regulator: slg51000: Wait after asserting CS pin
[platform/kernel/linux-starfive.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94                                      suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96                                           struct device *dev,
97                                           const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
112 static bool have_full_constraints(void)
113 {
114         return has_full_constraints || of_have_populated_dt();
115 }
116
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119         if (!rdev->constraints) {
120                 rdev_err(rdev, "no constraints\n");
121                 return false;
122         }
123
124         if (rdev->constraints->valid_ops_mask & ops)
125                 return true;
126
127         return false;
128 }
129
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:               regulator source
133  * @ww_ctx:             w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142                                         struct ww_acquire_ctx *ww_ctx)
143 {
144         bool lock = false;
145         int ret = 0;
146
147         mutex_lock(&regulator_nesting_mutex);
148
149         if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150                 if (rdev->mutex_owner == current)
151                         rdev->ref_cnt++;
152                 else
153                         lock = true;
154
155                 if (lock) {
156                         mutex_unlock(&regulator_nesting_mutex);
157                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158                         mutex_lock(&regulator_nesting_mutex);
159                 }
160         } else {
161                 lock = true;
162         }
163
164         if (lock && ret != -EDEADLK) {
165                 rdev->ref_cnt++;
166                 rdev->mutex_owner = current;
167         }
168
169         mutex_unlock(&regulator_nesting_mutex);
170
171         return ret;
172 }
173
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:               regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186         regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:               regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198         mutex_lock(&regulator_nesting_mutex);
199
200         if (--rdev->ref_cnt == 0) {
201                 rdev->mutex_owner = NULL;
202                 ww_mutex_unlock(&rdev->mutex);
203         }
204
205         WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207         mutex_unlock(&regulator_nesting_mutex);
208 }
209
210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212         struct regulator_dev *c_rdev;
213         int i;
214
215         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218                 if (rdev->supply->rdev == c_rdev)
219                         return true;
220         }
221
222         return false;
223 }
224
225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226                                        unsigned int n_coupled)
227 {
228         struct regulator_dev *c_rdev, *supply_rdev;
229         int i, supply_n_coupled;
230
231         for (i = n_coupled; i > 0; i--) {
232                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234                 if (!c_rdev)
235                         continue;
236
237                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238                         supply_rdev = c_rdev->supply->rdev;
239                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241                         regulator_unlock_recursive(supply_rdev,
242                                                    supply_n_coupled);
243                 }
244
245                 regulator_unlock(c_rdev);
246         }
247 }
248
249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250                                     struct regulator_dev **new_contended_rdev,
251                                     struct regulator_dev **old_contended_rdev,
252                                     struct ww_acquire_ctx *ww_ctx)
253 {
254         struct regulator_dev *c_rdev;
255         int i, err;
256
257         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260                 if (!c_rdev)
261                         continue;
262
263                 if (c_rdev != *old_contended_rdev) {
264                         err = regulator_lock_nested(c_rdev, ww_ctx);
265                         if (err) {
266                                 if (err == -EDEADLK) {
267                                         *new_contended_rdev = c_rdev;
268                                         goto err_unlock;
269                                 }
270
271                                 /* shouldn't happen */
272                                 WARN_ON_ONCE(err != -EALREADY);
273                         }
274                 } else {
275                         *old_contended_rdev = NULL;
276                 }
277
278                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279                         err = regulator_lock_recursive(c_rdev->supply->rdev,
280                                                        new_contended_rdev,
281                                                        old_contended_rdev,
282                                                        ww_ctx);
283                         if (err) {
284                                 regulator_unlock(c_rdev);
285                                 goto err_unlock;
286                         }
287                 }
288         }
289
290         return 0;
291
292 err_unlock:
293         regulator_unlock_recursive(rdev, i);
294
295         return err;
296 }
297
298 /**
299  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300  *                              regulators
301  * @rdev:                       regulator source
302  * @ww_ctx:                     w/w mutex acquire context
303  *
304  * Unlock all regulators related with rdev by coupling or supplying.
305  */
306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307                                        struct ww_acquire_ctx *ww_ctx)
308 {
309         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310         ww_acquire_fini(ww_ctx);
311 }
312
313 /**
314  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315  * @rdev:                       regulator source
316  * @ww_ctx:                     w/w mutex acquire context
317  *
318  * This function as a wrapper on regulator_lock_recursive(), which locks
319  * all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322                                      struct ww_acquire_ctx *ww_ctx)
323 {
324         struct regulator_dev *new_contended_rdev = NULL;
325         struct regulator_dev *old_contended_rdev = NULL;
326         int err;
327
328         mutex_lock(&regulator_list_mutex);
329
330         ww_acquire_init(ww_ctx, &regulator_ww_class);
331
332         do {
333                 if (new_contended_rdev) {
334                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335                         old_contended_rdev = new_contended_rdev;
336                         old_contended_rdev->ref_cnt++;
337                 }
338
339                 err = regulator_lock_recursive(rdev,
340                                                &new_contended_rdev,
341                                                &old_contended_rdev,
342                                                ww_ctx);
343
344                 if (old_contended_rdev)
345                         regulator_unlock(old_contended_rdev);
346
347         } while (err == -EDEADLK);
348
349         ww_acquire_done(ww_ctx);
350
351         mutex_unlock(&regulator_list_mutex);
352 }
353
354 /**
355  * of_get_child_regulator - get a child regulator device node
356  * based on supply name
357  * @parent: Parent device node
358  * @prop_name: Combination regulator supply name and "-supply"
359  *
360  * Traverse all child nodes.
361  * Extract the child regulator device node corresponding to the supply name.
362  * returns the device node corresponding to the regulator if found, else
363  * returns NULL.
364  */
365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366                                                   const char *prop_name)
367 {
368         struct device_node *regnode = NULL;
369         struct device_node *child = NULL;
370
371         for_each_child_of_node(parent, child) {
372                 regnode = of_parse_phandle(child, prop_name, 0);
373
374                 if (!regnode) {
375                         regnode = of_get_child_regulator(child, prop_name);
376                         if (regnode)
377                                 goto err_node_put;
378                 } else {
379                         goto err_node_put;
380                 }
381         }
382         return NULL;
383
384 err_node_put:
385         of_node_put(child);
386         return regnode;
387 }
388
389 /**
390  * of_get_regulator - get a regulator device node based on supply name
391  * @dev: Device pointer for the consumer (of regulator) device
392  * @supply: regulator supply name
393  *
394  * Extract the regulator device node corresponding to the supply name.
395  * returns the device node corresponding to the regulator if found, else
396  * returns NULL.
397  */
398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400         struct device_node *regnode = NULL;
401         char prop_name[64]; /* 64 is max size of property name */
402
403         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405         snprintf(prop_name, 64, "%s-supply", supply);
406         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408         if (!regnode) {
409                 regnode = of_get_child_regulator(dev->of_node, prop_name);
410                 if (regnode)
411                         return regnode;
412
413                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414                                 prop_name, dev->of_node);
415                 return NULL;
416         }
417         return regnode;
418 }
419
420 /* Platform voltage constraint check */
421 int regulator_check_voltage(struct regulator_dev *rdev,
422                             int *min_uV, int *max_uV)
423 {
424         BUG_ON(*min_uV > *max_uV);
425
426         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427                 rdev_err(rdev, "voltage operation not allowed\n");
428                 return -EPERM;
429         }
430
431         if (*max_uV > rdev->constraints->max_uV)
432                 *max_uV = rdev->constraints->max_uV;
433         if (*min_uV < rdev->constraints->min_uV)
434                 *min_uV = rdev->constraints->min_uV;
435
436         if (*min_uV > *max_uV) {
437                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438                          *min_uV, *max_uV);
439                 return -EINVAL;
440         }
441
442         return 0;
443 }
444
445 /* return 0 if the state is valid */
446 static int regulator_check_states(suspend_state_t state)
447 {
448         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450
451 /* Make sure we select a voltage that suits the needs of all
452  * regulator consumers
453  */
454 int regulator_check_consumers(struct regulator_dev *rdev,
455                               int *min_uV, int *max_uV,
456                               suspend_state_t state)
457 {
458         struct regulator *regulator;
459         struct regulator_voltage *voltage;
460
461         list_for_each_entry(regulator, &rdev->consumer_list, list) {
462                 voltage = &regulator->voltage[state];
463                 /*
464                  * Assume consumers that didn't say anything are OK
465                  * with anything in the constraint range.
466                  */
467                 if (!voltage->min_uV && !voltage->max_uV)
468                         continue;
469
470                 if (*max_uV > voltage->max_uV)
471                         *max_uV = voltage->max_uV;
472                 if (*min_uV < voltage->min_uV)
473                         *min_uV = voltage->min_uV;
474         }
475
476         if (*min_uV > *max_uV) {
477                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478                         *min_uV, *max_uV);
479                 return -EINVAL;
480         }
481
482         return 0;
483 }
484
485 /* current constraint check */
486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487                                         int *min_uA, int *max_uA)
488 {
489         BUG_ON(*min_uA > *max_uA);
490
491         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492                 rdev_err(rdev, "current operation not allowed\n");
493                 return -EPERM;
494         }
495
496         if (*max_uA > rdev->constraints->max_uA)
497                 *max_uA = rdev->constraints->max_uA;
498         if (*min_uA < rdev->constraints->min_uA)
499                 *min_uA = rdev->constraints->min_uA;
500
501         if (*min_uA > *max_uA) {
502                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503                          *min_uA, *max_uA);
504                 return -EINVAL;
505         }
506
507         return 0;
508 }
509
510 /* operating mode constraint check */
511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512                                     unsigned int *mode)
513 {
514         switch (*mode) {
515         case REGULATOR_MODE_FAST:
516         case REGULATOR_MODE_NORMAL:
517         case REGULATOR_MODE_IDLE:
518         case REGULATOR_MODE_STANDBY:
519                 break;
520         default:
521                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522                 return -EINVAL;
523         }
524
525         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526                 rdev_err(rdev, "mode operation not allowed\n");
527                 return -EPERM;
528         }
529
530         /* The modes are bitmasks, the most power hungry modes having
531          * the lowest values. If the requested mode isn't supported
532          * try higher modes.
533          */
534         while (*mode) {
535                 if (rdev->constraints->valid_modes_mask & *mode)
536                         return 0;
537                 *mode /= 2;
538         }
539
540         return -EINVAL;
541 }
542
543 static inline struct regulator_state *
544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546         if (rdev->constraints == NULL)
547                 return NULL;
548
549         switch (state) {
550         case PM_SUSPEND_STANDBY:
551                 return &rdev->constraints->state_standby;
552         case PM_SUSPEND_MEM:
553                 return &rdev->constraints->state_mem;
554         case PM_SUSPEND_MAX:
555                 return &rdev->constraints->state_disk;
556         default:
557                 return NULL;
558         }
559 }
560
561 static const struct regulator_state *
562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564         const struct regulator_state *rstate;
565
566         rstate = regulator_get_suspend_state(rdev, state);
567         if (rstate == NULL)
568                 return NULL;
569
570         /* If we have no suspend mode configuration don't set anything;
571          * only warn if the driver implements set_suspend_voltage or
572          * set_suspend_mode callback.
573          */
574         if (rstate->enabled != ENABLE_IN_SUSPEND &&
575             rstate->enabled != DISABLE_IN_SUSPEND) {
576                 if (rdev->desc->ops->set_suspend_voltage ||
577                     rdev->desc->ops->set_suspend_mode)
578                         rdev_warn(rdev, "No configuration\n");
579                 return NULL;
580         }
581
582         return rstate;
583 }
584
585 static ssize_t microvolts_show(struct device *dev,
586                                struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589         int uV;
590
591         regulator_lock(rdev);
592         uV = regulator_get_voltage_rdev(rdev);
593         regulator_unlock(rdev);
594
595         if (uV < 0)
596                 return uV;
597         return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600
601 static ssize_t microamps_show(struct device *dev,
602                               struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609
610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611                          char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618
619 static const char *regulator_opmode_to_str(int mode)
620 {
621         switch (mode) {
622         case REGULATOR_MODE_FAST:
623                 return "fast";
624         case REGULATOR_MODE_NORMAL:
625                 return "normal";
626         case REGULATOR_MODE_IDLE:
627                 return "idle";
628         case REGULATOR_MODE_STANDBY:
629                 return "standby";
630         }
631         return "unknown";
632 }
633
634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638
639 static ssize_t opmode_show(struct device *dev,
640                            struct device_attribute *attr, char *buf)
641 {
642         struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647
648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650         if (state > 0)
651                 return sprintf(buf, "enabled\n");
652         else if (state == 0)
653                 return sprintf(buf, "disabled\n");
654         else
655                 return sprintf(buf, "unknown\n");
656 }
657
658 static ssize_t state_show(struct device *dev,
659                           struct device_attribute *attr, char *buf)
660 {
661         struct regulator_dev *rdev = dev_get_drvdata(dev);
662         ssize_t ret;
663
664         regulator_lock(rdev);
665         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666         regulator_unlock(rdev);
667
668         return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671
672 static ssize_t status_show(struct device *dev,
673                            struct device_attribute *attr, char *buf)
674 {
675         struct regulator_dev *rdev = dev_get_drvdata(dev);
676         int status;
677         char *label;
678
679         status = rdev->desc->ops->get_status(rdev);
680         if (status < 0)
681                 return status;
682
683         switch (status) {
684         case REGULATOR_STATUS_OFF:
685                 label = "off";
686                 break;
687         case REGULATOR_STATUS_ON:
688                 label = "on";
689                 break;
690         case REGULATOR_STATUS_ERROR:
691                 label = "error";
692                 break;
693         case REGULATOR_STATUS_FAST:
694                 label = "fast";
695                 break;
696         case REGULATOR_STATUS_NORMAL:
697                 label = "normal";
698                 break;
699         case REGULATOR_STATUS_IDLE:
700                 label = "idle";
701                 break;
702         case REGULATOR_STATUS_STANDBY:
703                 label = "standby";
704                 break;
705         case REGULATOR_STATUS_BYPASS:
706                 label = "bypass";
707                 break;
708         case REGULATOR_STATUS_UNDEFINED:
709                 label = "undefined";
710                 break;
711         default:
712                 return -ERANGE;
713         }
714
715         return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718
719 static ssize_t min_microamps_show(struct device *dev,
720                                   struct device_attribute *attr, char *buf)
721 {
722         struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724         if (!rdev->constraints)
725                 return sprintf(buf, "constraint not defined\n");
726
727         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730
731 static ssize_t max_microamps_show(struct device *dev,
732                                   struct device_attribute *attr, char *buf)
733 {
734         struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736         if (!rdev->constraints)
737                 return sprintf(buf, "constraint not defined\n");
738
739         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742
743 static ssize_t min_microvolts_show(struct device *dev,
744                                    struct device_attribute *attr, char *buf)
745 {
746         struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748         if (!rdev->constraints)
749                 return sprintf(buf, "constraint not defined\n");
750
751         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754
755 static ssize_t max_microvolts_show(struct device *dev,
756                                    struct device_attribute *attr, char *buf)
757 {
758         struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760         if (!rdev->constraints)
761                 return sprintf(buf, "constraint not defined\n");
762
763         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766
767 static ssize_t requested_microamps_show(struct device *dev,
768                                         struct device_attribute *attr, char *buf)
769 {
770         struct regulator_dev *rdev = dev_get_drvdata(dev);
771         struct regulator *regulator;
772         int uA = 0;
773
774         regulator_lock(rdev);
775         list_for_each_entry(regulator, &rdev->consumer_list, list) {
776                 if (regulator->enable_count)
777                         uA += regulator->uA_load;
778         }
779         regulator_unlock(rdev);
780         return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783
784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785                               char *buf)
786 {
787         struct regulator_dev *rdev = dev_get_drvdata(dev);
788         return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791
792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793                          char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797         switch (rdev->desc->type) {
798         case REGULATOR_VOLTAGE:
799                 return sprintf(buf, "voltage\n");
800         case REGULATOR_CURRENT:
801                 return sprintf(buf, "current\n");
802         }
803         return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806
807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808                                            struct device_attribute *attr, char *buf)
809 {
810         struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817                                             struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826                                                struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834 static ssize_t suspend_mem_mode_show(struct device *dev,
835                                      struct device_attribute *attr, char *buf)
836 {
837         struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839         return regulator_print_opmode(buf,
840                 rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843
844 static ssize_t suspend_disk_mode_show(struct device *dev,
845                                       struct device_attribute *attr, char *buf)
846 {
847         struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849         return regulator_print_opmode(buf,
850                 rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853
854 static ssize_t suspend_standby_mode_show(struct device *dev,
855                                          struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_opmode(buf,
860                 rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863
864 static ssize_t suspend_mem_state_show(struct device *dev,
865                                       struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873
874 static ssize_t suspend_disk_state_show(struct device *dev,
875                                        struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883
884 static ssize_t suspend_standby_state_show(struct device *dev,
885                                           struct device_attribute *attr, char *buf)
886 {
887         struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889         return regulator_print_state(buf,
890                         rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893
894 static ssize_t bypass_show(struct device *dev,
895                            struct device_attribute *attr, char *buf)
896 {
897         struct regulator_dev *rdev = dev_get_drvdata(dev);
898         const char *report;
899         bool bypass;
900         int ret;
901
902         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904         if (ret != 0)
905                 report = "unknown";
906         else if (bypass)
907                 report = "enabled";
908         else
909                 report = "disabled";
910
911         return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914
915 #define REGULATOR_ERROR_ATTR(name, bit)                                                 \
916         static ssize_t name##_show(struct device *dev, struct device_attribute *attr,   \
917                                    char *buf)                                           \
918         {                                                                               \
919                 int ret;                                                                \
920                 unsigned int flags;                                                     \
921                 struct regulator_dev *rdev = dev_get_drvdata(dev);                      \
922                 ret = _regulator_get_error_flags(rdev, &flags);                         \
923                 if (ret)                                                                \
924                         return ret;                                                     \
925                 return sysfs_emit(buf, "%d\n", !!(flags & (bit)));                      \
926         }                                                                               \
927         static DEVICE_ATTR_RO(name)
928
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940  * consumer load. All locks held by caller
941  */
942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944         struct regulator *sibling;
945         int current_uA = 0, output_uV, input_uV, err;
946         unsigned int mode;
947
948         /*
949          * first check to see if we can set modes at all, otherwise just
950          * tell the consumer everything is OK.
951          */
952         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953                 rdev_dbg(rdev, "DRMS operation not allowed\n");
954                 return 0;
955         }
956
957         if (!rdev->desc->ops->get_optimum_mode &&
958             !rdev->desc->ops->set_load)
959                 return 0;
960
961         if (!rdev->desc->ops->set_mode &&
962             !rdev->desc->ops->set_load)
963                 return -EINVAL;
964
965         /* calc total requested load */
966         list_for_each_entry(sibling, &rdev->consumer_list, list) {
967                 if (sibling->enable_count)
968                         current_uA += sibling->uA_load;
969         }
970
971         current_uA += rdev->constraints->system_load;
972
973         if (rdev->desc->ops->set_load) {
974                 /* set the optimum mode for our new total regulator load */
975                 err = rdev->desc->ops->set_load(rdev, current_uA);
976                 if (err < 0)
977                         rdev_err(rdev, "failed to set load %d: %pe\n",
978                                  current_uA, ERR_PTR(err));
979         } else {
980                 /*
981                  * Unfortunately in some cases the constraints->valid_ops has
982                  * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983                  * That's not really legit but we won't consider it a fatal
984                  * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985                  * wasn't set.
986                  */
987                 if (!rdev->constraints->valid_modes_mask) {
988                         rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989                         return 0;
990                 }
991
992                 /* get output voltage */
993                 output_uV = regulator_get_voltage_rdev(rdev);
994
995                 /*
996                  * Don't return an error; if regulator driver cares about
997                  * output_uV then it's up to the driver to validate.
998                  */
999                 if (output_uV <= 0)
1000                         rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002                 /* get input voltage */
1003                 input_uV = 0;
1004                 if (rdev->supply)
1005                         input_uV = regulator_get_voltage(rdev->supply);
1006                 if (input_uV <= 0)
1007                         input_uV = rdev->constraints->input_uV;
1008
1009                 /*
1010                  * Don't return an error; if regulator driver cares about
1011                  * input_uV then it's up to the driver to validate.
1012                  */
1013                 if (input_uV <= 0)
1014                         rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016                 /* now get the optimum mode for our new total regulator load */
1017                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018                                                          output_uV, current_uA);
1019
1020                 /* check the new mode is allowed */
1021                 err = regulator_mode_constrain(rdev, &mode);
1022                 if (err < 0) {
1023                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1025                         return err;
1026                 }
1027
1028                 err = rdev->desc->ops->set_mode(rdev, mode);
1029                 if (err < 0)
1030                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031                                  mode, ERR_PTR(err));
1032         }
1033
1034         return err;
1035 }
1036
1037 static int __suspend_set_state(struct regulator_dev *rdev,
1038                                const struct regulator_state *rstate)
1039 {
1040         int ret = 0;
1041
1042         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043                 rdev->desc->ops->set_suspend_enable)
1044                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1045         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046                 rdev->desc->ops->set_suspend_disable)
1047                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1048         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049                 ret = 0;
1050
1051         if (ret < 0) {
1052                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053                 return ret;
1054         }
1055
1056         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058                 if (ret < 0) {
1059                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060                         return ret;
1061                 }
1062         }
1063
1064         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066                 if (ret < 0) {
1067                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068                         return ret;
1069                 }
1070         }
1071
1072         return ret;
1073 }
1074
1075 static int suspend_set_initial_state(struct regulator_dev *rdev)
1076 {
1077         const struct regulator_state *rstate;
1078
1079         rstate = regulator_get_suspend_state_check(rdev,
1080                         rdev->constraints->initial_state);
1081         if (!rstate)
1082                 return 0;
1083
1084         return __suspend_set_state(rdev, rstate);
1085 }
1086
1087 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088 static void print_constraints_debug(struct regulator_dev *rdev)
1089 {
1090         struct regulation_constraints *constraints = rdev->constraints;
1091         char buf[160] = "";
1092         size_t len = sizeof(buf) - 1;
1093         int count = 0;
1094         int ret;
1095
1096         if (constraints->min_uV && constraints->max_uV) {
1097                 if (constraints->min_uV == constraints->max_uV)
1098                         count += scnprintf(buf + count, len - count, "%d mV ",
1099                                            constraints->min_uV / 1000);
1100                 else
1101                         count += scnprintf(buf + count, len - count,
1102                                            "%d <--> %d mV ",
1103                                            constraints->min_uV / 1000,
1104                                            constraints->max_uV / 1000);
1105         }
1106
1107         if (!constraints->min_uV ||
1108             constraints->min_uV != constraints->max_uV) {
1109                 ret = regulator_get_voltage_rdev(rdev);
1110                 if (ret > 0)
1111                         count += scnprintf(buf + count, len - count,
1112                                            "at %d mV ", ret / 1000);
1113         }
1114
1115         if (constraints->uV_offset)
1116                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1117                                    constraints->uV_offset / 1000);
1118
1119         if (constraints->min_uA && constraints->max_uA) {
1120                 if (constraints->min_uA == constraints->max_uA)
1121                         count += scnprintf(buf + count, len - count, "%d mA ",
1122                                            constraints->min_uA / 1000);
1123                 else
1124                         count += scnprintf(buf + count, len - count,
1125                                            "%d <--> %d mA ",
1126                                            constraints->min_uA / 1000,
1127                                            constraints->max_uA / 1000);
1128         }
1129
1130         if (!constraints->min_uA ||
1131             constraints->min_uA != constraints->max_uA) {
1132                 ret = _regulator_get_current_limit(rdev);
1133                 if (ret > 0)
1134                         count += scnprintf(buf + count, len - count,
1135                                            "at %d mA ", ret / 1000);
1136         }
1137
1138         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139                 count += scnprintf(buf + count, len - count, "fast ");
1140         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141                 count += scnprintf(buf + count, len - count, "normal ");
1142         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143                 count += scnprintf(buf + count, len - count, "idle ");
1144         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145                 count += scnprintf(buf + count, len - count, "standby ");
1146
1147         if (!count)
1148                 count = scnprintf(buf, len, "no parameters");
1149         else
1150                 --count;
1151
1152         count += scnprintf(buf + count, len - count, ", %s",
1153                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155         rdev_dbg(rdev, "%s\n", buf);
1156 }
1157 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161 static void print_constraints(struct regulator_dev *rdev)
1162 {
1163         struct regulation_constraints *constraints = rdev->constraints;
1164
1165         print_constraints_debug(rdev);
1166
1167         if ((constraints->min_uV != constraints->max_uV) &&
1168             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169                 rdev_warn(rdev,
1170                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171 }
1172
1173 static int machine_constraints_voltage(struct regulator_dev *rdev,
1174         struct regulation_constraints *constraints)
1175 {
1176         const struct regulator_ops *ops = rdev->desc->ops;
1177         int ret;
1178
1179         /* do we need to apply the constraint voltage */
1180         if (rdev->constraints->apply_uV &&
1181             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182                 int target_min, target_max;
1183                 int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185                 if (current_uV == -ENOTRECOVERABLE) {
1186                         /* This regulator can't be read and must be initialized */
1187                         rdev_info(rdev, "Setting %d-%duV\n",
1188                                   rdev->constraints->min_uV,
1189                                   rdev->constraints->max_uV);
1190                         _regulator_do_set_voltage(rdev,
1191                                                   rdev->constraints->min_uV,
1192                                                   rdev->constraints->max_uV);
1193                         current_uV = regulator_get_voltage_rdev(rdev);
1194                 }
1195
1196                 if (current_uV < 0) {
1197                         if (current_uV != -EPROBE_DEFER)
1198                                 rdev_err(rdev,
1199                                          "failed to get the current voltage: %pe\n",
1200                                          ERR_PTR(current_uV));
1201                         return current_uV;
1202                 }
1203
1204                 /*
1205                  * If we're below the minimum voltage move up to the
1206                  * minimum voltage, if we're above the maximum voltage
1207                  * then move down to the maximum.
1208                  */
1209                 target_min = current_uV;
1210                 target_max = current_uV;
1211
1212                 if (current_uV < rdev->constraints->min_uV) {
1213                         target_min = rdev->constraints->min_uV;
1214                         target_max = rdev->constraints->min_uV;
1215                 }
1216
1217                 if (current_uV > rdev->constraints->max_uV) {
1218                         target_min = rdev->constraints->max_uV;
1219                         target_max = rdev->constraints->max_uV;
1220                 }
1221
1222                 if (target_min != current_uV || target_max != current_uV) {
1223                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224                                   current_uV, target_min, target_max);
1225                         ret = _regulator_do_set_voltage(
1226                                 rdev, target_min, target_max);
1227                         if (ret < 0) {
1228                                 rdev_err(rdev,
1229                                         "failed to apply %d-%duV constraint: %pe\n",
1230                                         target_min, target_max, ERR_PTR(ret));
1231                                 return ret;
1232                         }
1233                 }
1234         }
1235
1236         /* constrain machine-level voltage specs to fit
1237          * the actual range supported by this regulator.
1238          */
1239         if (ops->list_voltage && rdev->desc->n_voltages) {
1240                 int     count = rdev->desc->n_voltages;
1241                 int     i;
1242                 int     min_uV = INT_MAX;
1243                 int     max_uV = INT_MIN;
1244                 int     cmin = constraints->min_uV;
1245                 int     cmax = constraints->max_uV;
1246
1247                 /* it's safe to autoconfigure fixed-voltage supplies
1248                  * and the constraints are used by list_voltage.
1249                  */
1250                 if (count == 1 && !cmin) {
1251                         cmin = 1;
1252                         cmax = INT_MAX;
1253                         constraints->min_uV = cmin;
1254                         constraints->max_uV = cmax;
1255                 }
1256
1257                 /* voltage constraints are optional */
1258                 if ((cmin == 0) && (cmax == 0))
1259                         return 0;
1260
1261                 /* else require explicit machine-level constraints */
1262                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263                         rdev_err(rdev, "invalid voltage constraints\n");
1264                         return -EINVAL;
1265                 }
1266
1267                 /* no need to loop voltages if range is continuous */
1268                 if (rdev->desc->continuous_voltage_range)
1269                         return 0;
1270
1271                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272                 for (i = 0; i < count; i++) {
1273                         int     value;
1274
1275                         value = ops->list_voltage(rdev, i);
1276                         if (value <= 0)
1277                                 continue;
1278
1279                         /* maybe adjust [min_uV..max_uV] */
1280                         if (value >= cmin && value < min_uV)
1281                                 min_uV = value;
1282                         if (value <= cmax && value > max_uV)
1283                                 max_uV = value;
1284                 }
1285
1286                 /* final: [min_uV..max_uV] valid iff constraints valid */
1287                 if (max_uV < min_uV) {
1288                         rdev_err(rdev,
1289                                  "unsupportable voltage constraints %u-%uuV\n",
1290                                  min_uV, max_uV);
1291                         return -EINVAL;
1292                 }
1293
1294                 /* use regulator's subset of machine constraints */
1295                 if (constraints->min_uV < min_uV) {
1296                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297                                  constraints->min_uV, min_uV);
1298                         constraints->min_uV = min_uV;
1299                 }
1300                 if (constraints->max_uV > max_uV) {
1301                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302                                  constraints->max_uV, max_uV);
1303                         constraints->max_uV = max_uV;
1304                 }
1305         }
1306
1307         return 0;
1308 }
1309
1310 static int machine_constraints_current(struct regulator_dev *rdev,
1311         struct regulation_constraints *constraints)
1312 {
1313         const struct regulator_ops *ops = rdev->desc->ops;
1314         int ret;
1315
1316         if (!constraints->min_uA && !constraints->max_uA)
1317                 return 0;
1318
1319         if (constraints->min_uA > constraints->max_uA) {
1320                 rdev_err(rdev, "Invalid current constraints\n");
1321                 return -EINVAL;
1322         }
1323
1324         if (!ops->set_current_limit || !ops->get_current_limit) {
1325                 rdev_warn(rdev, "Operation of current configuration missing\n");
1326                 return 0;
1327         }
1328
1329         /* Set regulator current in constraints range */
1330         ret = ops->set_current_limit(rdev, constraints->min_uA,
1331                         constraints->max_uA);
1332         if (ret < 0) {
1333                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334                 return ret;
1335         }
1336
1337         return 0;
1338 }
1339
1340 static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342 static int notif_set_limit(struct regulator_dev *rdev,
1343                            int (*set)(struct regulator_dev *, int, int, bool),
1344                            int limit, int severity)
1345 {
1346         bool enable;
1347
1348         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349                 enable = false;
1350                 limit = 0;
1351         } else {
1352                 enable = true;
1353         }
1354
1355         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356                 limit = 0;
1357
1358         return set(rdev, limit, severity, enable);
1359 }
1360
1361 static int handle_notify_limits(struct regulator_dev *rdev,
1362                         int (*set)(struct regulator_dev *, int, int, bool),
1363                         struct notification_limit *limits)
1364 {
1365         int ret = 0;
1366
1367         if (!set)
1368                 return -EOPNOTSUPP;
1369
1370         if (limits->prot)
1371                 ret = notif_set_limit(rdev, set, limits->prot,
1372                                       REGULATOR_SEVERITY_PROT);
1373         if (ret)
1374                 return ret;
1375
1376         if (limits->err)
1377                 ret = notif_set_limit(rdev, set, limits->err,
1378                                       REGULATOR_SEVERITY_ERR);
1379         if (ret)
1380                 return ret;
1381
1382         if (limits->warn)
1383                 ret = notif_set_limit(rdev, set, limits->warn,
1384                                       REGULATOR_SEVERITY_WARN);
1385
1386         return ret;
1387 }
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400         int ret = 0;
1401         const struct regulator_ops *ops = rdev->desc->ops;
1402
1403         ret = machine_constraints_voltage(rdev, rdev->constraints);
1404         if (ret != 0)
1405                 return ret;
1406
1407         ret = machine_constraints_current(rdev, rdev->constraints);
1408         if (ret != 0)
1409                 return ret;
1410
1411         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412                 ret = ops->set_input_current_limit(rdev,
1413                                                    rdev->constraints->ilim_uA);
1414                 if (ret < 0) {
1415                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416                         return ret;
1417                 }
1418         }
1419
1420         /* do we need to setup our suspend state */
1421         if (rdev->constraints->initial_state) {
1422                 ret = suspend_set_initial_state(rdev);
1423                 if (ret < 0) {
1424                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425                         return ret;
1426                 }
1427         }
1428
1429         if (rdev->constraints->initial_mode) {
1430                 if (!ops->set_mode) {
1431                         rdev_err(rdev, "no set_mode operation\n");
1432                         return -EINVAL;
1433                 }
1434
1435                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436                 if (ret < 0) {
1437                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438                         return ret;
1439                 }
1440         } else if (rdev->constraints->system_load) {
1441                 /*
1442                  * We'll only apply the initial system load if an
1443                  * initial mode wasn't specified.
1444                  */
1445                 drms_uA_update(rdev);
1446         }
1447
1448         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449                 && ops->set_ramp_delay) {
1450                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451                 if (ret < 0) {
1452                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453                         return ret;
1454                 }
1455         }
1456
1457         if (rdev->constraints->pull_down && ops->set_pull_down) {
1458                 ret = ops->set_pull_down(rdev);
1459                 if (ret < 0) {
1460                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461                         return ret;
1462                 }
1463         }
1464
1465         if (rdev->constraints->soft_start && ops->set_soft_start) {
1466                 ret = ops->set_soft_start(rdev);
1467                 if (ret < 0) {
1468                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469                         return ret;
1470                 }
1471         }
1472
1473         /*
1474          * Existing logic does not warn if over_current_protection is given as
1475          * a constraint but driver does not support that. I think we should
1476          * warn about this type of issues as it is possible someone changes
1477          * PMIC on board to another type - and the another PMIC's driver does
1478          * not support setting protection. Board composer may happily believe
1479          * the DT limits are respected - especially if the new PMIC HW also
1480          * supports protection but the driver does not. I won't change the logic
1481          * without hearing more experienced opinion on this though.
1482          *
1483          * If warning is seen as a good idea then we can merge handling the
1484          * over-curret protection and detection and get rid of this special
1485          * handling.
1486          */
1487         if (rdev->constraints->over_current_protection
1488                 && ops->set_over_current_protection) {
1489                 int lim = rdev->constraints->over_curr_limits.prot;
1490
1491                 ret = ops->set_over_current_protection(rdev, lim,
1492                                                        REGULATOR_SEVERITY_PROT,
1493                                                        true);
1494                 if (ret < 0) {
1495                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1496                                  ERR_PTR(ret));
1497                         return ret;
1498                 }
1499         }
1500
1501         if (rdev->constraints->over_current_detection)
1502                 ret = handle_notify_limits(rdev,
1503                                            ops->set_over_current_protection,
1504                                            &rdev->constraints->over_curr_limits);
1505         if (ret) {
1506                 if (ret != -EOPNOTSUPP) {
1507                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1508                                  ERR_PTR(ret));
1509                         return ret;
1510                 }
1511                 rdev_warn(rdev,
1512                           "IC does not support requested over-current limits\n");
1513         }
1514
1515         if (rdev->constraints->over_voltage_detection)
1516                 ret = handle_notify_limits(rdev,
1517                                            ops->set_over_voltage_protection,
1518                                            &rdev->constraints->over_voltage_limits);
1519         if (ret) {
1520                 if (ret != -EOPNOTSUPP) {
1521                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522                                  ERR_PTR(ret));
1523                         return ret;
1524                 }
1525                 rdev_warn(rdev,
1526                           "IC does not support requested over voltage limits\n");
1527         }
1528
1529         if (rdev->constraints->under_voltage_detection)
1530                 ret = handle_notify_limits(rdev,
1531                                            ops->set_under_voltage_protection,
1532                                            &rdev->constraints->under_voltage_limits);
1533         if (ret) {
1534                 if (ret != -EOPNOTSUPP) {
1535                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536                                  ERR_PTR(ret));
1537                         return ret;
1538                 }
1539                 rdev_warn(rdev,
1540                           "IC does not support requested under voltage limits\n");
1541         }
1542
1543         if (rdev->constraints->over_temp_detection)
1544                 ret = handle_notify_limits(rdev,
1545                                            ops->set_thermal_protection,
1546                                            &rdev->constraints->temp_limits);
1547         if (ret) {
1548                 if (ret != -EOPNOTSUPP) {
1549                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1550                                  ERR_PTR(ret));
1551                         return ret;
1552                 }
1553                 rdev_warn(rdev,
1554                           "IC does not support requested temperature limits\n");
1555         }
1556
1557         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558                 bool ad_state = (rdev->constraints->active_discharge ==
1559                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561                 ret = ops->set_active_discharge(rdev, ad_state);
1562                 if (ret < 0) {
1563                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564                         return ret;
1565                 }
1566         }
1567
1568         /*
1569          * If there is no mechanism for controlling the regulator then
1570          * flag it as always_on so we don't end up duplicating checks
1571          * for this so much.  Note that we could control the state of
1572          * a supply to control the output on a regulator that has no
1573          * direct control.
1574          */
1575         if (!rdev->ena_pin && !ops->enable) {
1576                 if (rdev->supply_name && !rdev->supply)
1577                         return -EPROBE_DEFER;
1578
1579                 if (rdev->supply)
1580                         rdev->constraints->always_on =
1581                                 rdev->supply->rdev->constraints->always_on;
1582                 else
1583                         rdev->constraints->always_on = true;
1584         }
1585
1586         if (rdev->desc->off_on_delay)
1587                 rdev->last_off = ktime_get();
1588
1589         /* If the constraints say the regulator should be on at this point
1590          * and we have control then make sure it is enabled.
1591          */
1592         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593                 /* If we want to enable this regulator, make sure that we know
1594                  * the supplying regulator.
1595                  */
1596                 if (rdev->supply_name && !rdev->supply)
1597                         return -EPROBE_DEFER;
1598
1599                 if (rdev->supply) {
1600                         ret = regulator_enable(rdev->supply);
1601                         if (ret < 0) {
1602                                 _regulator_put(rdev->supply);
1603                                 rdev->supply = NULL;
1604                                 return ret;
1605                         }
1606                 }
1607
1608                 ret = _regulator_do_enable(rdev);
1609                 if (ret < 0 && ret != -EINVAL) {
1610                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1611                         return ret;
1612                 }
1613
1614                 if (rdev->constraints->always_on)
1615                         rdev->use_count++;
1616         }
1617
1618         print_constraints(rdev);
1619         return 0;
1620 }
1621
1622 /**
1623  * set_supply - set regulator supply regulator
1624  * @rdev: regulator name
1625  * @supply_rdev: supply regulator name
1626  *
1627  * Called by platform initialisation code to set the supply regulator for this
1628  * regulator. This ensures that a regulators supply will also be enabled by the
1629  * core if it's child is enabled.
1630  */
1631 static int set_supply(struct regulator_dev *rdev,
1632                       struct regulator_dev *supply_rdev)
1633 {
1634         int err;
1635
1636         rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1637
1638         if (!try_module_get(supply_rdev->owner))
1639                 return -ENODEV;
1640
1641         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1642         if (rdev->supply == NULL) {
1643                 err = -ENOMEM;
1644                 return err;
1645         }
1646         supply_rdev->open_count++;
1647
1648         return 0;
1649 }
1650
1651 /**
1652  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1653  * @rdev:         regulator source
1654  * @consumer_dev_name: dev_name() string for device supply applies to
1655  * @supply:       symbolic name for supply
1656  *
1657  * Allows platform initialisation code to map physical regulator
1658  * sources to symbolic names for supplies for use by devices.  Devices
1659  * should use these symbolic names to request regulators, avoiding the
1660  * need to provide board-specific regulator names as platform data.
1661  */
1662 static int set_consumer_device_supply(struct regulator_dev *rdev,
1663                                       const char *consumer_dev_name,
1664                                       const char *supply)
1665 {
1666         struct regulator_map *node, *new_node;
1667         int has_dev;
1668
1669         if (supply == NULL)
1670                 return -EINVAL;
1671
1672         if (consumer_dev_name != NULL)
1673                 has_dev = 1;
1674         else
1675                 has_dev = 0;
1676
1677         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1678         if (new_node == NULL)
1679                 return -ENOMEM;
1680
1681         new_node->regulator = rdev;
1682         new_node->supply = supply;
1683
1684         if (has_dev) {
1685                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1686                 if (new_node->dev_name == NULL) {
1687                         kfree(new_node);
1688                         return -ENOMEM;
1689                 }
1690         }
1691
1692         mutex_lock(&regulator_list_mutex);
1693         list_for_each_entry(node, &regulator_map_list, list) {
1694                 if (node->dev_name && consumer_dev_name) {
1695                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1696                                 continue;
1697                 } else if (node->dev_name || consumer_dev_name) {
1698                         continue;
1699                 }
1700
1701                 if (strcmp(node->supply, supply) != 0)
1702                         continue;
1703
1704                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1705                          consumer_dev_name,
1706                          dev_name(&node->regulator->dev),
1707                          node->regulator->desc->name,
1708                          supply,
1709                          dev_name(&rdev->dev), rdev_get_name(rdev));
1710                 goto fail;
1711         }
1712
1713         list_add(&new_node->list, &regulator_map_list);
1714         mutex_unlock(&regulator_list_mutex);
1715
1716         return 0;
1717
1718 fail:
1719         mutex_unlock(&regulator_list_mutex);
1720         kfree(new_node->dev_name);
1721         kfree(new_node);
1722         return -EBUSY;
1723 }
1724
1725 static void unset_regulator_supplies(struct regulator_dev *rdev)
1726 {
1727         struct regulator_map *node, *n;
1728
1729         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1730                 if (rdev == node->regulator) {
1731                         list_del(&node->list);
1732                         kfree(node->dev_name);
1733                         kfree(node);
1734                 }
1735         }
1736 }
1737
1738 #ifdef CONFIG_DEBUG_FS
1739 static ssize_t constraint_flags_read_file(struct file *file,
1740                                           char __user *user_buf,
1741                                           size_t count, loff_t *ppos)
1742 {
1743         const struct regulator *regulator = file->private_data;
1744         const struct regulation_constraints *c = regulator->rdev->constraints;
1745         char *buf;
1746         ssize_t ret;
1747
1748         if (!c)
1749                 return 0;
1750
1751         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1752         if (!buf)
1753                 return -ENOMEM;
1754
1755         ret = snprintf(buf, PAGE_SIZE,
1756                         "always_on: %u\n"
1757                         "boot_on: %u\n"
1758                         "apply_uV: %u\n"
1759                         "ramp_disable: %u\n"
1760                         "soft_start: %u\n"
1761                         "pull_down: %u\n"
1762                         "over_current_protection: %u\n",
1763                         c->always_on,
1764                         c->boot_on,
1765                         c->apply_uV,
1766                         c->ramp_disable,
1767                         c->soft_start,
1768                         c->pull_down,
1769                         c->over_current_protection);
1770
1771         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1772         kfree(buf);
1773
1774         return ret;
1775 }
1776
1777 #endif
1778
1779 static const struct file_operations constraint_flags_fops = {
1780 #ifdef CONFIG_DEBUG_FS
1781         .open = simple_open,
1782         .read = constraint_flags_read_file,
1783         .llseek = default_llseek,
1784 #endif
1785 };
1786
1787 #define REG_STR_SIZE    64
1788
1789 static struct regulator *create_regulator(struct regulator_dev *rdev,
1790                                           struct device *dev,
1791                                           const char *supply_name)
1792 {
1793         struct regulator *regulator;
1794         int err = 0;
1795
1796         if (dev) {
1797                 char buf[REG_STR_SIZE];
1798                 int size;
1799
1800                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1801                                 dev->kobj.name, supply_name);
1802                 if (size >= REG_STR_SIZE)
1803                         return NULL;
1804
1805                 supply_name = kstrdup(buf, GFP_KERNEL);
1806                 if (supply_name == NULL)
1807                         return NULL;
1808         } else {
1809                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1810                 if (supply_name == NULL)
1811                         return NULL;
1812         }
1813
1814         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1815         if (regulator == NULL) {
1816                 kfree(supply_name);
1817                 return NULL;
1818         }
1819
1820         regulator->rdev = rdev;
1821         regulator->supply_name = supply_name;
1822
1823         regulator_lock(rdev);
1824         list_add(&regulator->list, &rdev->consumer_list);
1825         regulator_unlock(rdev);
1826
1827         if (dev) {
1828                 regulator->dev = dev;
1829
1830                 /* Add a link to the device sysfs entry */
1831                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1832                                                supply_name);
1833                 if (err) {
1834                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1835                                   dev->kobj.name, ERR_PTR(err));
1836                         /* non-fatal */
1837                 }
1838         }
1839
1840         if (err != -EEXIST)
1841                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1842         if (!regulator->debugfs) {
1843                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1844         } else {
1845                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1846                                    &regulator->uA_load);
1847                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1848                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1849                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1850                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1851                 debugfs_create_file("constraint_flags", 0444,
1852                                     regulator->debugfs, regulator,
1853                                     &constraint_flags_fops);
1854         }
1855
1856         /*
1857          * Check now if the regulator is an always on regulator - if
1858          * it is then we don't need to do nearly so much work for
1859          * enable/disable calls.
1860          */
1861         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1862             _regulator_is_enabled(rdev))
1863                 regulator->always_on = true;
1864
1865         return regulator;
1866 }
1867
1868 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1869 {
1870         if (rdev->constraints && rdev->constraints->enable_time)
1871                 return rdev->constraints->enable_time;
1872         if (rdev->desc->ops->enable_time)
1873                 return rdev->desc->ops->enable_time(rdev);
1874         return rdev->desc->enable_time;
1875 }
1876
1877 static struct regulator_supply_alias *regulator_find_supply_alias(
1878                 struct device *dev, const char *supply)
1879 {
1880         struct regulator_supply_alias *map;
1881
1882         list_for_each_entry(map, &regulator_supply_alias_list, list)
1883                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1884                         return map;
1885
1886         return NULL;
1887 }
1888
1889 static void regulator_supply_alias(struct device **dev, const char **supply)
1890 {
1891         struct regulator_supply_alias *map;
1892
1893         map = regulator_find_supply_alias(*dev, *supply);
1894         if (map) {
1895                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1896                                 *supply, map->alias_supply,
1897                                 dev_name(map->alias_dev));
1898                 *dev = map->alias_dev;
1899                 *supply = map->alias_supply;
1900         }
1901 }
1902
1903 static int regulator_match(struct device *dev, const void *data)
1904 {
1905         struct regulator_dev *r = dev_to_rdev(dev);
1906
1907         return strcmp(rdev_get_name(r), data) == 0;
1908 }
1909
1910 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1911 {
1912         struct device *dev;
1913
1914         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1915
1916         return dev ? dev_to_rdev(dev) : NULL;
1917 }
1918
1919 /**
1920  * regulator_dev_lookup - lookup a regulator device.
1921  * @dev: device for regulator "consumer".
1922  * @supply: Supply name or regulator ID.
1923  *
1924  * If successful, returns a struct regulator_dev that corresponds to the name
1925  * @supply and with the embedded struct device refcount incremented by one.
1926  * The refcount must be dropped by calling put_device().
1927  * On failure one of the following ERR-PTR-encoded values is returned:
1928  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1929  * in the future.
1930  */
1931 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1932                                                   const char *supply)
1933 {
1934         struct regulator_dev *r = NULL;
1935         struct device_node *node;
1936         struct regulator_map *map;
1937         const char *devname = NULL;
1938
1939         regulator_supply_alias(&dev, &supply);
1940
1941         /* first do a dt based lookup */
1942         if (dev && dev->of_node) {
1943                 node = of_get_regulator(dev, supply);
1944                 if (node) {
1945                         r = of_find_regulator_by_node(node);
1946                         if (r)
1947                                 return r;
1948
1949                         /*
1950                          * We have a node, but there is no device.
1951                          * assume it has not registered yet.
1952                          */
1953                         return ERR_PTR(-EPROBE_DEFER);
1954                 }
1955         }
1956
1957         /* if not found, try doing it non-dt way */
1958         if (dev)
1959                 devname = dev_name(dev);
1960
1961         mutex_lock(&regulator_list_mutex);
1962         list_for_each_entry(map, &regulator_map_list, list) {
1963                 /* If the mapping has a device set up it must match */
1964                 if (map->dev_name &&
1965                     (!devname || strcmp(map->dev_name, devname)))
1966                         continue;
1967
1968                 if (strcmp(map->supply, supply) == 0 &&
1969                     get_device(&map->regulator->dev)) {
1970                         r = map->regulator;
1971                         break;
1972                 }
1973         }
1974         mutex_unlock(&regulator_list_mutex);
1975
1976         if (r)
1977                 return r;
1978
1979         r = regulator_lookup_by_name(supply);
1980         if (r)
1981                 return r;
1982
1983         return ERR_PTR(-ENODEV);
1984 }
1985
1986 static int regulator_resolve_supply(struct regulator_dev *rdev)
1987 {
1988         struct regulator_dev *r;
1989         struct device *dev = rdev->dev.parent;
1990         int ret = 0;
1991
1992         /* No supply to resolve? */
1993         if (!rdev->supply_name)
1994                 return 0;
1995
1996         /* Supply already resolved? (fast-path without locking contention) */
1997         if (rdev->supply)
1998                 return 0;
1999
2000         r = regulator_dev_lookup(dev, rdev->supply_name);
2001         if (IS_ERR(r)) {
2002                 ret = PTR_ERR(r);
2003
2004                 /* Did the lookup explicitly defer for us? */
2005                 if (ret == -EPROBE_DEFER)
2006                         goto out;
2007
2008                 if (have_full_constraints()) {
2009                         r = dummy_regulator_rdev;
2010                         get_device(&r->dev);
2011                 } else {
2012                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
2013                                 rdev->supply_name, rdev->desc->name);
2014                         ret = -EPROBE_DEFER;
2015                         goto out;
2016                 }
2017         }
2018
2019         if (r == rdev) {
2020                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2021                         rdev->desc->name, rdev->supply_name);
2022                 if (!have_full_constraints()) {
2023                         ret = -EINVAL;
2024                         goto out;
2025                 }
2026                 r = dummy_regulator_rdev;
2027                 get_device(&r->dev);
2028         }
2029
2030         /*
2031          * If the supply's parent device is not the same as the
2032          * regulator's parent device, then ensure the parent device
2033          * is bound before we resolve the supply, in case the parent
2034          * device get probe deferred and unregisters the supply.
2035          */
2036         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2037                 if (!device_is_bound(r->dev.parent)) {
2038                         put_device(&r->dev);
2039                         ret = -EPROBE_DEFER;
2040                         goto out;
2041                 }
2042         }
2043
2044         /* Recursively resolve the supply of the supply */
2045         ret = regulator_resolve_supply(r);
2046         if (ret < 0) {
2047                 put_device(&r->dev);
2048                 goto out;
2049         }
2050
2051         /*
2052          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2053          * between rdev->supply null check and setting rdev->supply in
2054          * set_supply() from concurrent tasks.
2055          */
2056         regulator_lock(rdev);
2057
2058         /* Supply just resolved by a concurrent task? */
2059         if (rdev->supply) {
2060                 regulator_unlock(rdev);
2061                 put_device(&r->dev);
2062                 goto out;
2063         }
2064
2065         ret = set_supply(rdev, r);
2066         if (ret < 0) {
2067                 regulator_unlock(rdev);
2068                 put_device(&r->dev);
2069                 goto out;
2070         }
2071
2072         regulator_unlock(rdev);
2073
2074         /*
2075          * In set_machine_constraints() we may have turned this regulator on
2076          * but we couldn't propagate to the supply if it hadn't been resolved
2077          * yet.  Do it now.
2078          */
2079         if (rdev->use_count) {
2080                 ret = regulator_enable(rdev->supply);
2081                 if (ret < 0) {
2082                         _regulator_put(rdev->supply);
2083                         rdev->supply = NULL;
2084                         goto out;
2085                 }
2086         }
2087
2088 out:
2089         return ret;
2090 }
2091
2092 /* Internal regulator request function */
2093 struct regulator *_regulator_get(struct device *dev, const char *id,
2094                                  enum regulator_get_type get_type)
2095 {
2096         struct regulator_dev *rdev;
2097         struct regulator *regulator;
2098         struct device_link *link;
2099         int ret;
2100
2101         if (get_type >= MAX_GET_TYPE) {
2102                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2103                 return ERR_PTR(-EINVAL);
2104         }
2105
2106         if (id == NULL) {
2107                 pr_err("get() with no identifier\n");
2108                 return ERR_PTR(-EINVAL);
2109         }
2110
2111         rdev = regulator_dev_lookup(dev, id);
2112         if (IS_ERR(rdev)) {
2113                 ret = PTR_ERR(rdev);
2114
2115                 /*
2116                  * If regulator_dev_lookup() fails with error other
2117                  * than -ENODEV our job here is done, we simply return it.
2118                  */
2119                 if (ret != -ENODEV)
2120                         return ERR_PTR(ret);
2121
2122                 if (!have_full_constraints()) {
2123                         dev_warn(dev,
2124                                  "incomplete constraints, dummy supplies not allowed\n");
2125                         return ERR_PTR(-ENODEV);
2126                 }
2127
2128                 switch (get_type) {
2129                 case NORMAL_GET:
2130                         /*
2131                          * Assume that a regulator is physically present and
2132                          * enabled, even if it isn't hooked up, and just
2133                          * provide a dummy.
2134                          */
2135                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2136                         rdev = dummy_regulator_rdev;
2137                         get_device(&rdev->dev);
2138                         break;
2139
2140                 case EXCLUSIVE_GET:
2141                         dev_warn(dev,
2142                                  "dummy supplies not allowed for exclusive requests\n");
2143                         fallthrough;
2144
2145                 default:
2146                         return ERR_PTR(-ENODEV);
2147                 }
2148         }
2149
2150         if (rdev->exclusive) {
2151                 regulator = ERR_PTR(-EPERM);
2152                 put_device(&rdev->dev);
2153                 return regulator;
2154         }
2155
2156         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2157                 regulator = ERR_PTR(-EBUSY);
2158                 put_device(&rdev->dev);
2159                 return regulator;
2160         }
2161
2162         mutex_lock(&regulator_list_mutex);
2163         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2164         mutex_unlock(&regulator_list_mutex);
2165
2166         if (ret != 0) {
2167                 regulator = ERR_PTR(-EPROBE_DEFER);
2168                 put_device(&rdev->dev);
2169                 return regulator;
2170         }
2171
2172         ret = regulator_resolve_supply(rdev);
2173         if (ret < 0) {
2174                 regulator = ERR_PTR(ret);
2175                 put_device(&rdev->dev);
2176                 return regulator;
2177         }
2178
2179         if (!try_module_get(rdev->owner)) {
2180                 regulator = ERR_PTR(-EPROBE_DEFER);
2181                 put_device(&rdev->dev);
2182                 return regulator;
2183         }
2184
2185         regulator = create_regulator(rdev, dev, id);
2186         if (regulator == NULL) {
2187                 regulator = ERR_PTR(-ENOMEM);
2188                 module_put(rdev->owner);
2189                 put_device(&rdev->dev);
2190                 return regulator;
2191         }
2192
2193         rdev->open_count++;
2194         if (get_type == EXCLUSIVE_GET) {
2195                 rdev->exclusive = 1;
2196
2197                 ret = _regulator_is_enabled(rdev);
2198                 if (ret > 0) {
2199                         rdev->use_count = 1;
2200                         regulator->enable_count = 1;
2201                 } else {
2202                         rdev->use_count = 0;
2203                         regulator->enable_count = 0;
2204                 }
2205         }
2206
2207         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2208         if (!IS_ERR_OR_NULL(link))
2209                 regulator->device_link = true;
2210
2211         return regulator;
2212 }
2213
2214 /**
2215  * regulator_get - lookup and obtain a reference to a regulator.
2216  * @dev: device for regulator "consumer"
2217  * @id: Supply name or regulator ID.
2218  *
2219  * Returns a struct regulator corresponding to the regulator producer,
2220  * or IS_ERR() condition containing errno.
2221  *
2222  * Use of supply names configured via set_consumer_device_supply() is
2223  * strongly encouraged.  It is recommended that the supply name used
2224  * should match the name used for the supply and/or the relevant
2225  * device pins in the datasheet.
2226  */
2227 struct regulator *regulator_get(struct device *dev, const char *id)
2228 {
2229         return _regulator_get(dev, id, NORMAL_GET);
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_get);
2232
2233 /**
2234  * regulator_get_exclusive - obtain exclusive access to a regulator.
2235  * @dev: device for regulator "consumer"
2236  * @id: Supply name or regulator ID.
2237  *
2238  * Returns a struct regulator corresponding to the regulator producer,
2239  * or IS_ERR() condition containing errno.  Other consumers will be
2240  * unable to obtain this regulator while this reference is held and the
2241  * use count for the regulator will be initialised to reflect the current
2242  * state of the regulator.
2243  *
2244  * This is intended for use by consumers which cannot tolerate shared
2245  * use of the regulator such as those which need to force the
2246  * regulator off for correct operation of the hardware they are
2247  * controlling.
2248  *
2249  * Use of supply names configured via set_consumer_device_supply() is
2250  * strongly encouraged.  It is recommended that the supply name used
2251  * should match the name used for the supply and/or the relevant
2252  * device pins in the datasheet.
2253  */
2254 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2255 {
2256         return _regulator_get(dev, id, EXCLUSIVE_GET);
2257 }
2258 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2259
2260 /**
2261  * regulator_get_optional - obtain optional access to a regulator.
2262  * @dev: device for regulator "consumer"
2263  * @id: Supply name or regulator ID.
2264  *
2265  * Returns a struct regulator corresponding to the regulator producer,
2266  * or IS_ERR() condition containing errno.
2267  *
2268  * This is intended for use by consumers for devices which can have
2269  * some supplies unconnected in normal use, such as some MMC devices.
2270  * It can allow the regulator core to provide stub supplies for other
2271  * supplies requested using normal regulator_get() calls without
2272  * disrupting the operation of drivers that can handle absent
2273  * supplies.
2274  *
2275  * Use of supply names configured via set_consumer_device_supply() is
2276  * strongly encouraged.  It is recommended that the supply name used
2277  * should match the name used for the supply and/or the relevant
2278  * device pins in the datasheet.
2279  */
2280 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2281 {
2282         return _regulator_get(dev, id, OPTIONAL_GET);
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_get_optional);
2285
2286 static void destroy_regulator(struct regulator *regulator)
2287 {
2288         struct regulator_dev *rdev = regulator->rdev;
2289
2290         debugfs_remove_recursive(regulator->debugfs);
2291
2292         if (regulator->dev) {
2293                 if (regulator->device_link)
2294                         device_link_remove(regulator->dev, &rdev->dev);
2295
2296                 /* remove any sysfs entries */
2297                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2298         }
2299
2300         regulator_lock(rdev);
2301         list_del(&regulator->list);
2302
2303         rdev->open_count--;
2304         rdev->exclusive = 0;
2305         regulator_unlock(rdev);
2306
2307         kfree_const(regulator->supply_name);
2308         kfree(regulator);
2309 }
2310
2311 /* regulator_list_mutex lock held by regulator_put() */
2312 static void _regulator_put(struct regulator *regulator)
2313 {
2314         struct regulator_dev *rdev;
2315
2316         if (IS_ERR_OR_NULL(regulator))
2317                 return;
2318
2319         lockdep_assert_held_once(&regulator_list_mutex);
2320
2321         /* Docs say you must disable before calling regulator_put() */
2322         WARN_ON(regulator->enable_count);
2323
2324         rdev = regulator->rdev;
2325
2326         destroy_regulator(regulator);
2327
2328         module_put(rdev->owner);
2329         put_device(&rdev->dev);
2330 }
2331
2332 /**
2333  * regulator_put - "free" the regulator source
2334  * @regulator: regulator source
2335  *
2336  * Note: drivers must ensure that all regulator_enable calls made on this
2337  * regulator source are balanced by regulator_disable calls prior to calling
2338  * this function.
2339  */
2340 void regulator_put(struct regulator *regulator)
2341 {
2342         mutex_lock(&regulator_list_mutex);
2343         _regulator_put(regulator);
2344         mutex_unlock(&regulator_list_mutex);
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_put);
2347
2348 /**
2349  * regulator_register_supply_alias - Provide device alias for supply lookup
2350  *
2351  * @dev: device that will be given as the regulator "consumer"
2352  * @id: Supply name or regulator ID
2353  * @alias_dev: device that should be used to lookup the supply
2354  * @alias_id: Supply name or regulator ID that should be used to lookup the
2355  * supply
2356  *
2357  * All lookups for id on dev will instead be conducted for alias_id on
2358  * alias_dev.
2359  */
2360 int regulator_register_supply_alias(struct device *dev, const char *id,
2361                                     struct device *alias_dev,
2362                                     const char *alias_id)
2363 {
2364         struct regulator_supply_alias *map;
2365
2366         map = regulator_find_supply_alias(dev, id);
2367         if (map)
2368                 return -EEXIST;
2369
2370         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2371         if (!map)
2372                 return -ENOMEM;
2373
2374         map->src_dev = dev;
2375         map->src_supply = id;
2376         map->alias_dev = alias_dev;
2377         map->alias_supply = alias_id;
2378
2379         list_add(&map->list, &regulator_supply_alias_list);
2380
2381         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2382                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2383
2384         return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2387
2388 /**
2389  * regulator_unregister_supply_alias - Remove device alias
2390  *
2391  * @dev: device that will be given as the regulator "consumer"
2392  * @id: Supply name or regulator ID
2393  *
2394  * Remove a lookup alias if one exists for id on dev.
2395  */
2396 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2397 {
2398         struct regulator_supply_alias *map;
2399
2400         map = regulator_find_supply_alias(dev, id);
2401         if (map) {
2402                 list_del(&map->list);
2403                 kfree(map);
2404         }
2405 }
2406 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2407
2408 /**
2409  * regulator_bulk_register_supply_alias - register multiple aliases
2410  *
2411  * @dev: device that will be given as the regulator "consumer"
2412  * @id: List of supply names or regulator IDs
2413  * @alias_dev: device that should be used to lookup the supply
2414  * @alias_id: List of supply names or regulator IDs that should be used to
2415  * lookup the supply
2416  * @num_id: Number of aliases to register
2417  *
2418  * @return 0 on success, an errno on failure.
2419  *
2420  * This helper function allows drivers to register several supply
2421  * aliases in one operation.  If any of the aliases cannot be
2422  * registered any aliases that were registered will be removed
2423  * before returning to the caller.
2424  */
2425 int regulator_bulk_register_supply_alias(struct device *dev,
2426                                          const char *const *id,
2427                                          struct device *alias_dev,
2428                                          const char *const *alias_id,
2429                                          int num_id)
2430 {
2431         int i;
2432         int ret;
2433
2434         for (i = 0; i < num_id; ++i) {
2435                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2436                                                       alias_id[i]);
2437                 if (ret < 0)
2438                         goto err;
2439         }
2440
2441         return 0;
2442
2443 err:
2444         dev_err(dev,
2445                 "Failed to create supply alias %s,%s -> %s,%s\n",
2446                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2447
2448         while (--i >= 0)
2449                 regulator_unregister_supply_alias(dev, id[i]);
2450
2451         return ret;
2452 }
2453 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2454
2455 /**
2456  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2457  *
2458  * @dev: device that will be given as the regulator "consumer"
2459  * @id: List of supply names or regulator IDs
2460  * @num_id: Number of aliases to unregister
2461  *
2462  * This helper function allows drivers to unregister several supply
2463  * aliases in one operation.
2464  */
2465 void regulator_bulk_unregister_supply_alias(struct device *dev,
2466                                             const char *const *id,
2467                                             int num_id)
2468 {
2469         int i;
2470
2471         for (i = 0; i < num_id; ++i)
2472                 regulator_unregister_supply_alias(dev, id[i]);
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2475
2476
2477 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2478 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2479                                 const struct regulator_config *config)
2480 {
2481         struct regulator_enable_gpio *pin, *new_pin;
2482         struct gpio_desc *gpiod;
2483
2484         gpiod = config->ena_gpiod;
2485         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2486
2487         mutex_lock(&regulator_list_mutex);
2488
2489         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2490                 if (pin->gpiod == gpiod) {
2491                         rdev_dbg(rdev, "GPIO is already used\n");
2492                         goto update_ena_gpio_to_rdev;
2493                 }
2494         }
2495
2496         if (new_pin == NULL) {
2497                 mutex_unlock(&regulator_list_mutex);
2498                 return -ENOMEM;
2499         }
2500
2501         pin = new_pin;
2502         new_pin = NULL;
2503
2504         pin->gpiod = gpiod;
2505         list_add(&pin->list, &regulator_ena_gpio_list);
2506
2507 update_ena_gpio_to_rdev:
2508         pin->request_count++;
2509         rdev->ena_pin = pin;
2510
2511         mutex_unlock(&regulator_list_mutex);
2512         kfree(new_pin);
2513
2514         return 0;
2515 }
2516
2517 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2518 {
2519         struct regulator_enable_gpio *pin, *n;
2520
2521         if (!rdev->ena_pin)
2522                 return;
2523
2524         /* Free the GPIO only in case of no use */
2525         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2526                 if (pin != rdev->ena_pin)
2527                         continue;
2528
2529                 if (--pin->request_count)
2530                         break;
2531
2532                 gpiod_put(pin->gpiod);
2533                 list_del(&pin->list);
2534                 kfree(pin);
2535                 break;
2536         }
2537
2538         rdev->ena_pin = NULL;
2539 }
2540
2541 /**
2542  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2543  * @rdev: regulator_dev structure
2544  * @enable: enable GPIO at initial use?
2545  *
2546  * GPIO is enabled in case of initial use. (enable_count is 0)
2547  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2548  */
2549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2550 {
2551         struct regulator_enable_gpio *pin = rdev->ena_pin;
2552
2553         if (!pin)
2554                 return -EINVAL;
2555
2556         if (enable) {
2557                 /* Enable GPIO at initial use */
2558                 if (pin->enable_count == 0)
2559                         gpiod_set_value_cansleep(pin->gpiod, 1);
2560
2561                 pin->enable_count++;
2562         } else {
2563                 if (pin->enable_count > 1) {
2564                         pin->enable_count--;
2565                         return 0;
2566                 }
2567
2568                 /* Disable GPIO if not used */
2569                 if (pin->enable_count <= 1) {
2570                         gpiod_set_value_cansleep(pin->gpiod, 0);
2571                         pin->enable_count = 0;
2572                 }
2573         }
2574
2575         return 0;
2576 }
2577
2578 /**
2579  * _regulator_delay_helper - a delay helper function
2580  * @delay: time to delay in microseconds
2581  *
2582  * Delay for the requested amount of time as per the guidelines in:
2583  *
2584  *     Documentation/timers/timers-howto.rst
2585  *
2586  * The assumption here is that these regulator operations will never used in
2587  * atomic context and therefore sleeping functions can be used.
2588  */
2589 static void _regulator_delay_helper(unsigned int delay)
2590 {
2591         unsigned int ms = delay / 1000;
2592         unsigned int us = delay % 1000;
2593
2594         if (ms > 0) {
2595                 /*
2596                  * For small enough values, handle super-millisecond
2597                  * delays in the usleep_range() call below.
2598                  */
2599                 if (ms < 20)
2600                         us += ms * 1000;
2601                 else
2602                         msleep(ms);
2603         }
2604
2605         /*
2606          * Give the scheduler some room to coalesce with any other
2607          * wakeup sources. For delays shorter than 10 us, don't even
2608          * bother setting up high-resolution timers and just busy-
2609          * loop.
2610          */
2611         if (us >= 10)
2612                 usleep_range(us, us + 100);
2613         else
2614                 udelay(us);
2615 }
2616
2617 /**
2618  * _regulator_check_status_enabled
2619  *
2620  * A helper function to check if the regulator status can be interpreted
2621  * as 'regulator is enabled'.
2622  * @rdev: the regulator device to check
2623  *
2624  * Return:
2625  * * 1                  - if status shows regulator is in enabled state
2626  * * 0                  - if not enabled state
2627  * * Error Value        - as received from ops->get_status()
2628  */
2629 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2630 {
2631         int ret = rdev->desc->ops->get_status(rdev);
2632
2633         if (ret < 0) {
2634                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2635                 return ret;
2636         }
2637
2638         switch (ret) {
2639         case REGULATOR_STATUS_OFF:
2640         case REGULATOR_STATUS_ERROR:
2641         case REGULATOR_STATUS_UNDEFINED:
2642                 return 0;
2643         default:
2644                 return 1;
2645         }
2646 }
2647
2648 static int _regulator_do_enable(struct regulator_dev *rdev)
2649 {
2650         int ret, delay;
2651
2652         /* Query before enabling in case configuration dependent.  */
2653         ret = _regulator_get_enable_time(rdev);
2654         if (ret >= 0) {
2655                 delay = ret;
2656         } else {
2657                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2658                 delay = 0;
2659         }
2660
2661         trace_regulator_enable(rdev_get_name(rdev));
2662
2663         if (rdev->desc->off_on_delay && rdev->last_off) {
2664                 /* if needed, keep a distance of off_on_delay from last time
2665                  * this regulator was disabled.
2666                  */
2667                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2668                 s64 remaining = ktime_us_delta(end, ktime_get());
2669
2670                 if (remaining > 0)
2671                         _regulator_delay_helper(remaining);
2672         }
2673
2674         if (rdev->ena_pin) {
2675                 if (!rdev->ena_gpio_state) {
2676                         ret = regulator_ena_gpio_ctrl(rdev, true);
2677                         if (ret < 0)
2678                                 return ret;
2679                         rdev->ena_gpio_state = 1;
2680                 }
2681         } else if (rdev->desc->ops->enable) {
2682                 ret = rdev->desc->ops->enable(rdev);
2683                 if (ret < 0)
2684                         return ret;
2685         } else {
2686                 return -EINVAL;
2687         }
2688
2689         /* Allow the regulator to ramp; it would be useful to extend
2690          * this for bulk operations so that the regulators can ramp
2691          * together.
2692          */
2693         trace_regulator_enable_delay(rdev_get_name(rdev));
2694
2695         /* If poll_enabled_time is set, poll upto the delay calculated
2696          * above, delaying poll_enabled_time uS to check if the regulator
2697          * actually got enabled.
2698          * If the regulator isn't enabled after our delay helper has expired,
2699          * return -ETIMEDOUT.
2700          */
2701         if (rdev->desc->poll_enabled_time) {
2702                 int time_remaining = delay;
2703
2704                 while (time_remaining > 0) {
2705                         _regulator_delay_helper(rdev->desc->poll_enabled_time);
2706
2707                         if (rdev->desc->ops->get_status) {
2708                                 ret = _regulator_check_status_enabled(rdev);
2709                                 if (ret < 0)
2710                                         return ret;
2711                                 else if (ret)
2712                                         break;
2713                         } else if (rdev->desc->ops->is_enabled(rdev))
2714                                 break;
2715
2716                         time_remaining -= rdev->desc->poll_enabled_time;
2717                 }
2718
2719                 if (time_remaining <= 0) {
2720                         rdev_err(rdev, "Enabled check timed out\n");
2721                         return -ETIMEDOUT;
2722                 }
2723         } else {
2724                 _regulator_delay_helper(delay);
2725         }
2726
2727         trace_regulator_enable_complete(rdev_get_name(rdev));
2728
2729         return 0;
2730 }
2731
2732 /**
2733  * _regulator_handle_consumer_enable - handle that a consumer enabled
2734  * @regulator: regulator source
2735  *
2736  * Some things on a regulator consumer (like the contribution towards total
2737  * load on the regulator) only have an effect when the consumer wants the
2738  * regulator enabled.  Explained in example with two consumers of the same
2739  * regulator:
2740  *   consumer A: set_load(100);       => total load = 0
2741  *   consumer A: regulator_enable();  => total load = 100
2742  *   consumer B: set_load(1000);      => total load = 100
2743  *   consumer B: regulator_enable();  => total load = 1100
2744  *   consumer A: regulator_disable(); => total_load = 1000
2745  *
2746  * This function (together with _regulator_handle_consumer_disable) is
2747  * responsible for keeping track of the refcount for a given regulator consumer
2748  * and applying / unapplying these things.
2749  *
2750  * Returns 0 upon no error; -error upon error.
2751  */
2752 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2753 {
2754         struct regulator_dev *rdev = regulator->rdev;
2755
2756         lockdep_assert_held_once(&rdev->mutex.base);
2757
2758         regulator->enable_count++;
2759         if (regulator->uA_load && regulator->enable_count == 1)
2760                 return drms_uA_update(rdev);
2761
2762         return 0;
2763 }
2764
2765 /**
2766  * _regulator_handle_consumer_disable - handle that a consumer disabled
2767  * @regulator: regulator source
2768  *
2769  * The opposite of _regulator_handle_consumer_enable().
2770  *
2771  * Returns 0 upon no error; -error upon error.
2772  */
2773 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2774 {
2775         struct regulator_dev *rdev = regulator->rdev;
2776
2777         lockdep_assert_held_once(&rdev->mutex.base);
2778
2779         if (!regulator->enable_count) {
2780                 rdev_err(rdev, "Underflow of regulator enable count\n");
2781                 return -EINVAL;
2782         }
2783
2784         regulator->enable_count--;
2785         if (regulator->uA_load && regulator->enable_count == 0)
2786                 return drms_uA_update(rdev);
2787
2788         return 0;
2789 }
2790
2791 /* locks held by regulator_enable() */
2792 static int _regulator_enable(struct regulator *regulator)
2793 {
2794         struct regulator_dev *rdev = regulator->rdev;
2795         int ret;
2796
2797         lockdep_assert_held_once(&rdev->mutex.base);
2798
2799         if (rdev->use_count == 0 && rdev->supply) {
2800                 ret = _regulator_enable(rdev->supply);
2801                 if (ret < 0)
2802                         return ret;
2803         }
2804
2805         /* balance only if there are regulators coupled */
2806         if (rdev->coupling_desc.n_coupled > 1) {
2807                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2808                 if (ret < 0)
2809                         goto err_disable_supply;
2810         }
2811
2812         ret = _regulator_handle_consumer_enable(regulator);
2813         if (ret < 0)
2814                 goto err_disable_supply;
2815
2816         if (rdev->use_count == 0) {
2817                 /*
2818                  * The regulator may already be enabled if it's not switchable
2819                  * or was left on
2820                  */
2821                 ret = _regulator_is_enabled(rdev);
2822                 if (ret == -EINVAL || ret == 0) {
2823                         if (!regulator_ops_is_valid(rdev,
2824                                         REGULATOR_CHANGE_STATUS)) {
2825                                 ret = -EPERM;
2826                                 goto err_consumer_disable;
2827                         }
2828
2829                         ret = _regulator_do_enable(rdev);
2830                         if (ret < 0)
2831                                 goto err_consumer_disable;
2832
2833                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2834                                              NULL);
2835                 } else if (ret < 0) {
2836                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2837                         goto err_consumer_disable;
2838                 }
2839                 /* Fallthrough on positive return values - already enabled */
2840         }
2841
2842         rdev->use_count++;
2843
2844         return 0;
2845
2846 err_consumer_disable:
2847         _regulator_handle_consumer_disable(regulator);
2848
2849 err_disable_supply:
2850         if (rdev->use_count == 0 && rdev->supply)
2851                 _regulator_disable(rdev->supply);
2852
2853         return ret;
2854 }
2855
2856 /**
2857  * regulator_enable - enable regulator output
2858  * @regulator: regulator source
2859  *
2860  * Request that the regulator be enabled with the regulator output at
2861  * the predefined voltage or current value.  Calls to regulator_enable()
2862  * must be balanced with calls to regulator_disable().
2863  *
2864  * NOTE: the output value can be set by other drivers, boot loader or may be
2865  * hardwired in the regulator.
2866  */
2867 int regulator_enable(struct regulator *regulator)
2868 {
2869         struct regulator_dev *rdev = regulator->rdev;
2870         struct ww_acquire_ctx ww_ctx;
2871         int ret;
2872
2873         regulator_lock_dependent(rdev, &ww_ctx);
2874         ret = _regulator_enable(regulator);
2875         regulator_unlock_dependent(rdev, &ww_ctx);
2876
2877         return ret;
2878 }
2879 EXPORT_SYMBOL_GPL(regulator_enable);
2880
2881 static int _regulator_do_disable(struct regulator_dev *rdev)
2882 {
2883         int ret;
2884
2885         trace_regulator_disable(rdev_get_name(rdev));
2886
2887         if (rdev->ena_pin) {
2888                 if (rdev->ena_gpio_state) {
2889                         ret = regulator_ena_gpio_ctrl(rdev, false);
2890                         if (ret < 0)
2891                                 return ret;
2892                         rdev->ena_gpio_state = 0;
2893                 }
2894
2895         } else if (rdev->desc->ops->disable) {
2896                 ret = rdev->desc->ops->disable(rdev);
2897                 if (ret != 0)
2898                         return ret;
2899         }
2900
2901         if (rdev->desc->off_on_delay)
2902                 rdev->last_off = ktime_get();
2903
2904         trace_regulator_disable_complete(rdev_get_name(rdev));
2905
2906         return 0;
2907 }
2908
2909 /* locks held by regulator_disable() */
2910 static int _regulator_disable(struct regulator *regulator)
2911 {
2912         struct regulator_dev *rdev = regulator->rdev;
2913         int ret = 0;
2914
2915         lockdep_assert_held_once(&rdev->mutex.base);
2916
2917         if (WARN(rdev->use_count <= 0,
2918                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2919                 return -EIO;
2920
2921         /* are we the last user and permitted to disable ? */
2922         if (rdev->use_count == 1 &&
2923             (rdev->constraints && !rdev->constraints->always_on)) {
2924
2925                 /* we are last user */
2926                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2927                         ret = _notifier_call_chain(rdev,
2928                                                    REGULATOR_EVENT_PRE_DISABLE,
2929                                                    NULL);
2930                         if (ret & NOTIFY_STOP_MASK)
2931                                 return -EINVAL;
2932
2933                         ret = _regulator_do_disable(rdev);
2934                         if (ret < 0) {
2935                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2936                                 _notifier_call_chain(rdev,
2937                                                 REGULATOR_EVENT_ABORT_DISABLE,
2938                                                 NULL);
2939                                 return ret;
2940                         }
2941                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2942                                         NULL);
2943                 }
2944
2945                 rdev->use_count = 0;
2946         } else if (rdev->use_count > 1) {
2947                 rdev->use_count--;
2948         }
2949
2950         if (ret == 0)
2951                 ret = _regulator_handle_consumer_disable(regulator);
2952
2953         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2954                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2955
2956         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2957                 ret = _regulator_disable(rdev->supply);
2958
2959         return ret;
2960 }
2961
2962 /**
2963  * regulator_disable - disable regulator output
2964  * @regulator: regulator source
2965  *
2966  * Disable the regulator output voltage or current.  Calls to
2967  * regulator_enable() must be balanced with calls to
2968  * regulator_disable().
2969  *
2970  * NOTE: this will only disable the regulator output if no other consumer
2971  * devices have it enabled, the regulator device supports disabling and
2972  * machine constraints permit this operation.
2973  */
2974 int regulator_disable(struct regulator *regulator)
2975 {
2976         struct regulator_dev *rdev = regulator->rdev;
2977         struct ww_acquire_ctx ww_ctx;
2978         int ret;
2979
2980         regulator_lock_dependent(rdev, &ww_ctx);
2981         ret = _regulator_disable(regulator);
2982         regulator_unlock_dependent(rdev, &ww_ctx);
2983
2984         return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(regulator_disable);
2987
2988 /* locks held by regulator_force_disable() */
2989 static int _regulator_force_disable(struct regulator_dev *rdev)
2990 {
2991         int ret = 0;
2992
2993         lockdep_assert_held_once(&rdev->mutex.base);
2994
2995         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2996                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2997         if (ret & NOTIFY_STOP_MASK)
2998                 return -EINVAL;
2999
3000         ret = _regulator_do_disable(rdev);
3001         if (ret < 0) {
3002                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3003                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3004                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3005                 return ret;
3006         }
3007
3008         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009                         REGULATOR_EVENT_DISABLE, NULL);
3010
3011         return 0;
3012 }
3013
3014 /**
3015  * regulator_force_disable - force disable regulator output
3016  * @regulator: regulator source
3017  *
3018  * Forcibly disable the regulator output voltage or current.
3019  * NOTE: this *will* disable the regulator output even if other consumer
3020  * devices have it enabled. This should be used for situations when device
3021  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3022  */
3023 int regulator_force_disable(struct regulator *regulator)
3024 {
3025         struct regulator_dev *rdev = regulator->rdev;
3026         struct ww_acquire_ctx ww_ctx;
3027         int ret;
3028
3029         regulator_lock_dependent(rdev, &ww_ctx);
3030
3031         ret = _regulator_force_disable(regulator->rdev);
3032
3033         if (rdev->coupling_desc.n_coupled > 1)
3034                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3035
3036         if (regulator->uA_load) {
3037                 regulator->uA_load = 0;
3038                 ret = drms_uA_update(rdev);
3039         }
3040
3041         if (rdev->use_count != 0 && rdev->supply)
3042                 _regulator_disable(rdev->supply);
3043
3044         regulator_unlock_dependent(rdev, &ww_ctx);
3045
3046         return ret;
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_force_disable);
3049
3050 static void regulator_disable_work(struct work_struct *work)
3051 {
3052         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3053                                                   disable_work.work);
3054         struct ww_acquire_ctx ww_ctx;
3055         int count, i, ret;
3056         struct regulator *regulator;
3057         int total_count = 0;
3058
3059         regulator_lock_dependent(rdev, &ww_ctx);
3060
3061         /*
3062          * Workqueue functions queue the new work instance while the previous
3063          * work instance is being processed. Cancel the queued work instance
3064          * as the work instance under processing does the job of the queued
3065          * work instance.
3066          */
3067         cancel_delayed_work(&rdev->disable_work);
3068
3069         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3070                 count = regulator->deferred_disables;
3071
3072                 if (!count)
3073                         continue;
3074
3075                 total_count += count;
3076                 regulator->deferred_disables = 0;
3077
3078                 for (i = 0; i < count; i++) {
3079                         ret = _regulator_disable(regulator);
3080                         if (ret != 0)
3081                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3082                                          ERR_PTR(ret));
3083                 }
3084         }
3085         WARN_ON(!total_count);
3086
3087         if (rdev->coupling_desc.n_coupled > 1)
3088                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3089
3090         regulator_unlock_dependent(rdev, &ww_ctx);
3091 }
3092
3093 /**
3094  * regulator_disable_deferred - disable regulator output with delay
3095  * @regulator: regulator source
3096  * @ms: milliseconds until the regulator is disabled
3097  *
3098  * Execute regulator_disable() on the regulator after a delay.  This
3099  * is intended for use with devices that require some time to quiesce.
3100  *
3101  * NOTE: this will only disable the regulator output if no other consumer
3102  * devices have it enabled, the regulator device supports disabling and
3103  * machine constraints permit this operation.
3104  */
3105 int regulator_disable_deferred(struct regulator *regulator, int ms)
3106 {
3107         struct regulator_dev *rdev = regulator->rdev;
3108
3109         if (!ms)
3110                 return regulator_disable(regulator);
3111
3112         regulator_lock(rdev);
3113         regulator->deferred_disables++;
3114         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3115                          msecs_to_jiffies(ms));
3116         regulator_unlock(rdev);
3117
3118         return 0;
3119 }
3120 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3121
3122 static int _regulator_is_enabled(struct regulator_dev *rdev)
3123 {
3124         /* A GPIO control always takes precedence */
3125         if (rdev->ena_pin)
3126                 return rdev->ena_gpio_state;
3127
3128         /* If we don't know then assume that the regulator is always on */
3129         if (!rdev->desc->ops->is_enabled)
3130                 return 1;
3131
3132         return rdev->desc->ops->is_enabled(rdev);
3133 }
3134
3135 static int _regulator_list_voltage(struct regulator_dev *rdev,
3136                                    unsigned selector, int lock)
3137 {
3138         const struct regulator_ops *ops = rdev->desc->ops;
3139         int ret;
3140
3141         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3142                 return rdev->desc->fixed_uV;
3143
3144         if (ops->list_voltage) {
3145                 if (selector >= rdev->desc->n_voltages)
3146                         return -EINVAL;
3147                 if (selector < rdev->desc->linear_min_sel)
3148                         return 0;
3149                 if (lock)
3150                         regulator_lock(rdev);
3151                 ret = ops->list_voltage(rdev, selector);
3152                 if (lock)
3153                         regulator_unlock(rdev);
3154         } else if (rdev->is_switch && rdev->supply) {
3155                 ret = _regulator_list_voltage(rdev->supply->rdev,
3156                                               selector, lock);
3157         } else {
3158                 return -EINVAL;
3159         }
3160
3161         if (ret > 0) {
3162                 if (ret < rdev->constraints->min_uV)
3163                         ret = 0;
3164                 else if (ret > rdev->constraints->max_uV)
3165                         ret = 0;
3166         }
3167
3168         return ret;
3169 }
3170
3171 /**
3172  * regulator_is_enabled - is the regulator output enabled
3173  * @regulator: regulator source
3174  *
3175  * Returns positive if the regulator driver backing the source/client
3176  * has requested that the device be enabled, zero if it hasn't, else a
3177  * negative errno code.
3178  *
3179  * Note that the device backing this regulator handle can have multiple
3180  * users, so it might be enabled even if regulator_enable() was never
3181  * called for this particular source.
3182  */
3183 int regulator_is_enabled(struct regulator *regulator)
3184 {
3185         int ret;
3186
3187         if (regulator->always_on)
3188                 return 1;
3189
3190         regulator_lock(regulator->rdev);
3191         ret = _regulator_is_enabled(regulator->rdev);
3192         regulator_unlock(regulator->rdev);
3193
3194         return ret;
3195 }
3196 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3197
3198 /**
3199  * regulator_count_voltages - count regulator_list_voltage() selectors
3200  * @regulator: regulator source
3201  *
3202  * Returns number of selectors, or negative errno.  Selectors are
3203  * numbered starting at zero, and typically correspond to bitfields
3204  * in hardware registers.
3205  */
3206 int regulator_count_voltages(struct regulator *regulator)
3207 {
3208         struct regulator_dev    *rdev = regulator->rdev;
3209
3210         if (rdev->desc->n_voltages)
3211                 return rdev->desc->n_voltages;
3212
3213         if (!rdev->is_switch || !rdev->supply)
3214                 return -EINVAL;
3215
3216         return regulator_count_voltages(rdev->supply);
3217 }
3218 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3219
3220 /**
3221  * regulator_list_voltage - enumerate supported voltages
3222  * @regulator: regulator source
3223  * @selector: identify voltage to list
3224  * Context: can sleep
3225  *
3226  * Returns a voltage that can be passed to @regulator_set_voltage(),
3227  * zero if this selector code can't be used on this system, or a
3228  * negative errno.
3229  */
3230 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3231 {
3232         return _regulator_list_voltage(regulator->rdev, selector, 1);
3233 }
3234 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3235
3236 /**
3237  * regulator_get_regmap - get the regulator's register map
3238  * @regulator: regulator source
3239  *
3240  * Returns the register map for the given regulator, or an ERR_PTR value
3241  * if the regulator doesn't use regmap.
3242  */
3243 struct regmap *regulator_get_regmap(struct regulator *regulator)
3244 {
3245         struct regmap *map = regulator->rdev->regmap;
3246
3247         return map ? map : ERR_PTR(-EOPNOTSUPP);
3248 }
3249
3250 /**
3251  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3252  * @regulator: regulator source
3253  * @vsel_reg: voltage selector register, output parameter
3254  * @vsel_mask: mask for voltage selector bitfield, output parameter
3255  *
3256  * Returns the hardware register offset and bitmask used for setting the
3257  * regulator voltage. This might be useful when configuring voltage-scaling
3258  * hardware or firmware that can make I2C requests behind the kernel's back,
3259  * for example.
3260  *
3261  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3262  * and 0 is returned, otherwise a negative errno is returned.
3263  */
3264 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3265                                          unsigned *vsel_reg,
3266                                          unsigned *vsel_mask)
3267 {
3268         struct regulator_dev *rdev = regulator->rdev;
3269         const struct regulator_ops *ops = rdev->desc->ops;
3270
3271         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3272                 return -EOPNOTSUPP;
3273
3274         *vsel_reg = rdev->desc->vsel_reg;
3275         *vsel_mask = rdev->desc->vsel_mask;
3276
3277         return 0;
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3280
3281 /**
3282  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3283  * @regulator: regulator source
3284  * @selector: identify voltage to list
3285  *
3286  * Converts the selector to a hardware-specific voltage selector that can be
3287  * directly written to the regulator registers. The address of the voltage
3288  * register can be determined by calling @regulator_get_hardware_vsel_register.
3289  *
3290  * On error a negative errno is returned.
3291  */
3292 int regulator_list_hardware_vsel(struct regulator *regulator,
3293                                  unsigned selector)
3294 {
3295         struct regulator_dev *rdev = regulator->rdev;
3296         const struct regulator_ops *ops = rdev->desc->ops;
3297
3298         if (selector >= rdev->desc->n_voltages)
3299                 return -EINVAL;
3300         if (selector < rdev->desc->linear_min_sel)
3301                 return 0;
3302         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3303                 return -EOPNOTSUPP;
3304
3305         return selector;
3306 }
3307 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3308
3309 /**
3310  * regulator_get_linear_step - return the voltage step size between VSEL values
3311  * @regulator: regulator source
3312  *
3313  * Returns the voltage step size between VSEL values for linear
3314  * regulators, or return 0 if the regulator isn't a linear regulator.
3315  */
3316 unsigned int regulator_get_linear_step(struct regulator *regulator)
3317 {
3318         struct regulator_dev *rdev = regulator->rdev;
3319
3320         return rdev->desc->uV_step;
3321 }
3322 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3323
3324 /**
3325  * regulator_is_supported_voltage - check if a voltage range can be supported
3326  *
3327  * @regulator: Regulator to check.
3328  * @min_uV: Minimum required voltage in uV.
3329  * @max_uV: Maximum required voltage in uV.
3330  *
3331  * Returns a boolean.
3332  */
3333 int regulator_is_supported_voltage(struct regulator *regulator,
3334                                    int min_uV, int max_uV)
3335 {
3336         struct regulator_dev *rdev = regulator->rdev;
3337         int i, voltages, ret;
3338
3339         /* If we can't change voltage check the current voltage */
3340         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3341                 ret = regulator_get_voltage(regulator);
3342                 if (ret >= 0)
3343                         return min_uV <= ret && ret <= max_uV;
3344                 else
3345                         return ret;
3346         }
3347
3348         /* Any voltage within constrains range is fine? */
3349         if (rdev->desc->continuous_voltage_range)
3350                 return min_uV >= rdev->constraints->min_uV &&
3351                                 max_uV <= rdev->constraints->max_uV;
3352
3353         ret = regulator_count_voltages(regulator);
3354         if (ret < 0)
3355                 return 0;
3356         voltages = ret;
3357
3358         for (i = 0; i < voltages; i++) {
3359                 ret = regulator_list_voltage(regulator, i);
3360
3361                 if (ret >= min_uV && ret <= max_uV)
3362                         return 1;
3363         }
3364
3365         return 0;
3366 }
3367 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3368
3369 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3370                                  int max_uV)
3371 {
3372         const struct regulator_desc *desc = rdev->desc;
3373
3374         if (desc->ops->map_voltage)
3375                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3376
3377         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3378                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3379
3380         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3381                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3382
3383         if (desc->ops->list_voltage ==
3384                 regulator_list_voltage_pickable_linear_range)
3385                 return regulator_map_voltage_pickable_linear_range(rdev,
3386                                                         min_uV, max_uV);
3387
3388         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3389 }
3390
3391 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3392                                        int min_uV, int max_uV,
3393                                        unsigned *selector)
3394 {
3395         struct pre_voltage_change_data data;
3396         int ret;
3397
3398         data.old_uV = regulator_get_voltage_rdev(rdev);
3399         data.min_uV = min_uV;
3400         data.max_uV = max_uV;
3401         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3402                                    &data);
3403         if (ret & NOTIFY_STOP_MASK)
3404                 return -EINVAL;
3405
3406         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3407         if (ret >= 0)
3408                 return ret;
3409
3410         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3411                              (void *)data.old_uV);
3412
3413         return ret;
3414 }
3415
3416 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3417                                            int uV, unsigned selector)
3418 {
3419         struct pre_voltage_change_data data;
3420         int ret;
3421
3422         data.old_uV = regulator_get_voltage_rdev(rdev);
3423         data.min_uV = uV;
3424         data.max_uV = uV;
3425         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3426                                    &data);
3427         if (ret & NOTIFY_STOP_MASK)
3428                 return -EINVAL;
3429
3430         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3431         if (ret >= 0)
3432                 return ret;
3433
3434         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3435                              (void *)data.old_uV);
3436
3437         return ret;
3438 }
3439
3440 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3441                                            int uV, int new_selector)
3442 {
3443         const struct regulator_ops *ops = rdev->desc->ops;
3444         int diff, old_sel, curr_sel, ret;
3445
3446         /* Stepping is only needed if the regulator is enabled. */
3447         if (!_regulator_is_enabled(rdev))
3448                 goto final_set;
3449
3450         if (!ops->get_voltage_sel)
3451                 return -EINVAL;
3452
3453         old_sel = ops->get_voltage_sel(rdev);
3454         if (old_sel < 0)
3455                 return old_sel;
3456
3457         diff = new_selector - old_sel;
3458         if (diff == 0)
3459                 return 0; /* No change needed. */
3460
3461         if (diff > 0) {
3462                 /* Stepping up. */
3463                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3464                      curr_sel < new_selector;
3465                      curr_sel += rdev->desc->vsel_step) {
3466                         /*
3467                          * Call the callback directly instead of using
3468                          * _regulator_call_set_voltage_sel() as we don't
3469                          * want to notify anyone yet. Same in the branch
3470                          * below.
3471                          */
3472                         ret = ops->set_voltage_sel(rdev, curr_sel);
3473                         if (ret)
3474                                 goto try_revert;
3475                 }
3476         } else {
3477                 /* Stepping down. */
3478                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3479                      curr_sel > new_selector;
3480                      curr_sel -= rdev->desc->vsel_step) {
3481                         ret = ops->set_voltage_sel(rdev, curr_sel);
3482                         if (ret)
3483                                 goto try_revert;
3484                 }
3485         }
3486
3487 final_set:
3488         /* The final selector will trigger the notifiers. */
3489         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3490
3491 try_revert:
3492         /*
3493          * At least try to return to the previous voltage if setting a new
3494          * one failed.
3495          */
3496         (void)ops->set_voltage_sel(rdev, old_sel);
3497         return ret;
3498 }
3499
3500 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3501                                        int old_uV, int new_uV)
3502 {
3503         unsigned int ramp_delay = 0;
3504
3505         if (rdev->constraints->ramp_delay)
3506                 ramp_delay = rdev->constraints->ramp_delay;
3507         else if (rdev->desc->ramp_delay)
3508                 ramp_delay = rdev->desc->ramp_delay;
3509         else if (rdev->constraints->settling_time)
3510                 return rdev->constraints->settling_time;
3511         else if (rdev->constraints->settling_time_up &&
3512                  (new_uV > old_uV))
3513                 return rdev->constraints->settling_time_up;
3514         else if (rdev->constraints->settling_time_down &&
3515                  (new_uV < old_uV))
3516                 return rdev->constraints->settling_time_down;
3517
3518         if (ramp_delay == 0)
3519                 return 0;
3520
3521         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3522 }
3523
3524 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3525                                      int min_uV, int max_uV)
3526 {
3527         int ret;
3528         int delay = 0;
3529         int best_val = 0;
3530         unsigned int selector;
3531         int old_selector = -1;
3532         const struct regulator_ops *ops = rdev->desc->ops;
3533         int old_uV = regulator_get_voltage_rdev(rdev);
3534
3535         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3536
3537         min_uV += rdev->constraints->uV_offset;
3538         max_uV += rdev->constraints->uV_offset;
3539
3540         /*
3541          * If we can't obtain the old selector there is not enough
3542          * info to call set_voltage_time_sel().
3543          */
3544         if (_regulator_is_enabled(rdev) &&
3545             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3546                 old_selector = ops->get_voltage_sel(rdev);
3547                 if (old_selector < 0)
3548                         return old_selector;
3549         }
3550
3551         if (ops->set_voltage) {
3552                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3553                                                   &selector);
3554
3555                 if (ret >= 0) {
3556                         if (ops->list_voltage)
3557                                 best_val = ops->list_voltage(rdev,
3558                                                              selector);
3559                         else
3560                                 best_val = regulator_get_voltage_rdev(rdev);
3561                 }
3562
3563         } else if (ops->set_voltage_sel) {
3564                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3565                 if (ret >= 0) {
3566                         best_val = ops->list_voltage(rdev, ret);
3567                         if (min_uV <= best_val && max_uV >= best_val) {
3568                                 selector = ret;
3569                                 if (old_selector == selector)
3570                                         ret = 0;
3571                                 else if (rdev->desc->vsel_step)
3572                                         ret = _regulator_set_voltage_sel_step(
3573                                                 rdev, best_val, selector);
3574                                 else
3575                                         ret = _regulator_call_set_voltage_sel(
3576                                                 rdev, best_val, selector);
3577                         } else {
3578                                 ret = -EINVAL;
3579                         }
3580                 }
3581         } else {
3582                 ret = -EINVAL;
3583         }
3584
3585         if (ret)
3586                 goto out;
3587
3588         if (ops->set_voltage_time_sel) {
3589                 /*
3590                  * Call set_voltage_time_sel if successfully obtained
3591                  * old_selector
3592                  */
3593                 if (old_selector >= 0 && old_selector != selector)
3594                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3595                                                           selector);
3596         } else {
3597                 if (old_uV != best_val) {
3598                         if (ops->set_voltage_time)
3599                                 delay = ops->set_voltage_time(rdev, old_uV,
3600                                                               best_val);
3601                         else
3602                                 delay = _regulator_set_voltage_time(rdev,
3603                                                                     old_uV,
3604                                                                     best_val);
3605                 }
3606         }
3607
3608         if (delay < 0) {
3609                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3610                 delay = 0;
3611         }
3612
3613         /* Insert any necessary delays */
3614         _regulator_delay_helper(delay);
3615
3616         if (best_val >= 0) {
3617                 unsigned long data = best_val;
3618
3619                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3620                                      (void *)data);
3621         }
3622
3623 out:
3624         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3625
3626         return ret;
3627 }
3628
3629 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3630                                   int min_uV, int max_uV, suspend_state_t state)
3631 {
3632         struct regulator_state *rstate;
3633         int uV, sel;
3634
3635         rstate = regulator_get_suspend_state(rdev, state);
3636         if (rstate == NULL)
3637                 return -EINVAL;
3638
3639         if (min_uV < rstate->min_uV)
3640                 min_uV = rstate->min_uV;
3641         if (max_uV > rstate->max_uV)
3642                 max_uV = rstate->max_uV;
3643
3644         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3645         if (sel < 0)
3646                 return sel;
3647
3648         uV = rdev->desc->ops->list_voltage(rdev, sel);
3649         if (uV >= min_uV && uV <= max_uV)
3650                 rstate->uV = uV;
3651
3652         return 0;
3653 }
3654
3655 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3656                                           int min_uV, int max_uV,
3657                                           suspend_state_t state)
3658 {
3659         struct regulator_dev *rdev = regulator->rdev;
3660         struct regulator_voltage *voltage = &regulator->voltage[state];
3661         int ret = 0;
3662         int old_min_uV, old_max_uV;
3663         int current_uV;
3664
3665         /* If we're setting the same range as last time the change
3666          * should be a noop (some cpufreq implementations use the same
3667          * voltage for multiple frequencies, for example).
3668          */
3669         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3670                 goto out;
3671
3672         /* If we're trying to set a range that overlaps the current voltage,
3673          * return successfully even though the regulator does not support
3674          * changing the voltage.
3675          */
3676         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3677                 current_uV = regulator_get_voltage_rdev(rdev);
3678                 if (min_uV <= current_uV && current_uV <= max_uV) {
3679                         voltage->min_uV = min_uV;
3680                         voltage->max_uV = max_uV;
3681                         goto out;
3682                 }
3683         }
3684
3685         /* sanity check */
3686         if (!rdev->desc->ops->set_voltage &&
3687             !rdev->desc->ops->set_voltage_sel) {
3688                 ret = -EINVAL;
3689                 goto out;
3690         }
3691
3692         /* constraints check */
3693         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3694         if (ret < 0)
3695                 goto out;
3696
3697         /* restore original values in case of error */
3698         old_min_uV = voltage->min_uV;
3699         old_max_uV = voltage->max_uV;
3700         voltage->min_uV = min_uV;
3701         voltage->max_uV = max_uV;
3702
3703         /* for not coupled regulators this will just set the voltage */
3704         ret = regulator_balance_voltage(rdev, state);
3705         if (ret < 0) {
3706                 voltage->min_uV = old_min_uV;
3707                 voltage->max_uV = old_max_uV;
3708         }
3709
3710 out:
3711         return ret;
3712 }
3713
3714 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3715                                int max_uV, suspend_state_t state)
3716 {
3717         int best_supply_uV = 0;
3718         int supply_change_uV = 0;
3719         int ret;
3720
3721         if (rdev->supply &&
3722             regulator_ops_is_valid(rdev->supply->rdev,
3723                                    REGULATOR_CHANGE_VOLTAGE) &&
3724             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3725                                            rdev->desc->ops->get_voltage_sel))) {
3726                 int current_supply_uV;
3727                 int selector;
3728
3729                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3730                 if (selector < 0) {
3731                         ret = selector;
3732                         goto out;
3733                 }
3734
3735                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3736                 if (best_supply_uV < 0) {
3737                         ret = best_supply_uV;
3738                         goto out;
3739                 }
3740
3741                 best_supply_uV += rdev->desc->min_dropout_uV;
3742
3743                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3744                 if (current_supply_uV < 0) {
3745                         ret = current_supply_uV;
3746                         goto out;
3747                 }
3748
3749                 supply_change_uV = best_supply_uV - current_supply_uV;
3750         }
3751
3752         if (supply_change_uV > 0) {
3753                 ret = regulator_set_voltage_unlocked(rdev->supply,
3754                                 best_supply_uV, INT_MAX, state);
3755                 if (ret) {
3756                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3757                                 ERR_PTR(ret));
3758                         goto out;
3759                 }
3760         }
3761
3762         if (state == PM_SUSPEND_ON)
3763                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3764         else
3765                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3766                                                         max_uV, state);
3767         if (ret < 0)
3768                 goto out;
3769
3770         if (supply_change_uV < 0) {
3771                 ret = regulator_set_voltage_unlocked(rdev->supply,
3772                                 best_supply_uV, INT_MAX, state);
3773                 if (ret)
3774                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3775                                  ERR_PTR(ret));
3776                 /* No need to fail here */
3777                 ret = 0;
3778         }
3779
3780 out:
3781         return ret;
3782 }
3783 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3784
3785 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3786                                         int *current_uV, int *min_uV)
3787 {
3788         struct regulation_constraints *constraints = rdev->constraints;
3789
3790         /* Limit voltage change only if necessary */
3791         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3792                 return 1;
3793
3794         if (*current_uV < 0) {
3795                 *current_uV = regulator_get_voltage_rdev(rdev);
3796
3797                 if (*current_uV < 0)
3798                         return *current_uV;
3799         }
3800
3801         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3802                 return 1;
3803
3804         /* Clamp target voltage within the given step */
3805         if (*current_uV < *min_uV)
3806                 *min_uV = min(*current_uV + constraints->max_uV_step,
3807                               *min_uV);
3808         else
3809                 *min_uV = max(*current_uV - constraints->max_uV_step,
3810                               *min_uV);
3811
3812         return 0;
3813 }
3814
3815 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3816                                          int *current_uV,
3817                                          int *min_uV, int *max_uV,
3818                                          suspend_state_t state,
3819                                          int n_coupled)
3820 {
3821         struct coupling_desc *c_desc = &rdev->coupling_desc;
3822         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3823         struct regulation_constraints *constraints = rdev->constraints;
3824         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3825         int max_current_uV = 0, min_current_uV = INT_MAX;
3826         int highest_min_uV = 0, target_uV, possible_uV;
3827         int i, ret, max_spread;
3828         bool done;
3829
3830         *current_uV = -1;
3831
3832         /*
3833          * If there are no coupled regulators, simply set the voltage
3834          * demanded by consumers.
3835          */
3836         if (n_coupled == 1) {
3837                 /*
3838                  * If consumers don't provide any demands, set voltage
3839                  * to min_uV
3840                  */
3841                 desired_min_uV = constraints->min_uV;
3842                 desired_max_uV = constraints->max_uV;
3843
3844                 ret = regulator_check_consumers(rdev,
3845                                                 &desired_min_uV,
3846                                                 &desired_max_uV, state);
3847                 if (ret < 0)
3848                         return ret;
3849
3850                 possible_uV = desired_min_uV;
3851                 done = true;
3852
3853                 goto finish;
3854         }
3855
3856         /* Find highest min desired voltage */
3857         for (i = 0; i < n_coupled; i++) {
3858                 int tmp_min = 0;
3859                 int tmp_max = INT_MAX;
3860
3861                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3862
3863                 ret = regulator_check_consumers(c_rdevs[i],
3864                                                 &tmp_min,
3865                                                 &tmp_max, state);
3866                 if (ret < 0)
3867                         return ret;
3868
3869                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3870                 if (ret < 0)
3871                         return ret;
3872
3873                 highest_min_uV = max(highest_min_uV, tmp_min);
3874
3875                 if (i == 0) {
3876                         desired_min_uV = tmp_min;
3877                         desired_max_uV = tmp_max;
3878                 }
3879         }
3880
3881         max_spread = constraints->max_spread[0];
3882
3883         /*
3884          * Let target_uV be equal to the desired one if possible.
3885          * If not, set it to minimum voltage, allowed by other coupled
3886          * regulators.
3887          */
3888         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3889
3890         /*
3891          * Find min and max voltages, which currently aren't violating
3892          * max_spread.
3893          */
3894         for (i = 1; i < n_coupled; i++) {
3895                 int tmp_act;
3896
3897                 if (!_regulator_is_enabled(c_rdevs[i]))
3898                         continue;
3899
3900                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3901                 if (tmp_act < 0)
3902                         return tmp_act;
3903
3904                 min_current_uV = min(tmp_act, min_current_uV);
3905                 max_current_uV = max(tmp_act, max_current_uV);
3906         }
3907
3908         /* There aren't any other regulators enabled */
3909         if (max_current_uV == 0) {
3910                 possible_uV = target_uV;
3911         } else {
3912                 /*
3913                  * Correct target voltage, so as it currently isn't
3914                  * violating max_spread
3915                  */
3916                 possible_uV = max(target_uV, max_current_uV - max_spread);
3917                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3918         }
3919
3920         if (possible_uV > desired_max_uV)
3921                 return -EINVAL;
3922
3923         done = (possible_uV == target_uV);
3924         desired_min_uV = possible_uV;
3925
3926 finish:
3927         /* Apply max_uV_step constraint if necessary */
3928         if (state == PM_SUSPEND_ON) {
3929                 ret = regulator_limit_voltage_step(rdev, current_uV,
3930                                                    &desired_min_uV);
3931                 if (ret < 0)
3932                         return ret;
3933
3934                 if (ret == 0)
3935                         done = false;
3936         }
3937
3938         /* Set current_uV if wasn't done earlier in the code and if necessary */
3939         if (n_coupled > 1 && *current_uV == -1) {
3940
3941                 if (_regulator_is_enabled(rdev)) {
3942                         ret = regulator_get_voltage_rdev(rdev);
3943                         if (ret < 0)
3944                                 return ret;
3945
3946                         *current_uV = ret;
3947                 } else {
3948                         *current_uV = desired_min_uV;
3949                 }
3950         }
3951
3952         *min_uV = desired_min_uV;
3953         *max_uV = desired_max_uV;
3954
3955         return done;
3956 }
3957
3958 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3959                                  suspend_state_t state, bool skip_coupled)
3960 {
3961         struct regulator_dev **c_rdevs;
3962         struct regulator_dev *best_rdev;
3963         struct coupling_desc *c_desc = &rdev->coupling_desc;
3964         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3965         unsigned int delta, best_delta;
3966         unsigned long c_rdev_done = 0;
3967         bool best_c_rdev_done;
3968
3969         c_rdevs = c_desc->coupled_rdevs;
3970         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3971
3972         /*
3973          * Find the best possible voltage change on each loop. Leave the loop
3974          * if there isn't any possible change.
3975          */
3976         do {
3977                 best_c_rdev_done = false;
3978                 best_delta = 0;
3979                 best_min_uV = 0;
3980                 best_max_uV = 0;
3981                 best_c_rdev = 0;
3982                 best_rdev = NULL;
3983
3984                 /*
3985                  * Find highest difference between optimal voltage
3986                  * and current voltage.
3987                  */
3988                 for (i = 0; i < n_coupled; i++) {
3989                         /*
3990                          * optimal_uV is the best voltage that can be set for
3991                          * i-th regulator at the moment without violating
3992                          * max_spread constraint in order to balance
3993                          * the coupled voltages.
3994                          */
3995                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3996
3997                         if (test_bit(i, &c_rdev_done))
3998                                 continue;
3999
4000                         ret = regulator_get_optimal_voltage(c_rdevs[i],
4001                                                             &current_uV,
4002                                                             &optimal_uV,
4003                                                             &optimal_max_uV,
4004                                                             state, n_coupled);
4005                         if (ret < 0)
4006                                 goto out;
4007
4008                         delta = abs(optimal_uV - current_uV);
4009
4010                         if (delta && best_delta <= delta) {
4011                                 best_c_rdev_done = ret;
4012                                 best_delta = delta;
4013                                 best_rdev = c_rdevs[i];
4014                                 best_min_uV = optimal_uV;
4015                                 best_max_uV = optimal_max_uV;
4016                                 best_c_rdev = i;
4017                         }
4018                 }
4019
4020                 /* Nothing to change, return successfully */
4021                 if (!best_rdev) {
4022                         ret = 0;
4023                         goto out;
4024                 }
4025
4026                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4027                                                  best_max_uV, state);
4028
4029                 if (ret < 0)
4030                         goto out;
4031
4032                 if (best_c_rdev_done)
4033                         set_bit(best_c_rdev, &c_rdev_done);
4034
4035         } while (n_coupled > 1);
4036
4037 out:
4038         return ret;
4039 }
4040
4041 static int regulator_balance_voltage(struct regulator_dev *rdev,
4042                                      suspend_state_t state)
4043 {
4044         struct coupling_desc *c_desc = &rdev->coupling_desc;
4045         struct regulator_coupler *coupler = c_desc->coupler;
4046         bool skip_coupled = false;
4047
4048         /*
4049          * If system is in a state other than PM_SUSPEND_ON, don't check
4050          * other coupled regulators.
4051          */
4052         if (state != PM_SUSPEND_ON)
4053                 skip_coupled = true;
4054
4055         if (c_desc->n_resolved < c_desc->n_coupled) {
4056                 rdev_err(rdev, "Not all coupled regulators registered\n");
4057                 return -EPERM;
4058         }
4059
4060         /* Invoke custom balancer for customized couplers */
4061         if (coupler && coupler->balance_voltage)
4062                 return coupler->balance_voltage(coupler, rdev, state);
4063
4064         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4065 }
4066
4067 /**
4068  * regulator_set_voltage - set regulator output voltage
4069  * @regulator: regulator source
4070  * @min_uV: Minimum required voltage in uV
4071  * @max_uV: Maximum acceptable voltage in uV
4072  *
4073  * Sets a voltage regulator to the desired output voltage. This can be set
4074  * during any regulator state. IOW, regulator can be disabled or enabled.
4075  *
4076  * If the regulator is enabled then the voltage will change to the new value
4077  * immediately otherwise if the regulator is disabled the regulator will
4078  * output at the new voltage when enabled.
4079  *
4080  * NOTE: If the regulator is shared between several devices then the lowest
4081  * request voltage that meets the system constraints will be used.
4082  * Regulator system constraints must be set for this regulator before
4083  * calling this function otherwise this call will fail.
4084  */
4085 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4086 {
4087         struct ww_acquire_ctx ww_ctx;
4088         int ret;
4089
4090         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4091
4092         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4093                                              PM_SUSPEND_ON);
4094
4095         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4096
4097         return ret;
4098 }
4099 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4100
4101 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4102                                            suspend_state_t state, bool en)
4103 {
4104         struct regulator_state *rstate;
4105
4106         rstate = regulator_get_suspend_state(rdev, state);
4107         if (rstate == NULL)
4108                 return -EINVAL;
4109
4110         if (!rstate->changeable)
4111                 return -EPERM;
4112
4113         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4114
4115         return 0;
4116 }
4117
4118 int regulator_suspend_enable(struct regulator_dev *rdev,
4119                                     suspend_state_t state)
4120 {
4121         return regulator_suspend_toggle(rdev, state, true);
4122 }
4123 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4124
4125 int regulator_suspend_disable(struct regulator_dev *rdev,
4126                                      suspend_state_t state)
4127 {
4128         struct regulator *regulator;
4129         struct regulator_voltage *voltage;
4130
4131         /*
4132          * if any consumer wants this regulator device keeping on in
4133          * suspend states, don't set it as disabled.
4134          */
4135         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4136                 voltage = &regulator->voltage[state];
4137                 if (voltage->min_uV || voltage->max_uV)
4138                         return 0;
4139         }
4140
4141         return regulator_suspend_toggle(rdev, state, false);
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4144
4145 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4146                                           int min_uV, int max_uV,
4147                                           suspend_state_t state)
4148 {
4149         struct regulator_dev *rdev = regulator->rdev;
4150         struct regulator_state *rstate;
4151
4152         rstate = regulator_get_suspend_state(rdev, state);
4153         if (rstate == NULL)
4154                 return -EINVAL;
4155
4156         if (rstate->min_uV == rstate->max_uV) {
4157                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4158                 return -EPERM;
4159         }
4160
4161         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4162 }
4163
4164 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4165                                   int max_uV, suspend_state_t state)
4166 {
4167         struct ww_acquire_ctx ww_ctx;
4168         int ret;
4169
4170         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4171         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4172                 return -EINVAL;
4173
4174         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4175
4176         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4177                                              max_uV, state);
4178
4179         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4180
4181         return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4184
4185 /**
4186  * regulator_set_voltage_time - get raise/fall time
4187  * @regulator: regulator source
4188  * @old_uV: starting voltage in microvolts
4189  * @new_uV: target voltage in microvolts
4190  *
4191  * Provided with the starting and ending voltage, this function attempts to
4192  * calculate the time in microseconds required to rise or fall to this new
4193  * voltage.
4194  */
4195 int regulator_set_voltage_time(struct regulator *regulator,
4196                                int old_uV, int new_uV)
4197 {
4198         struct regulator_dev *rdev = regulator->rdev;
4199         const struct regulator_ops *ops = rdev->desc->ops;
4200         int old_sel = -1;
4201         int new_sel = -1;
4202         int voltage;
4203         int i;
4204
4205         if (ops->set_voltage_time)
4206                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4207         else if (!ops->set_voltage_time_sel)
4208                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4209
4210         /* Currently requires operations to do this */
4211         if (!ops->list_voltage || !rdev->desc->n_voltages)
4212                 return -EINVAL;
4213
4214         for (i = 0; i < rdev->desc->n_voltages; i++) {
4215                 /* We only look for exact voltage matches here */
4216                 if (i < rdev->desc->linear_min_sel)
4217                         continue;
4218
4219                 if (old_sel >= 0 && new_sel >= 0)
4220                         break;
4221
4222                 voltage = regulator_list_voltage(regulator, i);
4223                 if (voltage < 0)
4224                         return -EINVAL;
4225                 if (voltage == 0)
4226                         continue;
4227                 if (voltage == old_uV)
4228                         old_sel = i;
4229                 if (voltage == new_uV)
4230                         new_sel = i;
4231         }
4232
4233         if (old_sel < 0 || new_sel < 0)
4234                 return -EINVAL;
4235
4236         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4237 }
4238 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4239
4240 /**
4241  * regulator_set_voltage_time_sel - get raise/fall time
4242  * @rdev: regulator source device
4243  * @old_selector: selector for starting voltage
4244  * @new_selector: selector for target voltage
4245  *
4246  * Provided with the starting and target voltage selectors, this function
4247  * returns time in microseconds required to rise or fall to this new voltage
4248  *
4249  * Drivers providing ramp_delay in regulation_constraints can use this as their
4250  * set_voltage_time_sel() operation.
4251  */
4252 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4253                                    unsigned int old_selector,
4254                                    unsigned int new_selector)
4255 {
4256         int old_volt, new_volt;
4257
4258         /* sanity check */
4259         if (!rdev->desc->ops->list_voltage)
4260                 return -EINVAL;
4261
4262         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4263         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4264
4265         if (rdev->desc->ops->set_voltage_time)
4266                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4267                                                          new_volt);
4268         else
4269                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4270 }
4271 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4272
4273 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4274 {
4275         int ret;
4276
4277         regulator_lock(rdev);
4278
4279         if (!rdev->desc->ops->set_voltage &&
4280             !rdev->desc->ops->set_voltage_sel) {
4281                 ret = -EINVAL;
4282                 goto out;
4283         }
4284
4285         /* balance only, if regulator is coupled */
4286         if (rdev->coupling_desc.n_coupled > 1)
4287                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4288         else
4289                 ret = -EOPNOTSUPP;
4290
4291 out:
4292         regulator_unlock(rdev);
4293         return ret;
4294 }
4295
4296 /**
4297  * regulator_sync_voltage - re-apply last regulator output voltage
4298  * @regulator: regulator source
4299  *
4300  * Re-apply the last configured voltage.  This is intended to be used
4301  * where some external control source the consumer is cooperating with
4302  * has caused the configured voltage to change.
4303  */
4304 int regulator_sync_voltage(struct regulator *regulator)
4305 {
4306         struct regulator_dev *rdev = regulator->rdev;
4307         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4308         int ret, min_uV, max_uV;
4309
4310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4311                 return 0;
4312
4313         regulator_lock(rdev);
4314
4315         if (!rdev->desc->ops->set_voltage &&
4316             !rdev->desc->ops->set_voltage_sel) {
4317                 ret = -EINVAL;
4318                 goto out;
4319         }
4320
4321         /* This is only going to work if we've had a voltage configured. */
4322         if (!voltage->min_uV && !voltage->max_uV) {
4323                 ret = -EINVAL;
4324                 goto out;
4325         }
4326
4327         min_uV = voltage->min_uV;
4328         max_uV = voltage->max_uV;
4329
4330         /* This should be a paranoia check... */
4331         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4332         if (ret < 0)
4333                 goto out;
4334
4335         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4336         if (ret < 0)
4337                 goto out;
4338
4339         /* balance only, if regulator is coupled */
4340         if (rdev->coupling_desc.n_coupled > 1)
4341                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4342         else
4343                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4344
4345 out:
4346         regulator_unlock(rdev);
4347         return ret;
4348 }
4349 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4350
4351 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4352 {
4353         int sel, ret;
4354         bool bypassed;
4355
4356         if (rdev->desc->ops->get_bypass) {
4357                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4358                 if (ret < 0)
4359                         return ret;
4360                 if (bypassed) {
4361                         /* if bypassed the regulator must have a supply */
4362                         if (!rdev->supply) {
4363                                 rdev_err(rdev,
4364                                          "bypassed regulator has no supply!\n");
4365                                 return -EPROBE_DEFER;
4366                         }
4367
4368                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4369                 }
4370         }
4371
4372         if (rdev->desc->ops->get_voltage_sel) {
4373                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4374                 if (sel < 0)
4375                         return sel;
4376                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4377         } else if (rdev->desc->ops->get_voltage) {
4378                 ret = rdev->desc->ops->get_voltage(rdev);
4379         } else if (rdev->desc->ops->list_voltage) {
4380                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4381         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4382                 ret = rdev->desc->fixed_uV;
4383         } else if (rdev->supply) {
4384                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4385         } else if (rdev->supply_name) {
4386                 return -EPROBE_DEFER;
4387         } else {
4388                 return -EINVAL;
4389         }
4390
4391         if (ret < 0)
4392                 return ret;
4393         return ret - rdev->constraints->uV_offset;
4394 }
4395 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4396
4397 /**
4398  * regulator_get_voltage - get regulator output voltage
4399  * @regulator: regulator source
4400  *
4401  * This returns the current regulator voltage in uV.
4402  *
4403  * NOTE: If the regulator is disabled it will return the voltage value. This
4404  * function should not be used to determine regulator state.
4405  */
4406 int regulator_get_voltage(struct regulator *regulator)
4407 {
4408         struct ww_acquire_ctx ww_ctx;
4409         int ret;
4410
4411         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4412         ret = regulator_get_voltage_rdev(regulator->rdev);
4413         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4414
4415         return ret;
4416 }
4417 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4418
4419 /**
4420  * regulator_set_current_limit - set regulator output current limit
4421  * @regulator: regulator source
4422  * @min_uA: Minimum supported current in uA
4423  * @max_uA: Maximum supported current in uA
4424  *
4425  * Sets current sink to the desired output current. This can be set during
4426  * any regulator state. IOW, regulator can be disabled or enabled.
4427  *
4428  * If the regulator is enabled then the current will change to the new value
4429  * immediately otherwise if the regulator is disabled the regulator will
4430  * output at the new current when enabled.
4431  *
4432  * NOTE: Regulator system constraints must be set for this regulator before
4433  * calling this function otherwise this call will fail.
4434  */
4435 int regulator_set_current_limit(struct regulator *regulator,
4436                                int min_uA, int max_uA)
4437 {
4438         struct regulator_dev *rdev = regulator->rdev;
4439         int ret;
4440
4441         regulator_lock(rdev);
4442
4443         /* sanity check */
4444         if (!rdev->desc->ops->set_current_limit) {
4445                 ret = -EINVAL;
4446                 goto out;
4447         }
4448
4449         /* constraints check */
4450         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4451         if (ret < 0)
4452                 goto out;
4453
4454         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4455 out:
4456         regulator_unlock(rdev);
4457         return ret;
4458 }
4459 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4460
4461 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4462 {
4463         /* sanity check */
4464         if (!rdev->desc->ops->get_current_limit)
4465                 return -EINVAL;
4466
4467         return rdev->desc->ops->get_current_limit(rdev);
4468 }
4469
4470 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4471 {
4472         int ret;
4473
4474         regulator_lock(rdev);
4475         ret = _regulator_get_current_limit_unlocked(rdev);
4476         regulator_unlock(rdev);
4477
4478         return ret;
4479 }
4480
4481 /**
4482  * regulator_get_current_limit - get regulator output current
4483  * @regulator: regulator source
4484  *
4485  * This returns the current supplied by the specified current sink in uA.
4486  *
4487  * NOTE: If the regulator is disabled it will return the current value. This
4488  * function should not be used to determine regulator state.
4489  */
4490 int regulator_get_current_limit(struct regulator *regulator)
4491 {
4492         return _regulator_get_current_limit(regulator->rdev);
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4495
4496 /**
4497  * regulator_set_mode - set regulator operating mode
4498  * @regulator: regulator source
4499  * @mode: operating mode - one of the REGULATOR_MODE constants
4500  *
4501  * Set regulator operating mode to increase regulator efficiency or improve
4502  * regulation performance.
4503  *
4504  * NOTE: Regulator system constraints must be set for this regulator before
4505  * calling this function otherwise this call will fail.
4506  */
4507 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4508 {
4509         struct regulator_dev *rdev = regulator->rdev;
4510         int ret;
4511         int regulator_curr_mode;
4512
4513         regulator_lock(rdev);
4514
4515         /* sanity check */
4516         if (!rdev->desc->ops->set_mode) {
4517                 ret = -EINVAL;
4518                 goto out;
4519         }
4520
4521         /* return if the same mode is requested */
4522         if (rdev->desc->ops->get_mode) {
4523                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4524                 if (regulator_curr_mode == mode) {
4525                         ret = 0;
4526                         goto out;
4527                 }
4528         }
4529
4530         /* constraints check */
4531         ret = regulator_mode_constrain(rdev, &mode);
4532         if (ret < 0)
4533                 goto out;
4534
4535         ret = rdev->desc->ops->set_mode(rdev, mode);
4536 out:
4537         regulator_unlock(rdev);
4538         return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(regulator_set_mode);
4541
4542 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4543 {
4544         /* sanity check */
4545         if (!rdev->desc->ops->get_mode)
4546                 return -EINVAL;
4547
4548         return rdev->desc->ops->get_mode(rdev);
4549 }
4550
4551 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4552 {
4553         int ret;
4554
4555         regulator_lock(rdev);
4556         ret = _regulator_get_mode_unlocked(rdev);
4557         regulator_unlock(rdev);
4558
4559         return ret;
4560 }
4561
4562 /**
4563  * regulator_get_mode - get regulator operating mode
4564  * @regulator: regulator source
4565  *
4566  * Get the current regulator operating mode.
4567  */
4568 unsigned int regulator_get_mode(struct regulator *regulator)
4569 {
4570         return _regulator_get_mode(regulator->rdev);
4571 }
4572 EXPORT_SYMBOL_GPL(regulator_get_mode);
4573
4574 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4575 {
4576         int ret = 0;
4577
4578         if (rdev->use_cached_err) {
4579                 spin_lock(&rdev->err_lock);
4580                 ret = rdev->cached_err;
4581                 spin_unlock(&rdev->err_lock);
4582         }
4583         return ret;
4584 }
4585
4586 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4587                                         unsigned int *flags)
4588 {
4589         int cached_flags, ret = 0;
4590
4591         regulator_lock(rdev);
4592
4593         cached_flags = rdev_get_cached_err_flags(rdev);
4594
4595         if (rdev->desc->ops->get_error_flags)
4596                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4597         else if (!rdev->use_cached_err)
4598                 ret = -EINVAL;
4599
4600         *flags |= cached_flags;
4601
4602         regulator_unlock(rdev);
4603
4604         return ret;
4605 }
4606
4607 /**
4608  * regulator_get_error_flags - get regulator error information
4609  * @regulator: regulator source
4610  * @flags: pointer to store error flags
4611  *
4612  * Get the current regulator error information.
4613  */
4614 int regulator_get_error_flags(struct regulator *regulator,
4615                                 unsigned int *flags)
4616 {
4617         return _regulator_get_error_flags(regulator->rdev, flags);
4618 }
4619 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4620
4621 /**
4622  * regulator_set_load - set regulator load
4623  * @regulator: regulator source
4624  * @uA_load: load current
4625  *
4626  * Notifies the regulator core of a new device load. This is then used by
4627  * DRMS (if enabled by constraints) to set the most efficient regulator
4628  * operating mode for the new regulator loading.
4629  *
4630  * Consumer devices notify their supply regulator of the maximum power
4631  * they will require (can be taken from device datasheet in the power
4632  * consumption tables) when they change operational status and hence power
4633  * state. Examples of operational state changes that can affect power
4634  * consumption are :-
4635  *
4636  *    o Device is opened / closed.
4637  *    o Device I/O is about to begin or has just finished.
4638  *    o Device is idling in between work.
4639  *
4640  * This information is also exported via sysfs to userspace.
4641  *
4642  * DRMS will sum the total requested load on the regulator and change
4643  * to the most efficient operating mode if platform constraints allow.
4644  *
4645  * NOTE: when a regulator consumer requests to have a regulator
4646  * disabled then any load that consumer requested no longer counts
4647  * toward the total requested load.  If the regulator is re-enabled
4648  * then the previously requested load will start counting again.
4649  *
4650  * If a regulator is an always-on regulator then an individual consumer's
4651  * load will still be removed if that consumer is fully disabled.
4652  *
4653  * On error a negative errno is returned.
4654  */
4655 int regulator_set_load(struct regulator *regulator, int uA_load)
4656 {
4657         struct regulator_dev *rdev = regulator->rdev;
4658         int old_uA_load;
4659         int ret = 0;
4660
4661         regulator_lock(rdev);
4662         old_uA_load = regulator->uA_load;
4663         regulator->uA_load = uA_load;
4664         if (regulator->enable_count && old_uA_load != uA_load) {
4665                 ret = drms_uA_update(rdev);
4666                 if (ret < 0)
4667                         regulator->uA_load = old_uA_load;
4668         }
4669         regulator_unlock(rdev);
4670
4671         return ret;
4672 }
4673 EXPORT_SYMBOL_GPL(regulator_set_load);
4674
4675 /**
4676  * regulator_allow_bypass - allow the regulator to go into bypass mode
4677  *
4678  * @regulator: Regulator to configure
4679  * @enable: enable or disable bypass mode
4680  *
4681  * Allow the regulator to go into bypass mode if all other consumers
4682  * for the regulator also enable bypass mode and the machine
4683  * constraints allow this.  Bypass mode means that the regulator is
4684  * simply passing the input directly to the output with no regulation.
4685  */
4686 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4687 {
4688         struct regulator_dev *rdev = regulator->rdev;
4689         const char *name = rdev_get_name(rdev);
4690         int ret = 0;
4691
4692         if (!rdev->desc->ops->set_bypass)
4693                 return 0;
4694
4695         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4696                 return 0;
4697
4698         regulator_lock(rdev);
4699
4700         if (enable && !regulator->bypass) {
4701                 rdev->bypass_count++;
4702
4703                 if (rdev->bypass_count == rdev->open_count) {
4704                         trace_regulator_bypass_enable(name);
4705
4706                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4707                         if (ret != 0)
4708                                 rdev->bypass_count--;
4709                         else
4710                                 trace_regulator_bypass_enable_complete(name);
4711                 }
4712
4713         } else if (!enable && regulator->bypass) {
4714                 rdev->bypass_count--;
4715
4716                 if (rdev->bypass_count != rdev->open_count) {
4717                         trace_regulator_bypass_disable(name);
4718
4719                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4720                         if (ret != 0)
4721                                 rdev->bypass_count++;
4722                         else
4723                                 trace_regulator_bypass_disable_complete(name);
4724                 }
4725         }
4726
4727         if (ret == 0)
4728                 regulator->bypass = enable;
4729
4730         regulator_unlock(rdev);
4731
4732         return ret;
4733 }
4734 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4735
4736 /**
4737  * regulator_register_notifier - register regulator event notifier
4738  * @regulator: regulator source
4739  * @nb: notifier block
4740  *
4741  * Register notifier block to receive regulator events.
4742  */
4743 int regulator_register_notifier(struct regulator *regulator,
4744                               struct notifier_block *nb)
4745 {
4746         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4747                                                 nb);
4748 }
4749 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4750
4751 /**
4752  * regulator_unregister_notifier - unregister regulator event notifier
4753  * @regulator: regulator source
4754  * @nb: notifier block
4755  *
4756  * Unregister regulator event notifier block.
4757  */
4758 int regulator_unregister_notifier(struct regulator *regulator,
4759                                 struct notifier_block *nb)
4760 {
4761         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4762                                                   nb);
4763 }
4764 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4765
4766 /* notify regulator consumers and downstream regulator consumers.
4767  * Note mutex must be held by caller.
4768  */
4769 static int _notifier_call_chain(struct regulator_dev *rdev,
4770                                   unsigned long event, void *data)
4771 {
4772         /* call rdev chain first */
4773         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4774 }
4775
4776 /**
4777  * regulator_bulk_get - get multiple regulator consumers
4778  *
4779  * @dev:           Device to supply
4780  * @num_consumers: Number of consumers to register
4781  * @consumers:     Configuration of consumers; clients are stored here.
4782  *
4783  * @return 0 on success, an errno on failure.
4784  *
4785  * This helper function allows drivers to get several regulator
4786  * consumers in one operation.  If any of the regulators cannot be
4787  * acquired then any regulators that were allocated will be freed
4788  * before returning to the caller.
4789  */
4790 int regulator_bulk_get(struct device *dev, int num_consumers,
4791                        struct regulator_bulk_data *consumers)
4792 {
4793         int i;
4794         int ret;
4795
4796         for (i = 0; i < num_consumers; i++)
4797                 consumers[i].consumer = NULL;
4798
4799         for (i = 0; i < num_consumers; i++) {
4800                 consumers[i].consumer = regulator_get(dev,
4801                                                       consumers[i].supply);
4802                 if (IS_ERR(consumers[i].consumer)) {
4803                         ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4804                                             "Failed to get supply '%s'",
4805                                             consumers[i].supply);
4806                         consumers[i].consumer = NULL;
4807                         goto err;
4808                 }
4809
4810                 if (consumers[i].init_load_uA > 0) {
4811                         ret = regulator_set_load(consumers[i].consumer,
4812                                                  consumers[i].init_load_uA);
4813                         if (ret) {
4814                                 i++;
4815                                 goto err;
4816                         }
4817                 }
4818         }
4819
4820         return 0;
4821
4822 err:
4823         while (--i >= 0)
4824                 regulator_put(consumers[i].consumer);
4825
4826         return ret;
4827 }
4828 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4829
4830 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4831 {
4832         struct regulator_bulk_data *bulk = data;
4833
4834         bulk->ret = regulator_enable(bulk->consumer);
4835 }
4836
4837 /**
4838  * regulator_bulk_enable - enable multiple regulator consumers
4839  *
4840  * @num_consumers: Number of consumers
4841  * @consumers:     Consumer data; clients are stored here.
4842  * @return         0 on success, an errno on failure
4843  *
4844  * This convenience API allows consumers to enable multiple regulator
4845  * clients in a single API call.  If any consumers cannot be enabled
4846  * then any others that were enabled will be disabled again prior to
4847  * return.
4848  */
4849 int regulator_bulk_enable(int num_consumers,
4850                           struct regulator_bulk_data *consumers)
4851 {
4852         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4853         int i;
4854         int ret = 0;
4855
4856         for (i = 0; i < num_consumers; i++) {
4857                 async_schedule_domain(regulator_bulk_enable_async,
4858                                       &consumers[i], &async_domain);
4859         }
4860
4861         async_synchronize_full_domain(&async_domain);
4862
4863         /* If any consumer failed we need to unwind any that succeeded */
4864         for (i = 0; i < num_consumers; i++) {
4865                 if (consumers[i].ret != 0) {
4866                         ret = consumers[i].ret;
4867                         goto err;
4868                 }
4869         }
4870
4871         return 0;
4872
4873 err:
4874         for (i = 0; i < num_consumers; i++) {
4875                 if (consumers[i].ret < 0)
4876                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4877                                ERR_PTR(consumers[i].ret));
4878                 else
4879                         regulator_disable(consumers[i].consumer);
4880         }
4881
4882         return ret;
4883 }
4884 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4885
4886 /**
4887  * regulator_bulk_disable - disable multiple regulator consumers
4888  *
4889  * @num_consumers: Number of consumers
4890  * @consumers:     Consumer data; clients are stored here.
4891  * @return         0 on success, an errno on failure
4892  *
4893  * This convenience API allows consumers to disable multiple regulator
4894  * clients in a single API call.  If any consumers cannot be disabled
4895  * then any others that were disabled will be enabled again prior to
4896  * return.
4897  */
4898 int regulator_bulk_disable(int num_consumers,
4899                            struct regulator_bulk_data *consumers)
4900 {
4901         int i;
4902         int ret, r;
4903
4904         for (i = num_consumers - 1; i >= 0; --i) {
4905                 ret = regulator_disable(consumers[i].consumer);
4906                 if (ret != 0)
4907                         goto err;
4908         }
4909
4910         return 0;
4911
4912 err:
4913         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4914         for (++i; i < num_consumers; ++i) {
4915                 r = regulator_enable(consumers[i].consumer);
4916                 if (r != 0)
4917                         pr_err("Failed to re-enable %s: %pe\n",
4918                                consumers[i].supply, ERR_PTR(r));
4919         }
4920
4921         return ret;
4922 }
4923 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4924
4925 /**
4926  * regulator_bulk_force_disable - force disable multiple regulator consumers
4927  *
4928  * @num_consumers: Number of consumers
4929  * @consumers:     Consumer data; clients are stored here.
4930  * @return         0 on success, an errno on failure
4931  *
4932  * This convenience API allows consumers to forcibly disable multiple regulator
4933  * clients in a single API call.
4934  * NOTE: This should be used for situations when device damage will
4935  * likely occur if the regulators are not disabled (e.g. over temp).
4936  * Although regulator_force_disable function call for some consumers can
4937  * return error numbers, the function is called for all consumers.
4938  */
4939 int regulator_bulk_force_disable(int num_consumers,
4940                            struct regulator_bulk_data *consumers)
4941 {
4942         int i;
4943         int ret = 0;
4944
4945         for (i = 0; i < num_consumers; i++) {
4946                 consumers[i].ret =
4947                             regulator_force_disable(consumers[i].consumer);
4948
4949                 /* Store first error for reporting */
4950                 if (consumers[i].ret && !ret)
4951                         ret = consumers[i].ret;
4952         }
4953
4954         return ret;
4955 }
4956 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4957
4958 /**
4959  * regulator_bulk_free - free multiple regulator consumers
4960  *
4961  * @num_consumers: Number of consumers
4962  * @consumers:     Consumer data; clients are stored here.
4963  *
4964  * This convenience API allows consumers to free multiple regulator
4965  * clients in a single API call.
4966  */
4967 void regulator_bulk_free(int num_consumers,
4968                          struct regulator_bulk_data *consumers)
4969 {
4970         int i;
4971
4972         for (i = 0; i < num_consumers; i++) {
4973                 regulator_put(consumers[i].consumer);
4974                 consumers[i].consumer = NULL;
4975         }
4976 }
4977 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4978
4979 /**
4980  * regulator_notifier_call_chain - call regulator event notifier
4981  * @rdev: regulator source
4982  * @event: notifier block
4983  * @data: callback-specific data.
4984  *
4985  * Called by regulator drivers to notify clients a regulator event has
4986  * occurred.
4987  */
4988 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4989                                   unsigned long event, void *data)
4990 {
4991         _notifier_call_chain(rdev, event, data);
4992         return NOTIFY_DONE;
4993
4994 }
4995 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4996
4997 /**
4998  * regulator_mode_to_status - convert a regulator mode into a status
4999  *
5000  * @mode: Mode to convert
5001  *
5002  * Convert a regulator mode into a status.
5003  */
5004 int regulator_mode_to_status(unsigned int mode)
5005 {
5006         switch (mode) {
5007         case REGULATOR_MODE_FAST:
5008                 return REGULATOR_STATUS_FAST;
5009         case REGULATOR_MODE_NORMAL:
5010                 return REGULATOR_STATUS_NORMAL;
5011         case REGULATOR_MODE_IDLE:
5012                 return REGULATOR_STATUS_IDLE;
5013         case REGULATOR_MODE_STANDBY:
5014                 return REGULATOR_STATUS_STANDBY;
5015         default:
5016                 return REGULATOR_STATUS_UNDEFINED;
5017         }
5018 }
5019 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5020
5021 static struct attribute *regulator_dev_attrs[] = {
5022         &dev_attr_name.attr,
5023         &dev_attr_num_users.attr,
5024         &dev_attr_type.attr,
5025         &dev_attr_microvolts.attr,
5026         &dev_attr_microamps.attr,
5027         &dev_attr_opmode.attr,
5028         &dev_attr_state.attr,
5029         &dev_attr_status.attr,
5030         &dev_attr_bypass.attr,
5031         &dev_attr_requested_microamps.attr,
5032         &dev_attr_min_microvolts.attr,
5033         &dev_attr_max_microvolts.attr,
5034         &dev_attr_min_microamps.attr,
5035         &dev_attr_max_microamps.attr,
5036         &dev_attr_under_voltage.attr,
5037         &dev_attr_over_current.attr,
5038         &dev_attr_regulation_out.attr,
5039         &dev_attr_fail.attr,
5040         &dev_attr_over_temp.attr,
5041         &dev_attr_under_voltage_warn.attr,
5042         &dev_attr_over_current_warn.attr,
5043         &dev_attr_over_voltage_warn.attr,
5044         &dev_attr_over_temp_warn.attr,
5045         &dev_attr_suspend_standby_state.attr,
5046         &dev_attr_suspend_mem_state.attr,
5047         &dev_attr_suspend_disk_state.attr,
5048         &dev_attr_suspend_standby_microvolts.attr,
5049         &dev_attr_suspend_mem_microvolts.attr,
5050         &dev_attr_suspend_disk_microvolts.attr,
5051         &dev_attr_suspend_standby_mode.attr,
5052         &dev_attr_suspend_mem_mode.attr,
5053         &dev_attr_suspend_disk_mode.attr,
5054         NULL
5055 };
5056
5057 /*
5058  * To avoid cluttering sysfs (and memory) with useless state, only
5059  * create attributes that can be meaningfully displayed.
5060  */
5061 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5062                                          struct attribute *attr, int idx)
5063 {
5064         struct device *dev = kobj_to_dev(kobj);
5065         struct regulator_dev *rdev = dev_to_rdev(dev);
5066         const struct regulator_ops *ops = rdev->desc->ops;
5067         umode_t mode = attr->mode;
5068
5069         /* these three are always present */
5070         if (attr == &dev_attr_name.attr ||
5071             attr == &dev_attr_num_users.attr ||
5072             attr == &dev_attr_type.attr)
5073                 return mode;
5074
5075         /* some attributes need specific methods to be displayed */
5076         if (attr == &dev_attr_microvolts.attr) {
5077                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5078                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5079                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5080                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5081                         return mode;
5082                 return 0;
5083         }
5084
5085         if (attr == &dev_attr_microamps.attr)
5086                 return ops->get_current_limit ? mode : 0;
5087
5088         if (attr == &dev_attr_opmode.attr)
5089                 return ops->get_mode ? mode : 0;
5090
5091         if (attr == &dev_attr_state.attr)
5092                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5093
5094         if (attr == &dev_attr_status.attr)
5095                 return ops->get_status ? mode : 0;
5096
5097         if (attr == &dev_attr_bypass.attr)
5098                 return ops->get_bypass ? mode : 0;
5099
5100         if (attr == &dev_attr_under_voltage.attr ||
5101             attr == &dev_attr_over_current.attr ||
5102             attr == &dev_attr_regulation_out.attr ||
5103             attr == &dev_attr_fail.attr ||
5104             attr == &dev_attr_over_temp.attr ||
5105             attr == &dev_attr_under_voltage_warn.attr ||
5106             attr == &dev_attr_over_current_warn.attr ||
5107             attr == &dev_attr_over_voltage_warn.attr ||
5108             attr == &dev_attr_over_temp_warn.attr)
5109                 return ops->get_error_flags ? mode : 0;
5110
5111         /* constraints need specific supporting methods */
5112         if (attr == &dev_attr_min_microvolts.attr ||
5113             attr == &dev_attr_max_microvolts.attr)
5114                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5115
5116         if (attr == &dev_attr_min_microamps.attr ||
5117             attr == &dev_attr_max_microamps.attr)
5118                 return ops->set_current_limit ? mode : 0;
5119
5120         if (attr == &dev_attr_suspend_standby_state.attr ||
5121             attr == &dev_attr_suspend_mem_state.attr ||
5122             attr == &dev_attr_suspend_disk_state.attr)
5123                 return mode;
5124
5125         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5126             attr == &dev_attr_suspend_mem_microvolts.attr ||
5127             attr == &dev_attr_suspend_disk_microvolts.attr)
5128                 return ops->set_suspend_voltage ? mode : 0;
5129
5130         if (attr == &dev_attr_suspend_standby_mode.attr ||
5131             attr == &dev_attr_suspend_mem_mode.attr ||
5132             attr == &dev_attr_suspend_disk_mode.attr)
5133                 return ops->set_suspend_mode ? mode : 0;
5134
5135         return mode;
5136 }
5137
5138 static const struct attribute_group regulator_dev_group = {
5139         .attrs = regulator_dev_attrs,
5140         .is_visible = regulator_attr_is_visible,
5141 };
5142
5143 static const struct attribute_group *regulator_dev_groups[] = {
5144         &regulator_dev_group,
5145         NULL
5146 };
5147
5148 static void regulator_dev_release(struct device *dev)
5149 {
5150         struct regulator_dev *rdev = dev_get_drvdata(dev);
5151
5152         debugfs_remove_recursive(rdev->debugfs);
5153         kfree(rdev->constraints);
5154         of_node_put(rdev->dev.of_node);
5155         kfree(rdev);
5156 }
5157
5158 static void rdev_init_debugfs(struct regulator_dev *rdev)
5159 {
5160         struct device *parent = rdev->dev.parent;
5161         const char *rname = rdev_get_name(rdev);
5162         char name[NAME_MAX];
5163
5164         /* Avoid duplicate debugfs directory names */
5165         if (parent && rname == rdev->desc->name) {
5166                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5167                          rname);
5168                 rname = name;
5169         }
5170
5171         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5172         if (!rdev->debugfs) {
5173                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5174                 return;
5175         }
5176
5177         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5178                            &rdev->use_count);
5179         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5180                            &rdev->open_count);
5181         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5182                            &rdev->bypass_count);
5183 }
5184
5185 static int regulator_register_resolve_supply(struct device *dev, void *data)
5186 {
5187         struct regulator_dev *rdev = dev_to_rdev(dev);
5188
5189         if (regulator_resolve_supply(rdev))
5190                 rdev_dbg(rdev, "unable to resolve supply\n");
5191
5192         return 0;
5193 }
5194
5195 int regulator_coupler_register(struct regulator_coupler *coupler)
5196 {
5197         mutex_lock(&regulator_list_mutex);
5198         list_add_tail(&coupler->list, &regulator_coupler_list);
5199         mutex_unlock(&regulator_list_mutex);
5200
5201         return 0;
5202 }
5203
5204 static struct regulator_coupler *
5205 regulator_find_coupler(struct regulator_dev *rdev)
5206 {
5207         struct regulator_coupler *coupler;
5208         int err;
5209
5210         /*
5211          * Note that regulators are appended to the list and the generic
5212          * coupler is registered first, hence it will be attached at last
5213          * if nobody cared.
5214          */
5215         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5216                 err = coupler->attach_regulator(coupler, rdev);
5217                 if (!err) {
5218                         if (!coupler->balance_voltage &&
5219                             rdev->coupling_desc.n_coupled > 2)
5220                                 goto err_unsupported;
5221
5222                         return coupler;
5223                 }
5224
5225                 if (err < 0)
5226                         return ERR_PTR(err);
5227
5228                 if (err == 1)
5229                         continue;
5230
5231                 break;
5232         }
5233
5234         return ERR_PTR(-EINVAL);
5235
5236 err_unsupported:
5237         if (coupler->detach_regulator)
5238                 coupler->detach_regulator(coupler, rdev);
5239
5240         rdev_err(rdev,
5241                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5242
5243         return ERR_PTR(-EPERM);
5244 }
5245
5246 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5247 {
5248         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5249         struct coupling_desc *c_desc = &rdev->coupling_desc;
5250         int n_coupled = c_desc->n_coupled;
5251         struct regulator_dev *c_rdev;
5252         int i;
5253
5254         for (i = 1; i < n_coupled; i++) {
5255                 /* already resolved */
5256                 if (c_desc->coupled_rdevs[i])
5257                         continue;
5258
5259                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5260
5261                 if (!c_rdev)
5262                         continue;
5263
5264                 if (c_rdev->coupling_desc.coupler != coupler) {
5265                         rdev_err(rdev, "coupler mismatch with %s\n",
5266                                  rdev_get_name(c_rdev));
5267                         return;
5268                 }
5269
5270                 c_desc->coupled_rdevs[i] = c_rdev;
5271                 c_desc->n_resolved++;
5272
5273                 regulator_resolve_coupling(c_rdev);
5274         }
5275 }
5276
5277 static void regulator_remove_coupling(struct regulator_dev *rdev)
5278 {
5279         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5280         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5281         struct regulator_dev *__c_rdev, *c_rdev;
5282         unsigned int __n_coupled, n_coupled;
5283         int i, k;
5284         int err;
5285
5286         n_coupled = c_desc->n_coupled;
5287
5288         for (i = 1; i < n_coupled; i++) {
5289                 c_rdev = c_desc->coupled_rdevs[i];
5290
5291                 if (!c_rdev)
5292                         continue;
5293
5294                 regulator_lock(c_rdev);
5295
5296                 __c_desc = &c_rdev->coupling_desc;
5297                 __n_coupled = __c_desc->n_coupled;
5298
5299                 for (k = 1; k < __n_coupled; k++) {
5300                         __c_rdev = __c_desc->coupled_rdevs[k];
5301
5302                         if (__c_rdev == rdev) {
5303                                 __c_desc->coupled_rdevs[k] = NULL;
5304                                 __c_desc->n_resolved--;
5305                                 break;
5306                         }
5307                 }
5308
5309                 regulator_unlock(c_rdev);
5310
5311                 c_desc->coupled_rdevs[i] = NULL;
5312                 c_desc->n_resolved--;
5313         }
5314
5315         if (coupler && coupler->detach_regulator) {
5316                 err = coupler->detach_regulator(coupler, rdev);
5317                 if (err)
5318                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5319                                  ERR_PTR(err));
5320         }
5321
5322         kfree(rdev->coupling_desc.coupled_rdevs);
5323         rdev->coupling_desc.coupled_rdevs = NULL;
5324 }
5325
5326 static int regulator_init_coupling(struct regulator_dev *rdev)
5327 {
5328         struct regulator_dev **coupled;
5329         int err, n_phandles;
5330
5331         if (!IS_ENABLED(CONFIG_OF))
5332                 n_phandles = 0;
5333         else
5334                 n_phandles = of_get_n_coupled(rdev);
5335
5336         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5337         if (!coupled)
5338                 return -ENOMEM;
5339
5340         rdev->coupling_desc.coupled_rdevs = coupled;
5341
5342         /*
5343          * Every regulator should always have coupling descriptor filled with
5344          * at least pointer to itself.
5345          */
5346         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5347         rdev->coupling_desc.n_coupled = n_phandles + 1;
5348         rdev->coupling_desc.n_resolved++;
5349
5350         /* regulator isn't coupled */
5351         if (n_phandles == 0)
5352                 return 0;
5353
5354         if (!of_check_coupling_data(rdev))
5355                 return -EPERM;
5356
5357         mutex_lock(&regulator_list_mutex);
5358         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5359         mutex_unlock(&regulator_list_mutex);
5360
5361         if (IS_ERR(rdev->coupling_desc.coupler)) {
5362                 err = PTR_ERR(rdev->coupling_desc.coupler);
5363                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5364                 return err;
5365         }
5366
5367         return 0;
5368 }
5369
5370 static int generic_coupler_attach(struct regulator_coupler *coupler,
5371                                   struct regulator_dev *rdev)
5372 {
5373         if (rdev->coupling_desc.n_coupled > 2) {
5374                 rdev_err(rdev,
5375                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5376                 return -EPERM;
5377         }
5378
5379         if (!rdev->constraints->always_on) {
5380                 rdev_err(rdev,
5381                          "Coupling of a non always-on regulator is unimplemented\n");
5382                 return -ENOTSUPP;
5383         }
5384
5385         return 0;
5386 }
5387
5388 static struct regulator_coupler generic_regulator_coupler = {
5389         .attach_regulator = generic_coupler_attach,
5390 };
5391
5392 /**
5393  * regulator_register - register regulator
5394  * @regulator_desc: regulator to register
5395  * @cfg: runtime configuration for regulator
5396  *
5397  * Called by regulator drivers to register a regulator.
5398  * Returns a valid pointer to struct regulator_dev on success
5399  * or an ERR_PTR() on error.
5400  */
5401 struct regulator_dev *
5402 regulator_register(const struct regulator_desc *regulator_desc,
5403                    const struct regulator_config *cfg)
5404 {
5405         const struct regulator_init_data *init_data;
5406         struct regulator_config *config = NULL;
5407         static atomic_t regulator_no = ATOMIC_INIT(-1);
5408         struct regulator_dev *rdev;
5409         bool dangling_cfg_gpiod = false;
5410         bool dangling_of_gpiod = false;
5411         struct device *dev;
5412         int ret, i;
5413         bool resolved_early = false;
5414
5415         if (cfg == NULL)
5416                 return ERR_PTR(-EINVAL);
5417         if (cfg->ena_gpiod)
5418                 dangling_cfg_gpiod = true;
5419         if (regulator_desc == NULL) {
5420                 ret = -EINVAL;
5421                 goto rinse;
5422         }
5423
5424         dev = cfg->dev;
5425         WARN_ON(!dev);
5426
5427         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5428                 ret = -EINVAL;
5429                 goto rinse;
5430         }
5431
5432         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5433             regulator_desc->type != REGULATOR_CURRENT) {
5434                 ret = -EINVAL;
5435                 goto rinse;
5436         }
5437
5438         /* Only one of each should be implemented */
5439         WARN_ON(regulator_desc->ops->get_voltage &&
5440                 regulator_desc->ops->get_voltage_sel);
5441         WARN_ON(regulator_desc->ops->set_voltage &&
5442                 regulator_desc->ops->set_voltage_sel);
5443
5444         /* If we're using selectors we must implement list_voltage. */
5445         if (regulator_desc->ops->get_voltage_sel &&
5446             !regulator_desc->ops->list_voltage) {
5447                 ret = -EINVAL;
5448                 goto rinse;
5449         }
5450         if (regulator_desc->ops->set_voltage_sel &&
5451             !regulator_desc->ops->list_voltage) {
5452                 ret = -EINVAL;
5453                 goto rinse;
5454         }
5455
5456         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5457         if (rdev == NULL) {
5458                 ret = -ENOMEM;
5459                 goto rinse;
5460         }
5461         device_initialize(&rdev->dev);
5462         spin_lock_init(&rdev->err_lock);
5463
5464         /*
5465          * Duplicate the config so the driver could override it after
5466          * parsing init data.
5467          */
5468         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5469         if (config == NULL) {
5470                 ret = -ENOMEM;
5471                 goto clean;
5472         }
5473
5474         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5475                                                &rdev->dev.of_node);
5476
5477         /*
5478          * Sometimes not all resources are probed already so we need to take
5479          * that into account. This happens most the time if the ena_gpiod comes
5480          * from a gpio extender or something else.
5481          */
5482         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5483                 ret = -EPROBE_DEFER;
5484                 goto clean;
5485         }
5486
5487         /*
5488          * We need to keep track of any GPIO descriptor coming from the
5489          * device tree until we have handled it over to the core. If the
5490          * config that was passed in to this function DOES NOT contain
5491          * a descriptor, and the config after this call DOES contain
5492          * a descriptor, we definitely got one from parsing the device
5493          * tree.
5494          */
5495         if (!cfg->ena_gpiod && config->ena_gpiod)
5496                 dangling_of_gpiod = true;
5497         if (!init_data) {
5498                 init_data = config->init_data;
5499                 rdev->dev.of_node = of_node_get(config->of_node);
5500         }
5501
5502         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5503         rdev->reg_data = config->driver_data;
5504         rdev->owner = regulator_desc->owner;
5505         rdev->desc = regulator_desc;
5506         if (config->regmap)
5507                 rdev->regmap = config->regmap;
5508         else if (dev_get_regmap(dev, NULL))
5509                 rdev->regmap = dev_get_regmap(dev, NULL);
5510         else if (dev->parent)
5511                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5512         INIT_LIST_HEAD(&rdev->consumer_list);
5513         INIT_LIST_HEAD(&rdev->list);
5514         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5515         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5516
5517         if (init_data && init_data->supply_regulator)
5518                 rdev->supply_name = init_data->supply_regulator;
5519         else if (regulator_desc->supply_name)
5520                 rdev->supply_name = regulator_desc->supply_name;
5521
5522         /* register with sysfs */
5523         rdev->dev.class = &regulator_class;
5524         rdev->dev.parent = dev;
5525         dev_set_name(&rdev->dev, "regulator.%lu",
5526                     (unsigned long) atomic_inc_return(&regulator_no));
5527         dev_set_drvdata(&rdev->dev, rdev);
5528
5529         /* set regulator constraints */
5530         if (init_data)
5531                 rdev->constraints = kmemdup(&init_data->constraints,
5532                                             sizeof(*rdev->constraints),
5533                                             GFP_KERNEL);
5534         else
5535                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5536                                             GFP_KERNEL);
5537         if (!rdev->constraints) {
5538                 ret = -ENOMEM;
5539                 goto wash;
5540         }
5541
5542         if ((rdev->supply_name && !rdev->supply) &&
5543                 (rdev->constraints->always_on ||
5544                  rdev->constraints->boot_on)) {
5545                 ret = regulator_resolve_supply(rdev);
5546                 if (ret)
5547                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5548                                          ERR_PTR(ret));
5549
5550                 resolved_early = true;
5551         }
5552
5553         /* perform any regulator specific init */
5554         if (init_data && init_data->regulator_init) {
5555                 ret = init_data->regulator_init(rdev->reg_data);
5556                 if (ret < 0)
5557                         goto wash;
5558         }
5559
5560         if (config->ena_gpiod) {
5561                 ret = regulator_ena_gpio_request(rdev, config);
5562                 if (ret != 0) {
5563                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5564                                  ERR_PTR(ret));
5565                         goto wash;
5566                 }
5567                 /* The regulator core took over the GPIO descriptor */
5568                 dangling_cfg_gpiod = false;
5569                 dangling_of_gpiod = false;
5570         }
5571
5572         ret = set_machine_constraints(rdev);
5573         if (ret == -EPROBE_DEFER && !resolved_early) {
5574                 /* Regulator might be in bypass mode and so needs its supply
5575                  * to set the constraints
5576                  */
5577                 /* FIXME: this currently triggers a chicken-and-egg problem
5578                  * when creating -SUPPLY symlink in sysfs to a regulator
5579                  * that is just being created
5580                  */
5581                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5582                          rdev->supply_name);
5583                 ret = regulator_resolve_supply(rdev);
5584                 if (!ret)
5585                         ret = set_machine_constraints(rdev);
5586                 else
5587                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5588                                  ERR_PTR(ret));
5589         }
5590         if (ret < 0)
5591                 goto wash;
5592
5593         ret = regulator_init_coupling(rdev);
5594         if (ret < 0)
5595                 goto wash;
5596
5597         /* add consumers devices */
5598         if (init_data) {
5599                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5600                         ret = set_consumer_device_supply(rdev,
5601                                 init_data->consumer_supplies[i].dev_name,
5602                                 init_data->consumer_supplies[i].supply);
5603                         if (ret < 0) {
5604                                 dev_err(dev, "Failed to set supply %s\n",
5605                                         init_data->consumer_supplies[i].supply);
5606                                 goto unset_supplies;
5607                         }
5608                 }
5609         }
5610
5611         if (!rdev->desc->ops->get_voltage &&
5612             !rdev->desc->ops->list_voltage &&
5613             !rdev->desc->fixed_uV)
5614                 rdev->is_switch = true;
5615
5616         ret = device_add(&rdev->dev);
5617         if (ret != 0)
5618                 goto unset_supplies;
5619
5620         rdev_init_debugfs(rdev);
5621
5622         /* try to resolve regulators coupling since a new one was registered */
5623         mutex_lock(&regulator_list_mutex);
5624         regulator_resolve_coupling(rdev);
5625         mutex_unlock(&regulator_list_mutex);
5626
5627         /* try to resolve regulators supply since a new one was registered */
5628         class_for_each_device(&regulator_class, NULL, NULL,
5629                               regulator_register_resolve_supply);
5630         kfree(config);
5631         return rdev;
5632
5633 unset_supplies:
5634         mutex_lock(&regulator_list_mutex);
5635         unset_regulator_supplies(rdev);
5636         regulator_remove_coupling(rdev);
5637         mutex_unlock(&regulator_list_mutex);
5638 wash:
5639         kfree(rdev->coupling_desc.coupled_rdevs);
5640         mutex_lock(&regulator_list_mutex);
5641         regulator_ena_gpio_free(rdev);
5642         mutex_unlock(&regulator_list_mutex);
5643         put_device(&rdev->dev);
5644         rdev = NULL;
5645 clean:
5646         if (dangling_of_gpiod)
5647                 gpiod_put(config->ena_gpiod);
5648         if (rdev && rdev->dev.of_node)
5649                 of_node_put(rdev->dev.of_node);
5650         kfree(rdev);
5651         kfree(config);
5652 rinse:
5653         if (dangling_cfg_gpiod)
5654                 gpiod_put(cfg->ena_gpiod);
5655         return ERR_PTR(ret);
5656 }
5657 EXPORT_SYMBOL_GPL(regulator_register);
5658
5659 /**
5660  * regulator_unregister - unregister regulator
5661  * @rdev: regulator to unregister
5662  *
5663  * Called by regulator drivers to unregister a regulator.
5664  */
5665 void regulator_unregister(struct regulator_dev *rdev)
5666 {
5667         if (rdev == NULL)
5668                 return;
5669
5670         if (rdev->supply) {
5671                 while (rdev->use_count--)
5672                         regulator_disable(rdev->supply);
5673                 regulator_put(rdev->supply);
5674         }
5675
5676         flush_work(&rdev->disable_work.work);
5677
5678         mutex_lock(&regulator_list_mutex);
5679
5680         WARN_ON(rdev->open_count);
5681         regulator_remove_coupling(rdev);
5682         unset_regulator_supplies(rdev);
5683         list_del(&rdev->list);
5684         regulator_ena_gpio_free(rdev);
5685         device_unregister(&rdev->dev);
5686
5687         mutex_unlock(&regulator_list_mutex);
5688 }
5689 EXPORT_SYMBOL_GPL(regulator_unregister);
5690
5691 #ifdef CONFIG_SUSPEND
5692 /**
5693  * regulator_suspend - prepare regulators for system wide suspend
5694  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5695  *
5696  * Configure each regulator with it's suspend operating parameters for state.
5697  */
5698 static int regulator_suspend(struct device *dev)
5699 {
5700         struct regulator_dev *rdev = dev_to_rdev(dev);
5701         suspend_state_t state = pm_suspend_target_state;
5702         int ret;
5703         const struct regulator_state *rstate;
5704
5705         rstate = regulator_get_suspend_state_check(rdev, state);
5706         if (!rstate)
5707                 return 0;
5708
5709         regulator_lock(rdev);
5710         ret = __suspend_set_state(rdev, rstate);
5711         regulator_unlock(rdev);
5712
5713         return ret;
5714 }
5715
5716 static int regulator_resume(struct device *dev)
5717 {
5718         suspend_state_t state = pm_suspend_target_state;
5719         struct regulator_dev *rdev = dev_to_rdev(dev);
5720         struct regulator_state *rstate;
5721         int ret = 0;
5722
5723         rstate = regulator_get_suspend_state(rdev, state);
5724         if (rstate == NULL)
5725                 return 0;
5726
5727         /* Avoid grabbing the lock if we don't need to */
5728         if (!rdev->desc->ops->resume)
5729                 return 0;
5730
5731         regulator_lock(rdev);
5732
5733         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5734             rstate->enabled == DISABLE_IN_SUSPEND)
5735                 ret = rdev->desc->ops->resume(rdev);
5736
5737         regulator_unlock(rdev);
5738
5739         return ret;
5740 }
5741 #else /* !CONFIG_SUSPEND */
5742
5743 #define regulator_suspend       NULL
5744 #define regulator_resume        NULL
5745
5746 #endif /* !CONFIG_SUSPEND */
5747
5748 #ifdef CONFIG_PM
5749 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5750         .suspend        = regulator_suspend,
5751         .resume         = regulator_resume,
5752 };
5753 #endif
5754
5755 struct class regulator_class = {
5756         .name = "regulator",
5757         .dev_release = regulator_dev_release,
5758         .dev_groups = regulator_dev_groups,
5759 #ifdef CONFIG_PM
5760         .pm = &regulator_pm_ops,
5761 #endif
5762 };
5763 /**
5764  * regulator_has_full_constraints - the system has fully specified constraints
5765  *
5766  * Calling this function will cause the regulator API to disable all
5767  * regulators which have a zero use count and don't have an always_on
5768  * constraint in a late_initcall.
5769  *
5770  * The intention is that this will become the default behaviour in a
5771  * future kernel release so users are encouraged to use this facility
5772  * now.
5773  */
5774 void regulator_has_full_constraints(void)
5775 {
5776         has_full_constraints = 1;
5777 }
5778 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5779
5780 /**
5781  * rdev_get_drvdata - get rdev regulator driver data
5782  * @rdev: regulator
5783  *
5784  * Get rdev regulator driver private data. This call can be used in the
5785  * regulator driver context.
5786  */
5787 void *rdev_get_drvdata(struct regulator_dev *rdev)
5788 {
5789         return rdev->reg_data;
5790 }
5791 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5792
5793 /**
5794  * regulator_get_drvdata - get regulator driver data
5795  * @regulator: regulator
5796  *
5797  * Get regulator driver private data. This call can be used in the consumer
5798  * driver context when non API regulator specific functions need to be called.
5799  */
5800 void *regulator_get_drvdata(struct regulator *regulator)
5801 {
5802         return regulator->rdev->reg_data;
5803 }
5804 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5805
5806 /**
5807  * regulator_set_drvdata - set regulator driver data
5808  * @regulator: regulator
5809  * @data: data
5810  */
5811 void regulator_set_drvdata(struct regulator *regulator, void *data)
5812 {
5813         regulator->rdev->reg_data = data;
5814 }
5815 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5816
5817 /**
5818  * rdev_get_id - get regulator ID
5819  * @rdev: regulator
5820  */
5821 int rdev_get_id(struct regulator_dev *rdev)
5822 {
5823         return rdev->desc->id;
5824 }
5825 EXPORT_SYMBOL_GPL(rdev_get_id);
5826
5827 struct device *rdev_get_dev(struct regulator_dev *rdev)
5828 {
5829         return &rdev->dev;
5830 }
5831 EXPORT_SYMBOL_GPL(rdev_get_dev);
5832
5833 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5834 {
5835         return rdev->regmap;
5836 }
5837 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5838
5839 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5840 {
5841         return reg_init_data->driver_data;
5842 }
5843 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5844
5845 #ifdef CONFIG_DEBUG_FS
5846 static int supply_map_show(struct seq_file *sf, void *data)
5847 {
5848         struct regulator_map *map;
5849
5850         list_for_each_entry(map, &regulator_map_list, list) {
5851                 seq_printf(sf, "%s -> %s.%s\n",
5852                                 rdev_get_name(map->regulator), map->dev_name,
5853                                 map->supply);
5854         }
5855
5856         return 0;
5857 }
5858 DEFINE_SHOW_ATTRIBUTE(supply_map);
5859
5860 struct summary_data {
5861         struct seq_file *s;
5862         struct regulator_dev *parent;
5863         int level;
5864 };
5865
5866 static void regulator_summary_show_subtree(struct seq_file *s,
5867                                            struct regulator_dev *rdev,
5868                                            int level);
5869
5870 static int regulator_summary_show_children(struct device *dev, void *data)
5871 {
5872         struct regulator_dev *rdev = dev_to_rdev(dev);
5873         struct summary_data *summary_data = data;
5874
5875         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5876                 regulator_summary_show_subtree(summary_data->s, rdev,
5877                                                summary_data->level + 1);
5878
5879         return 0;
5880 }
5881
5882 static void regulator_summary_show_subtree(struct seq_file *s,
5883                                            struct regulator_dev *rdev,
5884                                            int level)
5885 {
5886         struct regulation_constraints *c;
5887         struct regulator *consumer;
5888         struct summary_data summary_data;
5889         unsigned int opmode;
5890
5891         if (!rdev)
5892                 return;
5893
5894         opmode = _regulator_get_mode_unlocked(rdev);
5895         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5896                    level * 3 + 1, "",
5897                    30 - level * 3, rdev_get_name(rdev),
5898                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5899                    regulator_opmode_to_str(opmode));
5900
5901         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5902         seq_printf(s, "%5dmA ",
5903                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5904
5905         c = rdev->constraints;
5906         if (c) {
5907                 switch (rdev->desc->type) {
5908                 case REGULATOR_VOLTAGE:
5909                         seq_printf(s, "%5dmV %5dmV ",
5910                                    c->min_uV / 1000, c->max_uV / 1000);
5911                         break;
5912                 case REGULATOR_CURRENT:
5913                         seq_printf(s, "%5dmA %5dmA ",
5914                                    c->min_uA / 1000, c->max_uA / 1000);
5915                         break;
5916                 }
5917         }
5918
5919         seq_puts(s, "\n");
5920
5921         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5922                 if (consumer->dev && consumer->dev->class == &regulator_class)
5923                         continue;
5924
5925                 seq_printf(s, "%*s%-*s ",
5926                            (level + 1) * 3 + 1, "",
5927                            30 - (level + 1) * 3,
5928                            consumer->supply_name ? consumer->supply_name :
5929                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5930
5931                 switch (rdev->desc->type) {
5932                 case REGULATOR_VOLTAGE:
5933                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5934                                    consumer->enable_count,
5935                                    consumer->uA_load / 1000,
5936                                    consumer->uA_load && !consumer->enable_count ?
5937                                    '*' : ' ',
5938                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5939                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5940                         break;
5941                 case REGULATOR_CURRENT:
5942                         break;
5943                 }
5944
5945                 seq_puts(s, "\n");
5946         }
5947
5948         summary_data.s = s;
5949         summary_data.level = level;
5950         summary_data.parent = rdev;
5951
5952         class_for_each_device(&regulator_class, NULL, &summary_data,
5953                               regulator_summary_show_children);
5954 }
5955
5956 struct summary_lock_data {
5957         struct ww_acquire_ctx *ww_ctx;
5958         struct regulator_dev **new_contended_rdev;
5959         struct regulator_dev **old_contended_rdev;
5960 };
5961
5962 static int regulator_summary_lock_one(struct device *dev, void *data)
5963 {
5964         struct regulator_dev *rdev = dev_to_rdev(dev);
5965         struct summary_lock_data *lock_data = data;
5966         int ret = 0;
5967
5968         if (rdev != *lock_data->old_contended_rdev) {
5969                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5970
5971                 if (ret == -EDEADLK)
5972                         *lock_data->new_contended_rdev = rdev;
5973                 else
5974                         WARN_ON_ONCE(ret);
5975         } else {
5976                 *lock_data->old_contended_rdev = NULL;
5977         }
5978
5979         return ret;
5980 }
5981
5982 static int regulator_summary_unlock_one(struct device *dev, void *data)
5983 {
5984         struct regulator_dev *rdev = dev_to_rdev(dev);
5985         struct summary_lock_data *lock_data = data;
5986
5987         if (lock_data) {
5988                 if (rdev == *lock_data->new_contended_rdev)
5989                         return -EDEADLK;
5990         }
5991
5992         regulator_unlock(rdev);
5993
5994         return 0;
5995 }
5996
5997 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5998                                       struct regulator_dev **new_contended_rdev,
5999                                       struct regulator_dev **old_contended_rdev)
6000 {
6001         struct summary_lock_data lock_data;
6002         int ret;
6003
6004         lock_data.ww_ctx = ww_ctx;
6005         lock_data.new_contended_rdev = new_contended_rdev;
6006         lock_data.old_contended_rdev = old_contended_rdev;
6007
6008         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6009                                     regulator_summary_lock_one);
6010         if (ret)
6011                 class_for_each_device(&regulator_class, NULL, &lock_data,
6012                                       regulator_summary_unlock_one);
6013
6014         return ret;
6015 }
6016
6017 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6018 {
6019         struct regulator_dev *new_contended_rdev = NULL;
6020         struct regulator_dev *old_contended_rdev = NULL;
6021         int err;
6022
6023         mutex_lock(&regulator_list_mutex);
6024
6025         ww_acquire_init(ww_ctx, &regulator_ww_class);
6026
6027         do {
6028                 if (new_contended_rdev) {
6029                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6030                         old_contended_rdev = new_contended_rdev;
6031                         old_contended_rdev->ref_cnt++;
6032                 }
6033
6034                 err = regulator_summary_lock_all(ww_ctx,
6035                                                  &new_contended_rdev,
6036                                                  &old_contended_rdev);
6037
6038                 if (old_contended_rdev)
6039                         regulator_unlock(old_contended_rdev);
6040
6041         } while (err == -EDEADLK);
6042
6043         ww_acquire_done(ww_ctx);
6044 }
6045
6046 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6047 {
6048         class_for_each_device(&regulator_class, NULL, NULL,
6049                               regulator_summary_unlock_one);
6050         ww_acquire_fini(ww_ctx);
6051
6052         mutex_unlock(&regulator_list_mutex);
6053 }
6054
6055 static int regulator_summary_show_roots(struct device *dev, void *data)
6056 {
6057         struct regulator_dev *rdev = dev_to_rdev(dev);
6058         struct seq_file *s = data;
6059
6060         if (!rdev->supply)
6061                 regulator_summary_show_subtree(s, rdev, 0);
6062
6063         return 0;
6064 }
6065
6066 static int regulator_summary_show(struct seq_file *s, void *data)
6067 {
6068         struct ww_acquire_ctx ww_ctx;
6069
6070         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6071         seq_puts(s, "---------------------------------------------------------------------------------------\n");
6072
6073         regulator_summary_lock(&ww_ctx);
6074
6075         class_for_each_device(&regulator_class, NULL, s,
6076                               regulator_summary_show_roots);
6077
6078         regulator_summary_unlock(&ww_ctx);
6079
6080         return 0;
6081 }
6082 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6083 #endif /* CONFIG_DEBUG_FS */
6084
6085 static int __init regulator_init(void)
6086 {
6087         int ret;
6088
6089         ret = class_register(&regulator_class);
6090
6091         debugfs_root = debugfs_create_dir("regulator", NULL);
6092         if (!debugfs_root)
6093                 pr_warn("regulator: Failed to create debugfs directory\n");
6094
6095 #ifdef CONFIG_DEBUG_FS
6096         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6097                             &supply_map_fops);
6098
6099         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6100                             NULL, &regulator_summary_fops);
6101 #endif
6102         regulator_dummy_init();
6103
6104         regulator_coupler_register(&generic_regulator_coupler);
6105
6106         return ret;
6107 }
6108
6109 /* init early to allow our consumers to complete system booting */
6110 core_initcall(regulator_init);
6111
6112 static int regulator_late_cleanup(struct device *dev, void *data)
6113 {
6114         struct regulator_dev *rdev = dev_to_rdev(dev);
6115         struct regulation_constraints *c = rdev->constraints;
6116         int ret;
6117
6118         if (c && c->always_on)
6119                 return 0;
6120
6121         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6122                 return 0;
6123
6124         regulator_lock(rdev);
6125
6126         if (rdev->use_count)
6127                 goto unlock;
6128
6129         /* If reading the status failed, assume that it's off. */
6130         if (_regulator_is_enabled(rdev) <= 0)
6131                 goto unlock;
6132
6133         if (have_full_constraints()) {
6134                 /* We log since this may kill the system if it goes
6135                  * wrong.
6136                  */
6137                 rdev_info(rdev, "disabling\n");
6138                 ret = _regulator_do_disable(rdev);
6139                 if (ret != 0)
6140                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6141         } else {
6142                 /* The intention is that in future we will
6143                  * assume that full constraints are provided
6144                  * so warn even if we aren't going to do
6145                  * anything here.
6146                  */
6147                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6148         }
6149
6150 unlock:
6151         regulator_unlock(rdev);
6152
6153         return 0;
6154 }
6155
6156 static void regulator_init_complete_work_function(struct work_struct *work)
6157 {
6158         /*
6159          * Regulators may had failed to resolve their input supplies
6160          * when were registered, either because the input supply was
6161          * not registered yet or because its parent device was not
6162          * bound yet. So attempt to resolve the input supplies for
6163          * pending regulators before trying to disable unused ones.
6164          */
6165         class_for_each_device(&regulator_class, NULL, NULL,
6166                               regulator_register_resolve_supply);
6167
6168         /* If we have a full configuration then disable any regulators
6169          * we have permission to change the status for and which are
6170          * not in use or always_on.  This is effectively the default
6171          * for DT and ACPI as they have full constraints.
6172          */
6173         class_for_each_device(&regulator_class, NULL, NULL,
6174                               regulator_late_cleanup);
6175 }
6176
6177 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6178                             regulator_init_complete_work_function);
6179
6180 static int __init regulator_init_complete(void)
6181 {
6182         /*
6183          * Since DT doesn't provide an idiomatic mechanism for
6184          * enabling full constraints and since it's much more natural
6185          * with DT to provide them just assume that a DT enabled
6186          * system has full constraints.
6187          */
6188         if (of_have_populated_dt())
6189                 has_full_constraints = true;
6190
6191         /*
6192          * We punt completion for an arbitrary amount of time since
6193          * systems like distros will load many drivers from userspace
6194          * so consumers might not always be ready yet, this is
6195          * particularly an issue with laptops where this might bounce
6196          * the display off then on.  Ideally we'd get a notification
6197          * from userspace when this happens but we don't so just wait
6198          * a bit and hope we waited long enough.  It'd be better if
6199          * we'd only do this on systems that need it, and a kernel
6200          * command line option might be useful.
6201          */
6202         schedule_delayed_work(&regulator_init_complete_work,
6203                               msecs_to_jiffies(30000));
6204
6205         return 0;
6206 }
6207 late_initcall_sync(regulator_init_complete);