linear_step - return the voltage step size between VSEL values
2219  * @regulator: regulator source
2220  *
2221  * Returns the voltage step size between VSEL values for linear
2222  * regulators, or return 0 if the regulator isn't a linear regulator.
2223  */
2224 unsigned int regulator_get_linear_step(struct regulator *regulator)
2225 {
2226         struct regulator_dev *rdev = regulator->rdev;
2227
2228         return rdev->desc->uV_step;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232 /**
2233  * regulator_is_supported_voltage - check if a voltage range can be supported
2234  *
2235  * @regulator: Regulator to check.
2236  * @min_uV: Minimum required voltage in uV.
2237  * @max_uV: Maximum required voltage in uV.
2238  *
2239  * Returns a boolean or a negative error code.
2240  */
2241 int regulator_is_supported_voltage(struct regulator *regulator,
2242                                    int min_uV, int max_uV)
2243 {
2244         struct regulator_dev *rdev = regulator->rdev;
2245         int i, voltages, ret;
2246
2247         /* If we can't change voltage check the current voltage */
2248         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249                 ret = regulator_get_voltage(regulator);
2250                 if (ret >= 0)
2251                         return min_uV <= ret && ret <= max_uV;
2252                 else
2253                         return ret;
2254         }
2255
2256         /* Any voltage within constrains range is fine? */
2257         if (rdev->desc->continuous_voltage_range)
2258                 return min_uV >= rdev->constraints->min_uV &&
2259                                 max_uV <= rdev->constraints->max_uV;
2260
2261         ret = regulator_count_voltages(regulator);
2262         if (ret < 0)
2263                 return ret;
2264         voltages = ret;
2265
2266         for (i = 0; i < voltages; i++) {
2267                 ret = regulator_list_voltage(regulator, i);
2268
2269                 if (ret >= min_uV && ret <= max_uV)
2270                         return 1;
2271         }
2272
2273         return 0;
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
2277 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278                                      int min_uV, int max_uV)
2279 {
2280         int ret;
2281         int delay = 0;
2282         int best_val = 0;
2283         unsigned int selector;
2284         int old_selector = -1;
2285
2286         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288         min_uV += rdev->constraints->uV_offset;
2289         max_uV += rdev->constraints->uV_offset;
2290
2291         /*
2292          * If we can't obtain the old selector there is not enough
2293          * info to call set_voltage_time_sel().
2294          */
2295         if (_regulator_is_enabled(rdev) &&
2296             rdev->desc->ops->set_voltage_time_sel &&
2297             rdev->desc->ops->get_voltage_sel) {
2298                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299                 if (old_selector < 0)
2300                         return old_selector;
2301         }
2302
2303         if (rdev->desc->ops->set_voltage) {
2304                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305                                                    &selector);
2306
2307                 if (ret >= 0) {
2308                         if (rdev->desc->ops->list_voltage)
2309                                 best_val = rdev->desc->ops->list_voltage(rdev,
2310                                                                          selector);
2311                         else
2312                                 best_val = _regulator_get_voltage(rdev);
2313                 }
2314
2315         } else if (rdev->desc->ops->set_voltage_sel) {
2316                 if (rdev->desc->ops->map_voltage) {
2317                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318                                                            max_uV);
2319                 } else {
2320                         if (rdev->desc->ops->list_voltage ==
2321                             regulator_list_voltage_linear)
2322                                 ret = regulator_map_voltage_linear(rdev,
2323                                                                 min_uV, max_uV);
2324                         else
2325                                 ret = regulator_map_voltage_iterate(rdev,
2326                                                                 min_uV, max_uV);
2327                 }
2328
2329                 if (ret >= 0) {
2330                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331                         if (min_uV <= best_val && max_uV >= best_val) {
2332                                 selector = ret;
2333                                 if (old_selector == selector)
2334                                         ret = 0;
2335                                 else
2336                                         ret = rdev->desc->ops->set_voltage_sel(
2337                                                                 rdev, ret);
2338                         } else {
2339                                 ret = -EINVAL;
2340                         }
2341                 }
2342         } else {
2343                 ret = -EINVAL;
2344         }
2345
2346         /* Call set_voltage_time_sel if successfully obtained old_selector */
2347         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348                 && old_selector != selector) {
2349
2350                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351                                                 old_selector, selector);
2352                 if (delay < 0) {
2353                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354                                   delay);
2355                         delay = 0;
2356                 }
2357
2358                 /* Insert any necessary delays */
2359                 if (delay >= 1000) {
2360                         mdelay(delay / 1000);
2361                         udelay(delay % 1000);
2362                 } else if (delay) {
2363                         udelay(delay);
2364                 }
2365         }
2366
2367         if (ret == 0 && best_val >= 0) {
2368                 unsigned long data = best_val;
2369
2370                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371                                      (void *)data);
2372         }
2373
2374         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376         return ret;
2377 }
2378
2379 /**
2380  * regulator_set_voltage - set regulator output voltage
2381  * @regulator: regulator source
2382  * @min_uV: Minimum required voltage in uV
2383  * @max_uV: Maximum acceptable voltage in uV
2384  *
2385  * Sets a voltage regulator to the desired output voltage. This can be set
2386  * during any regulator state. IOW, regulator can be disabled or enabled.
2387  *
2388  * If the regulator is enabled then the voltage will change to the new value
2389  * immediately otherwise if the regulator is disabled the regulator will
2390  * output at the new voltage when enabled.
2391  *
2392  * NOTE: If the regulator is shared between several devices then the lowest
2393  * request voltage that meets the system constraints will be used.
2394  * Regulator system constraints must be set for this regulator before
2395  * calling this function otherwise this call will fail.
2396  */
2397 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398 {
2399         struct regulator_dev *rdev = regulator->rdev;
2400         int ret = 0;
2401         int old_min_uV, old_max_uV;
2402
2403         mutex_lock(&rdev->mutex);
2404
2405         /* If we're setting the same range as last time the change
2406          * should be a noop (some cpufreq implementations use the same
2407          * voltage for multiple frequencies, for example).
2408          */
2409         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2410                 goto out;
2411
2412         /* sanity check */
2413         if (!rdev->desc->ops->set_voltage &&
2414             !rdev->desc->ops->set_voltage_sel) {
2415                 ret = -EINVAL;
2416                 goto out;
2417         }
2418
2419         /* constraints check */
2420         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2421         if (ret < 0)
2422                 goto out;
2423
2424         /* restore original values in case of error */
2425         old_min_uV = regulator->min_uV;
2426         old_max_uV = regulator->max_uV;
2427         regulator->min_uV = min_uV;
2428         regulator->max_uV = max_uV;
2429
2430         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2431         if (ret < 0)
2432                 goto out2;
2433
2434         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2435         if (ret < 0)
2436                 goto out2;
2437
2438 out:
2439         mutex_unlock(&rdev->mutex);
2440         return ret;
2441 out2:
2442         regulator->min_uV = old_min_uV;
2443         regulator->max_uV = old_max_uV;
2444         mutex_unlock(&rdev->mutex);
2445         return ret;
2446 }
2447 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2448
2449 /**
2450  * regulator_set_voltage_time - get raise/fall time
2451  * @regulator: regulator source
2452  * @old_uV: starting voltage in microvolts
2453  * @new_uV: target voltage in microvolts
2454  *
2455  * Provided with the starting and ending voltage, this function attempts to
2456  * calculate the time in microseconds required to rise or fall to this new
2457  * voltage.
2458  */
2459 int regulator_set_voltage_time(struct regulator *regulator,
2460                                int old_uV, int new_uV)
2461 {
2462         struct regulator_dev    *rdev = regulator->rdev;
2463         struct regulator_ops    *ops = rdev->desc->ops;
2464         int old_sel = -1;
2465         int new_sel = -1;
2466         int voltage;
2467         int i;
2468
2469         /* Currently requires operations to do this */
2470         if (!ops->list_voltage || !ops->set_voltage_time_sel
2471             || !rdev->desc->n_voltages)
2472                 return -EINVAL;
2473
2474         for (i = 0; i < rdev->desc->n_voltages; i++) {
2475                 /* We only look for exact voltage matches here */
2476                 voltage = regulator_list_voltage(regulator, i);
2477                 if (voltage < 0)
2478                         return -EINVAL;
2479                 if (voltage == 0)
2480                         continue;
2481                 if (voltage == old_uV)
2482                         old_sel = i;
2483                 if (voltage == new_uV)
2484                         new_sel = i;
2485         }
2486
2487         if (old_sel < 0 || new_sel < 0)
2488                 return -EINVAL;
2489
2490         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2491 }
2492 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2493
2494 /**
2495  * regulator_set_voltage_time_sel - get raise/fall time
2496  * @rdev: regulator source device
2497  * @old_selector: selector for starting voltage
2498  * @new_selector: selector for target voltage
2499  *
2500  * Provided with the starting and target voltage selectors, this function
2501  * returns time in microseconds required to rise or fall to this new voltage
2502  *
2503  * Drivers providing ramp_delay in regulation_constraints can use this as their
2504  * set_voltage_time_sel() operation.
2505  */
2506 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2507                                    unsigned int old_selector,
2508                                    unsigned int new_selector)
2509 {
2510         unsigned int ramp_delay = 0;
2511         int old_volt, new_volt;
2512
2513         if (rdev->constraints->ramp_delay)
2514                 ramp_delay = rdev->constraints->ramp_delay;
2515         else if (rdev->desc->ramp_delay)
2516                 ramp_delay = rdev->desc->ramp_delay;
2517
2518         if (ramp_delay == 0) {
2519                 rdev_warn(rdev, "ramp_delay not set\n");
2520                 return 0;
2521         }
2522
2523         /* sanity check */
2524         if (!rdev->desc->ops->list_voltage)
2525                 return -EINVAL;
2526
2527         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2528         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2529
2530         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2533
2534 /**
2535  * regulator_sync_voltage - re-apply last regulator output voltage
2536  * @regulator: regulator source
2537  *
2538  * Re-apply the last configured voltage.  This is intended to be used
2539  * where some external control source the consumer is cooperating with
2540  * has caused the configured voltage to change.
2541  */
2542 int regulator_sync_voltage(struct regulator *regulator)
2543 {
2544         struct regulator_dev *rdev = regulator->rdev;
2545         int ret, min_uV, max_uV;
2546
2547         mutex_lock(&rdev->mutex);
2548
2549         if (!rdev->desc->ops->set_voltage &&
2550             !rdev->desc->ops->set_voltage_sel) {
2551                 ret = -EINVAL;
2552                 goto out;
2553         }
2554
2555         /* This is only going to work if we've had a voltage configured. */
2556         if (!regulator->min_uV && !regulator->max_uV) {
2557                 ret = -EINVAL;
2558                 goto out;
2559         }
2560
2561         min_uV = regulator->min_uV;
2562         max_uV = regulator->max_uV;
2563
2564         /* This should be a paranoia check... */
2565         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2566         if (ret < 0)
2567                 goto out;
2568
2569         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2570         if (ret < 0)
2571                 goto out;
2572
2573         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2574
2575 out:
2576         mutex_unlock(&rdev->mutex);
2577         return ret;
2578 }
2579 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2580
2581 static int _regulator_get_voltage(struct regulator_dev *rdev)
2582 {
2583         int sel, ret;
2584
2585         if (rdev->desc->ops->get_voltage_sel) {
2586                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2587                 if (sel < 0)
2588                         return sel;
2589                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2590         } else if (rdev->desc->ops->get_voltage) {
2591                 ret = rdev->desc->ops->get_voltage(rdev);
2592         } else if (rdev->desc->ops->list_voltage) {
2593                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2594         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2595                 ret = rdev->desc->fixed_uV;
2596         } else {
2597                 return -EINVAL;
2598         }
2599
2600         if (ret < 0)
2601                 return ret;
2602         return ret - rdev->constraints->uV_offset;
2603 }
2604
2605 /**
2606  * regulator_get_voltage - get regulator output voltage
2607  * @regulator: regulator source
2608  *
2609  * This returns the current regulator voltage in uV.
2610  *
2611  * NOTE: If the regulator is disabled it will return the voltage value. This
2612  * function should not be used to determine regulator state.
2613  */
2614 int regulator_get_voltage(struct regulator *regulator)
2615 {
2616         int ret;
2617
2618         mutex_lock(&regulator->rdev->mutex);
2619
2620         ret = _regulator_get_voltage(regulator->rdev);
2621
2622         mutex_unlock(&regulator->rdev->mutex);
2623
2624         return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2627
2628 /**
2629  * regulator_set_current_limit - set regulator output current limit
2630  * @regulator: regulator source
2631  * @min_uA: Minimum supported current in uA
2632  * @max_uA: Maximum supported current in uA
2633  *
2634  * Sets current sink to the desired output current. This can be set during
2635  * any regulator state. IOW, regulator can be disabled or enabled.
2636  *
2637  * If the regulator is enabled then the current will change to the new value
2638  * immediately otherwise if the regulator is disabled the regulator will
2639  * output at the new current when enabled.
2640  *
2641  * NOTE: Regulator system constraints must be set for this regulator before
2642  * calling this function otherwise this call will fail.
2643  */
2644 int regulator_set_current_limit(struct regulator *regulator,
2645                                int min_uA, int max_uA)
2646 {
2647         struct regulator_dev *rdev = regulator->rdev;
2648         int ret;
2649
2650         mutex_lock(&rdev->mutex);
2651
2652         /* sanity check */
2653         if (!rdev->desc->ops->set_current_limit) {
2654                 ret = -EINVAL;
2655                 goto out;
2656         }
2657
2658         /* constraints check */
2659         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2660         if (ret < 0)
2661                 goto out;
2662
2663         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2664 out:
2665         mutex_unlock(&rdev->mutex);
2666         return ret;
2667 }
2668 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2669
2670 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2671 {
2672         int ret;
2673
2674         mutex_lock(&rdev->mutex);
2675
2676         /* sanity check */
2677         if (!rdev->desc->ops->get_current_limit) {
2678                 ret = -EINVAL;
2679                 goto out;
2680         }
2681
2682         ret = rdev->desc->ops->get_current_limit(rdev);
2683 out:
2684         mutex_unlock(&rdev->mutex);
2685         return ret;
2686 }
2687
2688 /**
2689  * regulator_get_current_limit - get regulator output current
2690  * @regulator: regulator source
2691  *
2692  * This returns the current supplied by the specified current sink in uA.
2693  *
2694  * NOTE: If the regulator is disabled it will return the current value. This
2695  * function should not be used to determine regulator state.
2696  */
2697 int regulator_get_current_limit(struct regulator *regulator)
2698 {
2699         return _regulator_get_current_limit(regulator->rdev);
2700 }
2701 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2702
2703 /**
2704  * regulator_set_mode - set regulator operating mode
2705  * @regulator: regulator source
2706  * @mode: operating mode - one of the REGULATOR_MODE constants
2707  *
2708  * Set regulator operating mode to increase regulator efficiency or improve
2709  * regulation performance.
2710  *
2711  * NOTE: Regulator system constraints must be set for this regulator before
2712  * calling this function otherwise this call will fail.
2713  */
2714 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2715 {
2716         struct regulator_dev *rdev = regulator->rdev;
2717         int ret;
2718         int regulator_curr_mode;
2719
2720         mutex_lock(&rdev->mutex);
2721
2722         /* sanity check */
2723         if (!rdev->desc->ops->set_mode) {
2724                 ret = -EINVAL;
2725                 goto out;
2726         }
2727
2728         /* return if the same mode is requested */
2729         if (rdev->desc->ops->get_mode) {
2730                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2731                 if (regulator_curr_mode == mode) {
2732                         ret = 0;
2733                         goto out;
2734                 }
2735         }
2736
2737         /* constraints check */
2738         ret = regulator_mode_constrain(rdev, &mode);
2739         if (ret < 0)
2740                 goto out;
2741
2742         ret = rdev->desc->ops->set_mode(rdev, mode);
2743 out:
2744         mutex_unlock(&rdev->mutex);
2745         return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(regulator_set_mode);
2748
2749 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2750 {
2751         int ret;
2752
2753         mutex_lock(&rdev->mutex);
2754
2755         /* sanity check */
2756         if (!rdev->desc->ops->get_mode) {
2757                 ret = -EINVAL;
2758                 goto out;
2759         }
2760
2761         ret = rdev->desc->ops->get_mode(rdev);
2762 out:
2763         mutex_unlock(&rdev->mutex);
2764         return ret;
2765 }
2766
2767 /**
2768  * regulator_get_mode - get regulator operating mode
2769  * @regulator: regulator source
2770  *
2771  * Get the current regulator operating mode.
2772  */
2773 unsigned int regulator_get_mode(struct regulator *regulator)
2774 {
2775         return _regulator_get_mode(regulator->rdev);
2776 }
2777 EXPORT_SYMBOL_GPL(regulator_get_mode);
2778
2779 /**
2780  * regulator_set_optimum_mode - set regulator optimum operating mode
2781  * @regulator: regulator source
2782  * @uA_load: load current
2783  *
2784  * Notifies the regulator core of a new device load. This is then used by
2785  * DRMS (if enabled by constraints) to set the most efficient regulator
2786  * operating mode for the new regulator loading.
2787  *
2788  * Consumer devices notify their supply regulator of the maximum power
2789  * they will require (can be taken from device datasheet in the power
2790  * consumption tables) when they change operational status and hence power
2791  * state. Examples of operational state changes that can affect power
2792  * consumption are :-
2793  *
2794  *    o Device is opened / closed.
2795  *    o Device I/O is about to begin or has just finished.
2796  *    o Device is idling in between work.
2797  *
2798  * This information is also exported via sysfs to userspace.
2799  *
2800  * DRMS will sum the total requested load on the regulator and change
2801  * to the most efficient operating mode if platform constraints allow.
2802  *
2803  * Returns the new regulator mode or error.
2804  */
2805 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2806 {
2807         struct regulator_dev *rdev = regulator->rdev;
2808         struct regulator *consumer;
2809         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2810         unsigned int mode;
2811
2812         if (rdev->supply)
2813                 input_uV = regulator_get_voltage(rdev->supply);
2814
2815         mutex_lock(&rdev->mutex);
2816
2817         /*
2818          * first check to see if we can set modes at all, otherwise just
2819          * tell the consumer everything is OK.
2820          */
2821         regulator->uA_load = uA_load;
2822         ret = regulator_check_drms(rdev);
2823         if (ret < 0) {
2824                 ret = 0;
2825                 goto out;
2826         }
2827
2828         if (!rdev->desc->ops->get_optimum_mode)
2829                 goto out;
2830
2831         /*
2832          * we can actually do this so any errors are indicators of
2833          * potential real failure.
2834          */
2835         ret = -EINVAL;
2836
2837         if (!rdev->desc->ops->set_mode)
2838                 goto out;
2839
2840         /* get output voltage */
2841         output_uV = _regulator_get_voltage(rdev);
2842         if (output_uV <= 0) {
2843                 rdev_err(rdev, "invalid output voltage found\n");
2844                 goto out;
2845         }
2846
2847         /* No supply? Use constraint voltage */
2848         if (input_uV <= 0)
2849                 input_uV = rdev->constraints->input_uV;
2850         if (input_uV <= 0) {
2851                 rdev_err(rdev, "invalid input voltage found\n");
2852                 goto out;
2853         }
2854
2855         /* calc total requested load for this regulator */
2856         list_for_each_entry(consumer, &rdev->consumer_list, list)
2857                 total_uA_load += consumer->uA_load;
2858
2859         mode = rdev->desc->ops->get_optimum_mode(rdev,
2860                                                  input_uV, output_uV,
2861                                                  total_uA_load);
2862         ret = regulator_mode_constrain(rdev, &mode);
2863         if (ret < 0) {
2864                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2865                          total_uA_load, input_uV, output_uV);
2866                 goto out;
2867         }
2868
2869         ret = rdev->desc->ops->set_mode(rdev, mode);
2870         if (ret < 0) {
2871                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2872                 goto out;
2873         }
2874         ret = mode;
2875 out:
2876         mutex_unlock(&rdev->mutex);
2877         return ret;
2878 }
2879 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2880
2881 /**
2882  * regulator_allow_bypass - allow the regulator to go into bypass mode
2883  *
2884  * @regulator: Regulator to configure
2885  * @enable: enable or disable bypass mode
2886  *
2887  * Allow the regulator to go into bypass mode if all other consumers
2888  * for the regulator also enable bypass mode and the machine
2889  * constraints allow this.  Bypass mode means that the regulator is
2890  * simply passing the input directly to the output with no regulation.
2891  */
2892 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2893 {
2894         struct regulator_dev *rdev = regulator->rdev;
2895         int ret = 0;
2896
2897         if (!rdev->desc->ops->set_bypass)
2898                 return 0;
2899
2900         if (rdev->constraints &&
2901             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2902                 return 0;
2903
2904         mutex_lock(&rdev->mutex);
2905
2906         if (enable && !regulator->bypass) {
2907                 rdev->bypass_count++;
2908
2909                 if (rdev->bypass_count == rdev->open_count) {
2910                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2911                         if (ret != 0)
2912                                 rdev->bypass_count--;
2913                 }
2914
2915         } else if (!enable && regulator->bypass) {
2916                 rdev->bypass_count--;
2917
2918                 if (rdev->bypass_count != rdev->open_count) {
2919                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2920                         if (ret != 0)
2921                                 rdev->bypass_count++;
2922                 }
2923         }
2924
2925         if (ret == 0)
2926                 regulator->bypass = enable;
2927
2928         mutex_unlock(&rdev->mutex);
2929
2930         return ret;
2931 }
2932 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2933
2934 /**
2935  * regulator_register_notifier - register regulator event notifier
2936  * @regulator: regulator source
2937  * @nb: notifier block
2938  *
2939  * Register notifier block to receive regulator events.
2940  */
2941 int regulator_register_notifier(struct regulator *regulator,
2942                               struct notifier_block *nb)
2943 {
2944         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2945                                                 nb);
2946 }
2947 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2948
2949 /**
2950  * regulator_unregister_notifier - unregister regulator event notifier
2951  * @regulator: regulator source
2952  * @nb: notifier block
2953  *
2954  * Unregister regulator event notifier block.
2955  */
2956 int regulator_unregister_notifier(struct regulator *regulator,
2957                                 struct notifier_block *nb)
2958 {
2959         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2960                                                   nb);
2961 }
2962 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2963
2964 /* notify regulator consumers and downstream regulator consumers.
2965  * Note mutex must be held by caller.
2966  */
2967 static void _notifier_call_chain(struct regulator_dev *rdev,
2968                                   unsigned long event, void *data)
2969 {
2970         /* call rdev chain first */
2971         blocking_notifier_call_chain(&rdev->notifier, event, data);
2972 }
2973
2974 /**
2975  * regulator_bulk_get - get multiple regulator consumers
2976  *
2977  * @dev:           Device to supply
2978  * @num_consumers: Number of consumers to register
2979  * @consumers:     Configuration of consumers; clients are stored here.
2980  *
2981  * @return 0 on success, an errno on failure.
2982  *
2983  * This helper function allows drivers to get several regulator
2984  * consumers in one operation.  If any of the regulators cannot be
2985  * acquired then any regulators that were allocated will be freed
2986  * before returning to the caller.
2987  */
2988 int regulator_bulk_get(struct device *dev, int num_consumers,
2989                        struct regulator_bulk_data *consumers)
2990 {
2991         int i;
2992         int ret;
2993
2994         for (i = 0; i < num_consumers; i++)
2995                 consumers[i].consumer = NULL;
2996
2997         for (i = 0; i < num_consumers; i++) {
2998                 consumers[i].consumer = regulator_get(dev,
2999                                                       consumers[i].supply);
3000                 if (IS_ERR(consumers[i].consumer)) {
3001                         ret = PTR_ERR(consumers[i].consumer);
3002                         dev_err(dev, "Failed to get supply '%s': %d\n",
3003                                 consumers[i].supply, ret);
3004                         consumers[i].consumer = NULL;
3005                         goto err;
3006                 }
3007         }
3008
3009         return 0;
3010
3011 err:
3012         while (--i >= 0)
3013                 regulator_put(consumers[i].consumer);
3014
3015         return ret;
3016 }
3017 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3018
3019 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3020 {
3021         struct regulator_bulk_data *bulk = data;
3022
3023         bulk->ret = regulator_enable(bulk->consumer);
3024 }
3025
3026 /**
3027  * regulator_bulk_enable - enable multiple regulator consumers
3028  *
3029  * @num_consumers: Number of consumers
3030  * @consumers:     Consumer data; clients are stored here.
3031  * @return         0 on success, an errno on failure
3032  *
3033  * This convenience API allows consumers to enable multiple regulator
3034  * clients in a single API call.  If any consumers cannot be enabled
3035  * then any others that were enabled will be disabled again prior to
3036  * return.
3037  */
3038 int regulator_bulk_enable(int num_consumers,
3039                           struct regulator_bulk_data *consumers)
3040 {
3041         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3042         int i;
3043         int ret = 0;
3044
3045         for (i = 0; i < num_consumers; i++) {
3046                 if (consumers[i].consumer->always_on)
3047                         consumers[i].ret = 0;
3048                 else
3049                         async_schedule_domain(regulator_bulk_enable_async,
3050                                               &consumers[i], &async_domain);
3051         }
3052
3053         async_synchronize_full_domain(&async_domain);
3054
3055         /* If any consumer failed we need to unwind any that succeeded */
3056         for (i = 0; i < num_consumers; i++) {
3057                 if (consumers[i].ret != 0) {
3058                         ret = consumers[i].ret;
3059                         goto err;
3060                 }
3061         }
3062
3063         return 0;
3064
3065 err:
3066         for (i = 0; i < num_consumers; i++) {
3067                 if (consumers[i].ret < 0)
3068                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3069                                consumers[i].ret);
3070                 else
3071                         regulator_disable(consumers[i].consumer);
3072         }
3073
3074         return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3077
3078 /**
3079  * regulator_bulk_disable - disable multiple regulator consumers
3080  *
3081  * @num_consumers: Number of consumers
3082  * @consumers:     Consumer data; clients are stored here.
3083  * @return         0 on success, an errno on failure
3084  *
3085  * This convenience API allows consumers to disable multiple regulator
3086  * clients in a single API call.  If any consumers cannot be disabled
3087  * then any others that were disabled will be enabled again prior to
3088  * return.
3089  */
3090 int regulator_bulk_disable(int num_consumers,
3091                            struct regulator_bulk_data *consumers)
3092 {
3093         int i;
3094         int ret, r;
3095
3096         for (i = num_consumers - 1; i >= 0; --i) {
3097                 ret = regulator_disable(consumers[i].consumer);
3098                 if (ret != 0)
3099                         goto err;
3100         }
3101
3102         return 0;
3103
3104 err:
3105         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3106         for (++i; i < num_consumers; ++i) {
3107                 r = regulator_enable(consumers[i].consumer);
3108                 if (r != 0)
3109                         pr_err("Failed to reename %s: %d\n",
3110                                consumers[i].supply, r);
3111         }
3112
3113         return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3116
3117 /**
3118  * regulator_bulk_force_disable - force disable multiple regulator consumers
3119  *
3120  * @num_consumers: Number of consumers
3121  * @consumers:     Consumer data; clients are stored here.
3122  * @return         0 on success, an errno on failure
3123  *
3124  * This convenience API allows consumers to forcibly disable multiple regulator
3125  * clients in a single API call.
3126  * NOTE: This should be used for situations when device damage will
3127  * likely occur if the regulators are not disabled (e.g. over temp).
3128  * Although regulator_force_disable function call for some consumers can
3129  * return error numbers, the function is called for all consumers.
3130  */
3131 int regulator_bulk_force_disable(int num_consumers,
3132                            struct regulator_bulk_data *consumers)
3133 {
3134         int i;
3135         int ret;
3136
3137         for (i = 0; i < num_consumers; i++)
3138                 consumers[i].ret =
3139                             regulator_force_disable(consumers[i].consumer);
3140
3141         for (i = 0; i < num_consumers; i++) {
3142                 if (consumers[i].ret != 0) {
3143                         ret = consumers[i].ret;
3144                         goto out;
3145                 }
3146         }
3147
3148         return 0;
3149 out:
3150         return ret;
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3153
3154 /**
3155  * regulator_bulk_free - free multiple regulator consumers
3156  *
3157  * @num_consumers: Number of consumers
3158  * @consumers:     Consumer data; clients are stored here.
3159  *
3160  * This convenience API allows consumers to free multiple regulator
3161  * clients in a single API call.
3162  */
3163 void regulator_bulk_free(int num_consumers,
3164                          struct regulator_bulk_data *consumers)
3165 {
3166         int i;
3167
3168         for (i = 0; i < num_consumers; i++) {
3169                 regulator_put(consumers[i].consumer);
3170                 consumers[i].consumer = NULL;
3171         }
3172 }
3173 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3174
3175 /**
3176  * regulator_notifier_call_chain - call regulator event notifier
3177  * @rdev: regulator source
3178  * @event: notifier block
3179  * @data: callback-specific data.
3180  *
3181  * Called by regulator drivers to notify clients a regulator event has
3182  * occurred. We also notify regulator clients downstream.
3183  * Note lock must be held by caller.
3184  */
3185 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3186                                   unsigned long event, void *data)
3187 {
3188         _notifier_call_chain(rdev, event, data);
3189         return NOTIFY_DONE;
3190
3191 }
3192 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3193
3194 /**
3195  * regulator_mode_to_status - convert a regulator mode into a status
3196  *
3197  * @mode: Mode to convert
3198  *
3199  * Convert a regulator mode into a status.
3200  */
3201 int regulator_mode_to_status(unsigned int mode)
3202 {
3203         switch (mode) {
3204         case REGULATOR_MODE_FAST:
3205                 return REGULATOR_STATUS_FAST;
3206         case REGULATOR_MODE_NORMAL:
3207                 return REGULATOR_STATUS_NORMAL;
3208         case REGULATOR_MODE_IDLE:
3209                 return REGULATOR_STATUS_IDLE;
3210         case REGULATOR_MODE_STANDBY:
3211                 return REGULATOR_STATUS_STANDBY;
3212         default:
3213                 return REGULATOR_STATUS_UNDEFINED;
3214         }
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3217
3218 /*
3219  * To avoid cluttering sysfs (and memory) with useless state, only
3220  * create attributes that can be meaningfully displayed.
3221  */
3222 static int add_regulator_attributes(struct regulator_dev *rdev)
3223 {
3224         struct device           *dev = &rdev->dev;
3225         struct regulator_ops    *ops = rdev->desc->ops;
3226         int                     status = 0;
3227
3228         /* some attributes need specific methods to be displayed */
3229         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3230             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3231             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3232                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3233                 status = device_create_file(dev, &dev_attr_microvolts);
3234                 if (status < 0)
3235                         return status;
3236         }
3237         if (ops->get_current_limit) {
3238                 status = device_create_file(dev, &dev_attr_microamps);
3239                 if (status < 0)
3240                         return status;
3241         }
3242         if (ops->get_mode) {
3243                 status = device_create_file(dev, &dev_attr_opmode);
3244                 if (status < 0)
3245                         return status;
3246         }
3247         if (rdev->ena_pin || ops->is_enabled) {
3248                 status = device_create_file(dev, &dev_attr_state);
3249                 if (status < 0)
3250                         return status;
3251         }
3252         if (ops->get_status) {
3253                 status = device_create_file(dev, &dev_attr_status);
3254                 if (status < 0)
3255                         return status;
3256         }
3257         if (ops->get_bypass) {
3258                 status = device_create_file(dev, &dev_attr_bypass);
3259                 if (status < 0)
3260                         return status;
3261         }
3262
3263         /* some attributes are type-specific */
3264         if (rdev->desc->type == REGULATOR_CURRENT) {
3265                 status = device_create_file(dev, &dev_attr_requested_microamps);
3266                 if (status < 0)
3267                         return status;
3268         }
3269
3270         /* all the other attributes exist to support constraints;
3271          * don't show them if there are no constraints, or if the
3272          * relevant supporting methods are missing.
3273          */
3274         if (!rdev->constraints)
3275                 return status;
3276
3277         /* constraints need specific supporting methods */
3278         if (ops->set_voltage || ops->set_voltage_sel) {
3279                 status = device_create_file(dev, &dev_attr_min_microvolts);
3280                 if (status < 0)
3281                         return status;
3282                 status = device_create_file(dev, &dev_attr_max_microvolts);
3283                 if (status < 0)
3284                         return status;
3285         }
3286         if (ops->set_current_limit) {
3287                 status = device_create_file(dev, &dev_attr_min_microamps);
3288                 if (status < 0)
3289                         return status;
3290                 status = device_create_file(dev, &dev_attr_max_microamps);
3291                 if (status < 0)
3292                         return status;
3293         }
3294
3295         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3296         if (status < 0)
3297                 return status;
3298         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3299         if (status < 0)
3300                 return status;
3301         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3302         if (status < 0)
3303                 return status;
3304
3305         if (ops->set_suspend_voltage) {
3306                 status = device_create_file(dev,
3307                                 &dev_attr_suspend_standby_microvolts);
3308                 if (status < 0)
3309                         return status;
3310                 status = device_create_file(dev,
3311                                 &dev_attr_suspend_mem_microvolts);
3312                 if (status < 0)
3313                         return status;
3314                 status = device_create_file(dev,
3315                                 &dev_attr_suspend_disk_microvolts);
3316                 if (status < 0)
3317                         return status;
3318         }
3319
3320         if (ops->set_suspend_mode) {
3321                 status = device_create_file(dev,
3322                                 &dev_attr_suspend_standby_mode);
3323                 if (status < 0)
3324                         return status;
3325                 status = device_create_file(dev,
3326                                 &dev_attr_suspend_mem_mode);
3327                 if (status < 0)
3328                         return status;
3329                 status = device_create_file(dev,
3330                                 &dev_attr_suspend_disk_mode);
3331                 if (status < 0)
3332                         return status;
3333         }
3334
3335         return status;
3336 }
3337
3338 static void rdev_init_debugfs(struct regulator_dev *rdev)
3339 {
3340         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3341         if (!rdev->debugfs) {
3342                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3343                 return;
3344         }
3345
3346         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3347                            &rdev->use_count);
3348         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3349                            &rdev->open_count);
3350         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3351                            &rdev->bypass_count);
3352 }
3353
3354 /**
3355  * regulator_register - register regulator
3356  * @regulator_desc: regulator to register
3357  * @config: runtime configuration for regulator
3358  *
3359  * Called by regulator drivers to register a regulator.
3360  * Returns a valid pointer to struct regulator_dev on success
3361  * or an ERR_PTR() on error.
3362  */
3363 struct regulator_dev *
3364 regulator_register(const struct regulator_desc *regulator_desc,
3365                    const struct regulator_config *config)
3366 {
3367         const struct regulation_constraints *constraints = NULL;
3368         const struct regulator_init_data *init_data;
3369         static atomic_t regulator_no = ATOMIC_INIT(0);
3370         struct regulator_dev *rdev;
3371         struct device *dev;
3372         int ret, i;
3373         const char *supply = NULL;
3374
3375         if (regulator_desc == NULL || config == NULL)
3376                 return ERR_PTR(-EINVAL);
3377
3378         dev = config->dev;
3379         WARN_ON(!dev);
3380
3381         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3382                 return ERR_PTR(-EINVAL);
3383
3384         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3385             regulator_desc->type != REGULATOR_CURRENT)
3386                 return ERR_PTR(-EINVAL);
3387
3388         /* Only one of each should be implemented */
3389         WARN_ON(regulator_desc->ops->get_voltage &&
3390                 regulator_desc->ops->get_voltage_sel);
3391         WARN_ON(regulator_desc->ops->set_voltage &&
3392                 regulator_desc->ops->set_voltage_sel);
3393
3394         /* If we're using selectors we must implement list_voltage. */
3395         if (regulator_desc->ops->get_voltage_sel &&
3396             !regulator_desc->ops->list_voltage) {
3397                 return ERR_PTR(-EINVAL);
3398         }
3399         if (regulator_desc->ops->set_voltage_sel &&
3400             !regulator_desc->ops->list_voltage) {
3401                 return ERR_PTR(-EINVAL);
3402         }
3403
3404         init_data = config->init_data;
3405
3406         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3407         if (rdev == NULL)
3408                 return ERR_PTR(-ENOMEM);
3409
3410         mutex_lock(&regulator_list_mutex);
3411
3412         mutex_init(&rdev->mutex);
3413         rdev->reg_data = config->driver_data;
3414         rdev->owner = regulator_desc->owner;
3415         rdev->desc = regulator_desc;
3416         if (config->regmap)
3417                 rdev->regmap = config->regmap;
3418         else if (dev_get_regmap(dev, NULL))
3419                 rdev->regmap = dev_get_regmap(dev, NULL);
3420         else if (dev->parent)
3421                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3422         INIT_LIST_HEAD(&rdev->consumer_list);
3423         INIT_LIST_HEAD(&rdev->list);
3424         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3425         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3426
3427         /* preform any regulator specific init */
3428         if (init_data && init_data->regulator_init) {
3429                 ret = init_data->regulator_init(rdev->reg_data);
3430                 if (ret < 0)
3431                         goto clean;
3432         }
3433
3434         /* register with sysfs */
3435         rdev->dev.class = &regulator_class;
3436         rdev->dev.of_node = config->of_node;
3437         rdev->dev.parent = dev;
3438         dev_set_name(&rdev->dev, "regulator.%d",
3439                      atomic_inc_return(&regulator_no) - 1);
3440         ret = device_register(&rdev->dev);
3441         if (ret != 0) {
3442                 put_device(&rdev->dev);
3443                 goto clean;
3444         }
3445
3446         dev_set_drvdata(&rdev->dev, rdev);
3447
3448         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3449                 ret = regulator_ena_gpio_request(rdev, config);
3450                 if (ret != 0) {
3451                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3452                                  config->ena_gpio, ret);
3453                         goto wash;
3454                 }
3455
3456                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3457                         rdev->ena_gpio_state = 1;
3458
3459                 if (config->ena_gpio_invert)
3460                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3461         }
3462
3463         /* set regulator constraints */
3464         if (init_data)
3465                 constraints = &init_data->constraints;
3466
3467         ret = set_machine_constraints(rdev, constraints);
3468         if (ret < 0)
3469                 goto scrub;
3470
3471         /* add attributes supported by this regulator */
3472         ret = add_regulator_attributes(rdev);
3473         if (ret < 0)
3474                 goto scrub;
3475
3476         if (init_data && init_data->supply_regulator)
3477                 supply = init_data->supply_regulator;
3478         else if (regulator_desc->supply_name)
3479                 supply = regulator_desc->supply_name;
3480
3481         if (supply) {
3482                 struct regulator_dev *r;
3483
3484                 r = regulator_dev_lookup(dev, supply, &ret);
3485
3486                 if (ret == -ENODEV) {
3487                         /*
3488                          * No supply was specified for this regulator and
3489                          * there will never be one.
3490                          */
3491                         ret = 0;
3492                         goto add_dev;
3493                 } else if (!r) {
3494                         dev_err(dev, "Failed to find supply %s\n", supply);
3495                         ret = -EPROBE_DEFER;
3496                         goto scrub;
3497                 }
3498
3499                 ret = set_supply(rdev, r);
3500                 if (ret < 0)
3501                         goto scrub;
3502
3503                 /* Enable supply if rail is enabled */
3504                 if (_regulator_is_enabled(rdev)) {
3505                         ret = regulator_enable(rdev->supply);
3506                         if (ret < 0)
3507                                 goto scrub;
3508                 }
3509         }
3510
3511 add_dev:
3512         /* add consumers devices */
3513         if (init_data) {
3514                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3515                         ret = set_consumer_device_supply(rdev,
3516                                 init_data->consumer_supplies[i].dev_name,
3517                                 init_data->consumer_supplies[i].supply);
3518                         if (ret < 0) {
3519                                 dev_err(dev, "Failed to set supply %s\n",
3520                                         init_data->consumer_supplies[i].supply);
3521                                 goto unset_supplies;
3522                         }
3523                 }
3524         }
3525
3526         list_add(&rdev->list, &regulator_list);
3527
3528         rdev_init_debugfs(rdev);
3529 out:
3530         mutex_unlock(&regulator_list_mutex);
3531         return rdev;
3532
3533 unset_supplies:
3534         unset_regulator_supplies(rdev);
3535
3536 scrub:
3537         if (rdev->supply)
3538                 _regulator_put(rdev->supply);
3539         regulator_ena_gpio_free(rdev);
3540         kfree(rdev->constraints);
3541 wash:
3542         device_unregister(&rdev->dev);
3543         /* device core frees rdev */
3544         rdev = ERR_PTR(ret);
3545         goto out;
3546
3547 clean:
3548         kfree(rdev);
3549         rdev = ERR_PTR(ret);
3550         goto out;
3551 }
3552 EXPORT_SYMBOL_GPL(regulator_register);
3553
3554 /**
3555  * regulator_unregister - unregister regulator
3556  * @rdev: regulator to unregister
3557  *
3558  * Called by regulator drivers to unregister a regulator.
3559  */
3560 void regulator_unregister(struct regulator_dev *rdev)
3561 {
3562         if (rdev == NULL)
3563                 return;
3564
3565         if (rdev->supply) {
3566                 while (rdev->use_count--)
3567                         regulator_disable(rdev->supply);
3568                 regulator_put(rdev->supply);
3569         }
3570         mutex_lock(&regulator_list_mutex);
3571         debugfs_remove_recursive(rdev->debugfs);
3572         flush_work(&rdev->disable_work.work);
3573         WARN_ON(rdev->open_count);
3574         unset_regulator_supplies(rdev);
3575         list_del(&rdev->list);
3576         kfree(rdev->constraints);
3577         regulator_ena_gpio_free(rdev);
3578         device_unregister(&rdev->dev);
3579         mutex_unlock(&regulator_list_mutex);
3580 }
3581 EXPORT_SYMBOL_GPL(regulator_unregister);
3582
3583 /**
3584  * regulator_suspend_prepare - prepare regulators for system wide suspend
3585  * @state: system suspend state
3586  *
3587  * Configure each regulator with it's suspend operating parameters for state.
3588  * This will usually be called by machine suspend code prior to supending.
3589  */
3590 int regulator_suspend_prepare(suspend_state_t state)
3591 {
3592         struct regulator_dev *rdev;
3593         int ret = 0;
3594
3595         /* ON is handled by regulator active state */
3596         if (state == PM_SUSPEND_ON)
3597                 return -EINVAL;
3598
3599         mutex_lock(&regulator_list_mutex);
3600         list_for_each_entry(rdev, &regulator_list, list) {
3601
3602                 mutex_lock(&rdev->mutex);
3603                 ret = suspend_prepare(rdev, state);
3604                 mutex_unlock(&rdev->mutex);
3605
3606                 if (ret < 0) {
3607                         rdev_err(rdev, "failed to prepare\n");
3608                         goto out;
3609                 }
3610         }
3611 out:
3612         mutex_unlock(&regulator_list_mutex);
3613         return ret;
3614 }
3615 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3616
3617 /**
3618  * regulator_suspend_finish - resume regulators from system wide suspend
3619  *
3620  * Turn on regulators that might be turned off by regulator_suspend_prepare
3621  * and that should be turned on according to the regulators properties.
3622  */
3623 int regulator_suspend_finish(void)
3624 {
3625         struct regulator_dev *rdev;
3626         int ret = 0, error;
3627
3628         mutex_lock(&regulator_list_mutex);
3629         list_for_each_entry(rdev, &regulator_list, list) {
3630                 mutex_lock(&rdev->mutex);
3631                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3632                         error = _regulator_do_enable(rdev);
3633                         if (error)
3634                                 ret = error;
3635                 } else {
3636                         if (!have_full_constraints())
3637                                 goto unlock;
3638                         if (!_regulator_is_enabled(rdev))
3639                                 goto unlock;
3640
3641                         error = _regulator_do_disable(rdev);
3642                         if (error)
3643                                 ret = error;
3644                 }
3645 unlock:
3646                 mutex_unlock(&rdev->mutex);
3647         }
3648         mutex_unlock(&regulator_list_mutex);
3649         return ret;
3650 }
3651 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3652
3653 /**
3654  * regulator_has_full_constraints - the system has fully specified constraints
3655  *
3656  * Calling this function will cause the regulator API to disable all
3657  * regulators which have a zero use count and don't have an always_on
3658  * constraint in a late_initcall.
3659  *
3660  * The intention is that this will become the default behaviour in a
3661  * future kernel release so users are encouraged to use this facility
3662  * now.
3663  */
3664 void regulator_has_full_constraints(void)
3665 {
3666         has_full_constraints = 1;
3667 }
3668 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3669
3670 /**
3671  * rdev_get_drvdata - get rdev regulator driver data
3672  * @rdev: regulator
3673  *
3674  * Get rdev regulator driver private data. This call can be used in the
3675  * regulator driver context.
3676  */
3677 void *rdev_get_drvdata(struct regulator_dev *rdev)
3678 {
3679         return rdev->reg_data;
3680 }
3681 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3682
3683 /**
3684  * regulator_get_drvdata - get regulator driver data
3685  * @regulator: regulator
3686  *
3687  * Get regulator driver private data. This call can be used in the consumer
3688  * driver context when non API regulator specific functions need to be called.
3689  */
3690 void *regulator_get_drvdata(struct regulator *regulator)
3691 {
3692         return regulator->rdev->reg_data;
3693 }
3694 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3695
3696 /**
3697  * regulator_set_drvdata - set regulator driver data
3698  * @regulator: regulator
3699  * @data: data
3700  */
3701 void regulator_set_drvdata(struct regulator *regulator, void *data)
3702 {
3703         regulator->rdev->reg_data = data;
3704 }
3705 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3706
3707 /**
3708  * regulator_get_id - get regulator ID
3709  * @rdev: regulator
3710  */
3711 int rdev_get_id(struct regulator_dev *rdev)
3712 {
3713         return rdev->desc->id;
3714 }
3715 EXPORT_SYMBOL_GPL(rdev_get_id);
3716
3717 struct device *rdev_get_dev(struct regulator_dev *rdev)
3718 {
3719         return &rdev->dev;
3720 }
3721 EXPORT_SYMBOL_GPL(rdev_get_dev);
3722
3723 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3724 {
3725         return reg_init_data->driver_data;
3726 }
3727 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3728
3729 #ifdef CONFIG_DEBUG_FS
3730 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3731                                     size_t count, loff_t *ppos)
3732 {
3733         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3734         ssize_t len, ret = 0;
3735         struct regulator_map *map;
3736
3737         if (!buf)
3738                 return -ENOMEM;
3739
3740         list_for_each_entry(map, &regulator_map_list, list) {
3741                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3742                                "%s -> %s.%s\n",
3743                                rdev_get_name(map->regulator), map->dev_name,
3744                                map->supply);
3745                 if (len >= 0)
3746                         ret += len;
3747                 if (ret > PAGE_SIZE) {
3748                         ret = PAGE_SIZE;
3749                         break;
3750                 }
3751         }
3752
3753         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3754
3755         kfree(buf);
3756
3757         return ret;
3758 }
3759 #endif
3760
3761 static const struct file_operations supply_map_fops = {
3762 #ifdef CONFIG_DEBUG_FS
3763         .read = supply_map_read_file,
3764         .llseek = default_llseek,
3765 #endif
3766 };
3767
3768 static int __init regulator_init(void)
3769 {
3770         int ret;
3771
3772         ret = class_register(&regulator_class);
3773
3774         debugfs_root = debugfs_create_dir("regulator", NULL);
3775         if (!debugfs_root)
3776                 pr_warn("regulator: Failed to create debugfs directory\n");
3777
3778         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3779                             &supply_map_fops);
3780
3781         regulator_dummy_init();
3782
3783         return ret;
3784 }
3785
3786 /* init early to allow our consumers to complete system booting */
3787 core_initcall(regulator_init);
3788
3789 static int __init regulator_init_complete(void)
3790 {
3791         struct regulator_dev *rdev;
3792         struct regulator_ops *ops;
3793         struct regulation_constraints *c;
3794         int enabled, ret;
3795
3796         /*
3797          * Since DT doesn't provide an idiomatic mechanism for
3798          * enabling full constraints and since it's much more natural
3799          * with DT to provide them just assume that a DT enabled
3800          * system has full constraints.
3801          */
3802         if (of_have_populated_dt())
3803                 has_full_constraints = true;
3804
3805         mutex_lock(&regulator_list_mutex);
3806
3807         /* If we have a full configuration then disable any regulators
3808          * which are not in use or always_on.  This will become the
3809          * default behaviour in the future.
3810          */
3811         list_for_each_entry(rdev, &regulator_list, list) {
3812                 ops = rdev->desc->ops;
3813                 c = rdev->constraints;
3814
3815                 if (c && c->always_on)
3816                         continue;
3817
3818                 mutex_lock(&rdev->mutex);
3819
3820                 if (rdev->use_count)
3821                         goto unlock;
3822
3823                 /* If we can't read the status assume it's on. */
3824                 if (ops->is_enabled)
3825                         enabled = ops->is_enabled(rdev);
3826                 else
3827                         enabled = 1;
3828
3829                 if (!enabled)
3830                         goto unlock;
3831
3832                 if (have_full_constraints()) {
3833                         /* We log since this may kill the system if it
3834                          * goes wrong. */
3835                         rdev_info(rdev, "disabling\n");
3836                         ret = _regulator_do_disable(rdev);
3837                         if (ret != 0)
3838                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3839                 } else {
3840                         /* The intention is that in future we will
3841                          * assume that full constraints are provided
3842                          * so warn even if we aren't going to do
3843                          * anything here.
3844                          */
3845                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3846                 }
3847
3848 unlock:
3849                 mutex_unlock(&rdev->mutex);
3850         }
3851
3852         mutex_unlock(&regulator_list_mutex);
3853
3854         return 0;
3855 }
3856 late_initcall(regulator_init_complete);