2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
61 static struct class regulator_class;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
72 struct regulator_dev *regulator;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
117 return container_of(dev, struct regulator_dev, dev);
120 static const char *rdev_get_name(struct regulator_dev *rdev)
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
130 static bool have_full_constraints(void)
132 return has_full_constraints || of_have_populated_dt();
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
142 if (rdev->constraints->valid_ops_mask & ops)
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
160 static void regulator_lock_supply(struct regulator_dev *rdev)
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
174 struct regulator *supply;
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
207 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 prop_name, dev->of_node->full_name);
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
218 BUG_ON(*min_uV > *max_uV);
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
245 struct regulator *regulator;
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
252 if (!regulator->min_uV && !regulator->max_uV)
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
274 BUG_ON(*min_uA > *max_uA);
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
300 case REGULATOR_MODE_FAST:
301 case REGULATOR_MODE_NORMAL:
302 case REGULATOR_MODE_IDLE:
303 case REGULATOR_MODE_STANDBY:
306 rdev_err(rdev, "invalid mode %x specified\n", *mode);
310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 rdev_err(rdev, "mode operation not allowed\n");
315 /* The modes are bitmasks, the most power hungry modes having
316 * the lowest values. If the requested mode isn't supported
317 * try higher modes. */
319 if (rdev->constraints->valid_modes_mask & *mode)
327 static ssize_t regulator_uV_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
333 mutex_lock(&rdev->mutex);
334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 mutex_unlock(&rdev->mutex);
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
341 static ssize_t regulator_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return sprintf(buf, "%s\n", rdev_get_name(rdev));
357 static DEVICE_ATTR_RO(name);
359 static ssize_t regulator_print_opmode(char *buf, int mode)
362 case REGULATOR_MODE_FAST:
363 return sprintf(buf, "fast\n");
364 case REGULATOR_MODE_NORMAL:
365 return sprintf(buf, "normal\n");
366 case REGULATOR_MODE_IDLE:
367 return sprintf(buf, "idle\n");
368 case REGULATOR_MODE_STANDBY:
369 return sprintf(buf, "standby\n");
371 return sprintf(buf, "unknown\n");
374 static ssize_t regulator_opmode_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
377 struct regulator_dev *rdev = dev_get_drvdata(dev);
379 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
383 static ssize_t regulator_print_state(char *buf, int state)
386 return sprintf(buf, "enabled\n");
388 return sprintf(buf, "disabled\n");
390 return sprintf(buf, "unknown\n");
393 static ssize_t regulator_state_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
396 struct regulator_dev *rdev = dev_get_drvdata(dev);
399 mutex_lock(&rdev->mutex);
400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 mutex_unlock(&rdev->mutex);
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
407 static ssize_t regulator_status_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
410 struct regulator_dev *rdev = dev_get_drvdata(dev);
414 status = rdev->desc->ops->get_status(rdev);
419 case REGULATOR_STATUS_OFF:
422 case REGULATOR_STATUS_ON:
425 case REGULATOR_STATUS_ERROR:
428 case REGULATOR_STATUS_FAST:
431 case REGULATOR_STATUS_NORMAL:
434 case REGULATOR_STATUS_IDLE:
437 case REGULATOR_STATUS_STANDBY:
440 case REGULATOR_STATUS_BYPASS:
443 case REGULATOR_STATUS_UNDEFINED:
450 return sprintf(buf, "%s\n", label);
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 if (!rdev->constraints)
484 return sprintf(buf, "constraint not defined\n");
486 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
493 struct regulator_dev *rdev = dev_get_drvdata(dev);
495 if (!rdev->constraints)
496 return sprintf(buf, "constraint not defined\n");
498 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 struct regulator *regulator;
509 mutex_lock(&rdev->mutex);
510 list_for_each_entry(regulator, &rdev->consumer_list, list)
511 uA += regulator->uA_load;
512 mutex_unlock(&rdev->mutex);
513 return sprintf(buf, "%d\n", uA);
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->use_count);
523 static DEVICE_ATTR_RO(num_users);
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
530 switch (rdev->desc->type) {
531 case REGULATOR_VOLTAGE:
532 return sprintf(buf, "voltage\n");
533 case REGULATOR_CURRENT:
534 return sprintf(buf, "current\n");
536 return sprintf(buf, "unknown\n");
538 static DEVICE_ATTR_RO(type);
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 regulator_suspend_mem_uV_show, NULL);
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
553 struct regulator_dev *rdev = dev_get_drvdata(dev);
555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 regulator_suspend_disk_uV_show, NULL);
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 regulator_suspend_standby_uV_show, NULL);
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 return regulator_print_opmode(buf,
576 rdev->constraints->state_mem.mode);
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 regulator_suspend_mem_mode_show, NULL);
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
586 return regulator_print_opmode(buf,
587 rdev->constraints->state_disk.mode);
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 regulator_suspend_disk_mode_show, NULL);
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 return regulator_print_opmode(buf,
598 rdev->constraints->state_standby.mode);
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 regulator_suspend_standby_mode_show, NULL);
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
606 struct regulator_dev *rdev = dev_get_drvdata(dev);
608 return regulator_print_state(buf,
609 rdev->constraints->state_mem.enabled);
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 regulator_suspend_mem_state_show, NULL);
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 struct device_attribute *attr, char *buf)
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
619 return regulator_print_state(buf,
620 rdev->constraints->state_disk.enabled);
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 regulator_suspend_disk_state_show, NULL);
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
630 return regulator_print_state(buf,
631 rdev->constraints->state_standby.enabled);
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 regulator_suspend_standby_state_show, NULL);
636 static ssize_t regulator_bypass_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
639 struct regulator_dev *rdev = dev_get_drvdata(dev);
644 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
653 return sprintf(buf, "%s\n", report);
655 static DEVICE_ATTR(bypass, 0444,
656 regulator_bypass_show, NULL);
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
666 lockdep_assert_held_once(&rdev->mutex);
669 * first check to see if we can set modes at all, otherwise just
670 * tell the consumer everything is OK.
672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
675 if (!rdev->desc->ops->get_optimum_mode &&
676 !rdev->desc->ops->set_load)
679 if (!rdev->desc->ops->set_mode &&
680 !rdev->desc->ops->set_load)
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
687 current_uA += rdev->constraints->system_load;
689 if (rdev->desc->ops->set_load) {
690 /* set the optimum mode for our new total regulator load */
691 err = rdev->desc->ops->set_load(rdev, current_uA);
693 rdev_err(rdev, "failed to set load %d\n", current_uA);
695 /* get output voltage */
696 output_uV = _regulator_get_voltage(rdev);
697 if (output_uV <= 0) {
698 rdev_err(rdev, "invalid output voltage found\n");
702 /* get input voltage */
705 input_uV = regulator_get_voltage(rdev->supply);
707 input_uV = rdev->constraints->input_uV;
709 rdev_err(rdev, "invalid input voltage found\n");
713 /* now get the optimum mode for our new total regulator load */
714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 output_uV, current_uA);
717 /* check the new mode is allowed */
718 err = regulator_mode_constrain(rdev, &mode);
720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 current_uA, input_uV, output_uV);
725 err = rdev->desc->ops->set_mode(rdev, mode);
727 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
733 static int suspend_set_state(struct regulator_dev *rdev,
734 struct regulator_state *rstate)
738 /* If we have no suspend mode configration don't set anything;
739 * only warn if the driver implements set_suspend_voltage or
740 * set_suspend_mode callback.
742 if (!rstate->enabled && !rstate->disabled) {
743 if (rdev->desc->ops->set_suspend_voltage ||
744 rdev->desc->ops->set_suspend_mode)
745 rdev_warn(rdev, "No configuration\n");
749 if (rstate->enabled && rstate->disabled) {
750 rdev_err(rdev, "invalid configuration\n");
754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 ret = rdev->desc->ops->set_suspend_enable(rdev);
756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 ret = rdev->desc->ops->set_suspend_disable(rdev);
758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
762 rdev_err(rdev, "failed to enabled/disable\n");
766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
769 rdev_err(rdev, "failed to set voltage\n");
774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
777 rdev_err(rdev, "failed to set mode\n");
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
787 if (!rdev->constraints)
791 case PM_SUSPEND_STANDBY:
792 return suspend_set_state(rdev,
793 &rdev->constraints->state_standby);
795 return suspend_set_state(rdev,
796 &rdev->constraints->state_mem);
798 return suspend_set_state(rdev,
799 &rdev->constraints->state_disk);
805 static void print_constraints(struct regulator_dev *rdev)
807 struct regulation_constraints *constraints = rdev->constraints;
809 size_t len = sizeof(buf) - 1;
813 if (constraints->min_uV && constraints->max_uV) {
814 if (constraints->min_uV == constraints->max_uV)
815 count += scnprintf(buf + count, len - count, "%d mV ",
816 constraints->min_uV / 1000);
818 count += scnprintf(buf + count, len - count,
820 constraints->min_uV / 1000,
821 constraints->max_uV / 1000);
824 if (!constraints->min_uV ||
825 constraints->min_uV != constraints->max_uV) {
826 ret = _regulator_get_voltage(rdev);
828 count += scnprintf(buf + count, len - count,
829 "at %d mV ", ret / 1000);
832 if (constraints->uV_offset)
833 count += scnprintf(buf + count, len - count, "%dmV offset ",
834 constraints->uV_offset / 1000);
836 if (constraints->min_uA && constraints->max_uA) {
837 if (constraints->min_uA == constraints->max_uA)
838 count += scnprintf(buf + count, len - count, "%d mA ",
839 constraints->min_uA / 1000);
841 count += scnprintf(buf + count, len - count,
843 constraints->min_uA / 1000,
844 constraints->max_uA / 1000);
847 if (!constraints->min_uA ||
848 constraints->min_uA != constraints->max_uA) {
849 ret = _regulator_get_current_limit(rdev);
851 count += scnprintf(buf + count, len - count,
852 "at %d mA ", ret / 1000);
855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 count += scnprintf(buf + count, len - count, "fast ");
857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 count += scnprintf(buf + count, len - count, "normal ");
859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 count += scnprintf(buf + count, len - count, "idle ");
861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 count += scnprintf(buf + count, len - count, "standby");
865 scnprintf(buf, len, "no parameters");
867 rdev_dbg(rdev, "%s\n", buf);
869 if ((constraints->min_uV != constraints->max_uV) &&
870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 struct regulation_constraints *constraints)
878 const struct regulator_ops *ops = rdev->desc->ops;
881 /* do we need to apply the constraint voltage */
882 if (rdev->constraints->apply_uV &&
883 rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 int target_min, target_max;
885 int current_uV = _regulator_get_voltage(rdev);
886 if (current_uV < 0) {
888 "failed to get the current voltage(%d)\n",
894 * If we're below the minimum voltage move up to the
895 * minimum voltage, if we're above the maximum voltage
896 * then move down to the maximum.
898 target_min = current_uV;
899 target_max = current_uV;
901 if (current_uV < rdev->constraints->min_uV) {
902 target_min = rdev->constraints->min_uV;
903 target_max = rdev->constraints->min_uV;
906 if (current_uV > rdev->constraints->max_uV) {
907 target_min = rdev->constraints->max_uV;
908 target_max = rdev->constraints->max_uV;
911 if (target_min != current_uV || target_max != current_uV) {
912 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 current_uV, target_min, target_max);
914 ret = _regulator_do_set_voltage(
915 rdev, target_min, target_max);
918 "failed to apply %d-%duV constraint(%d)\n",
919 target_min, target_max, ret);
925 /* constrain machine-level voltage specs to fit
926 * the actual range supported by this regulator.
928 if (ops->list_voltage && rdev->desc->n_voltages) {
929 int count = rdev->desc->n_voltages;
931 int min_uV = INT_MAX;
932 int max_uV = INT_MIN;
933 int cmin = constraints->min_uV;
934 int cmax = constraints->max_uV;
936 /* it's safe to autoconfigure fixed-voltage supplies
937 and the constraints are used by list_voltage. */
938 if (count == 1 && !cmin) {
941 constraints->min_uV = cmin;
942 constraints->max_uV = cmax;
945 /* voltage constraints are optional */
946 if ((cmin == 0) && (cmax == 0))
949 /* else require explicit machine-level constraints */
950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 rdev_err(rdev, "invalid voltage constraints\n");
955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 for (i = 0; i < count; i++) {
959 value = ops->list_voltage(rdev, i);
963 /* maybe adjust [min_uV..max_uV] */
964 if (value >= cmin && value < min_uV)
966 if (value <= cmax && value > max_uV)
970 /* final: [min_uV..max_uV] valid iff constraints valid */
971 if (max_uV < min_uV) {
973 "unsupportable voltage constraints %u-%uuV\n",
978 /* use regulator's subset of machine constraints */
979 if (constraints->min_uV < min_uV) {
980 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 constraints->min_uV, min_uV);
982 constraints->min_uV = min_uV;
984 if (constraints->max_uV > max_uV) {
985 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 constraints->max_uV, max_uV);
987 constraints->max_uV = max_uV;
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 struct regulation_constraints *constraints)
997 const struct regulator_ops *ops = rdev->desc->ops;
1000 if (!constraints->min_uA && !constraints->max_uA)
1003 if (constraints->min_uA > constraints->max_uA) {
1004 rdev_err(rdev, "Invalid current constraints\n");
1008 if (!ops->set_current_limit || !ops->get_current_limit) {
1009 rdev_warn(rdev, "Operation of current configuration missing\n");
1013 /* Set regulator current in constraints range */
1014 ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 constraints->max_uA);
1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 const struct regulation_constraints *constraints)
1041 const struct regulator_ops *ops = rdev->desc->ops;
1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1047 rdev->constraints = kzalloc(sizeof(*constraints),
1049 if (!rdev->constraints)
1052 ret = machine_constraints_voltage(rdev, rdev->constraints);
1056 ret = machine_constraints_current(rdev, rdev->constraints);
1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 ret = ops->set_input_current_limit(rdev,
1062 rdev->constraints->ilim_uA);
1064 rdev_err(rdev, "failed to set input limit\n");
1069 /* do we need to setup our suspend state */
1070 if (rdev->constraints->initial_state) {
1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1073 rdev_err(rdev, "failed to set suspend state\n");
1078 if (rdev->constraints->initial_mode) {
1079 if (!ops->set_mode) {
1080 rdev_err(rdev, "no set_mode operation\n");
1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1091 /* If the constraints say the regulator should be on at this point
1092 * and we have control then make sure it is enabled.
1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 ret = _regulator_do_enable(rdev);
1096 if (ret < 0 && ret != -EINVAL) {
1097 rdev_err(rdev, "failed to enable\n");
1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 && ops->set_ramp_delay) {
1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1106 rdev_err(rdev, "failed to set ramp_delay\n");
1111 if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 ret = ops->set_pull_down(rdev);
1114 rdev_err(rdev, "failed to set pull down\n");
1119 if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 ret = ops->set_soft_start(rdev);
1122 rdev_err(rdev, "failed to set soft start\n");
1127 if (rdev->constraints->over_current_protection
1128 && ops->set_over_current_protection) {
1129 ret = ops->set_over_current_protection(rdev);
1131 rdev_err(rdev, "failed to set over current protection\n");
1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 bool ad_state = (rdev->constraints->active_discharge ==
1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1140 ret = ops->set_active_discharge(rdev, ad_state);
1142 rdev_err(rdev, "failed to set active discharge\n");
1147 print_constraints(rdev);
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1160 static int set_supply(struct regulator_dev *rdev,
1161 struct regulator_dev *supply_rdev)
1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1167 if (!try_module_get(supply_rdev->owner))
1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 if (rdev->supply == NULL) {
1175 supply_rdev->open_count++;
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 const char *consumer_dev_name,
1195 struct regulator_map *node;
1201 if (consumer_dev_name != NULL)
1206 list_for_each_entry(node, ®ulator_map_list, list) {
1207 if (node->dev_name && consumer_dev_name) {
1208 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1210 } else if (node->dev_name || consumer_dev_name) {
1214 if (strcmp(node->supply, supply) != 0)
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1219 dev_name(&node->regulator->dev),
1220 node->regulator->desc->name,
1222 dev_name(&rdev->dev), rdev_get_name(rdev));
1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230 node->regulator = rdev;
1231 node->supply = supply;
1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 if (node->dev_name == NULL) {
1241 list_add(&node->list, ®ulator_map_list);
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1247 struct regulator_map *node, *n;
1249 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1250 if (rdev == node->regulator) {
1251 list_del(&node->list);
1252 kfree(node->dev_name);
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 char __user *user_buf,
1261 size_t count, loff_t *ppos)
1263 const struct regulator *regulator = file->private_data;
1264 const struct regulation_constraints *c = regulator->rdev->constraints;
1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275 ret = snprintf(buf, PAGE_SIZE,
1279 "ramp_disable: %u\n"
1282 "over_current_protection: %u\n",
1289 c->over_current_protection);
1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 .open = simple_open,
1302 .read = constraint_flags_read_file,
1303 .llseek = default_llseek,
1307 #define REG_STR_SIZE 64
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1311 const char *supply_name)
1313 struct regulator *regulator;
1314 char buf[REG_STR_SIZE];
1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 if (regulator == NULL)
1321 mutex_lock(&rdev->mutex);
1322 regulator->rdev = rdev;
1323 list_add(®ulator->list, &rdev->consumer_list);
1326 regulator->dev = dev;
1328 /* Add a link to the device sysfs entry */
1329 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1330 dev->kobj.name, supply_name);
1331 if (size >= REG_STR_SIZE)
1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 if (regulator->supply_name == NULL)
1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1341 rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 dev->kobj.name, err);
1346 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1347 if (regulator->supply_name == NULL)
1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1353 if (!regulator->debugfs) {
1354 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 ®ulator->uA_load);
1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 ®ulator->min_uV);
1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 ®ulator->max_uV);
1362 debugfs_create_file("constraint_flags", 0444,
1363 regulator->debugfs, regulator,
1364 &constraint_flags_fops);
1368 * Check now if the regulator is an always on regulator - if
1369 * it is then we don't need to do nearly so much work for
1370 * enable/disable calls.
1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 _regulator_is_enabled(rdev))
1374 regulator->always_on = true;
1376 mutex_unlock(&rdev->mutex);
1379 list_del(®ulator->list);
1381 mutex_unlock(&rdev->mutex);
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1387 if (rdev->constraints && rdev->constraints->enable_time)
1388 return rdev->constraints->enable_time;
1389 if (!rdev->desc->ops->enable_time)
1390 return rdev->desc->enable_time;
1391 return rdev->desc->ops->enable_time(rdev);
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 struct device *dev, const char *supply)
1397 struct regulator_supply_alias *map;
1399 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1408 struct regulator_supply_alias *map;
1410 map = regulator_find_supply_alias(*dev, *supply);
1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 *supply, map->alias_supply,
1414 dev_name(map->alias_dev));
1415 *dev = map->alias_dev;
1416 *supply = map->alias_supply;
1420 static int of_node_match(struct device *dev, const void *data)
1422 return dev->of_node == data;
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1429 dev = class_find_device(®ulator_class, NULL, np, of_node_match);
1431 return dev ? dev_to_rdev(dev) : NULL;
1434 static int regulator_match(struct device *dev, const void *data)
1436 struct regulator_dev *r = dev_to_rdev(dev);
1438 return strcmp(rdev_get_name(r), data) == 0;
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1445 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1447 return dev ? dev_to_rdev(dev) : NULL;
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1455 * If successful, returns a struct regulator_dev that corresponds to the name
1456 * @supply and with the embedded struct device refcount incremented by one.
1457 * The refcount must be dropped by calling put_device().
1458 * On failure one of the following ERR-PTR-encoded values is returned:
1459 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1462 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1465 struct regulator_dev *r = NULL;
1466 struct device_node *node;
1467 struct regulator_map *map;
1468 const char *devname = NULL;
1470 regulator_supply_alias(&dev, &supply);
1472 /* first do a dt based lookup */
1473 if (dev && dev->of_node) {
1474 node = of_get_regulator(dev, supply);
1476 r = of_find_regulator_by_node(node);
1481 * We have a node, but there is no device.
1482 * assume it has not registered yet.
1484 return ERR_PTR(-EPROBE_DEFER);
1488 /* if not found, try doing it non-dt way */
1490 devname = dev_name(dev);
1492 mutex_lock(®ulator_list_mutex);
1493 list_for_each_entry(map, ®ulator_map_list, list) {
1494 /* If the mapping has a device set up it must match */
1495 if (map->dev_name &&
1496 (!devname || strcmp(map->dev_name, devname)))
1499 if (strcmp(map->supply, supply) == 0 &&
1500 get_device(&map->regulator->dev)) {
1505 mutex_unlock(®ulator_list_mutex);
1510 r = regulator_lookup_by_name(supply);
1514 return ERR_PTR(-ENODEV);
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 struct regulator_dev *r;
1520 struct device *dev = rdev->dev.parent;
1523 /* No supply to resovle? */
1524 if (!rdev->supply_name)
1527 /* Supply already resolved? */
1531 r = regulator_dev_lookup(dev, rdev->supply_name);
1535 /* Did the lookup explicitly defer for us? */
1536 if (ret == -EPROBE_DEFER)
1539 if (have_full_constraints()) {
1540 r = dummy_regulator_rdev;
1541 get_device(&r->dev);
1543 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1544 rdev->supply_name, rdev->desc->name);
1545 return -EPROBE_DEFER;
1550 * If the supply's parent device is not the same as the
1551 * regulator's parent device, then ensure the parent device
1552 * is bound before we resolve the supply, in case the parent
1553 * device get probe deferred and unregisters the supply.
1555 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1556 if (!device_is_bound(r->dev.parent)) {
1557 put_device(&r->dev);
1558 return -EPROBE_DEFER;
1562 /* Recursively resolve the supply of the supply */
1563 ret = regulator_resolve_supply(r);
1565 put_device(&r->dev);
1569 ret = set_supply(rdev, r);
1571 put_device(&r->dev);
1575 /* Cascade always-on state to supply */
1576 if (_regulator_is_enabled(rdev)) {
1577 ret = regulator_enable(rdev->supply);
1579 _regulator_put(rdev->supply);
1580 rdev->supply = NULL;
1588 /* Internal regulator request function */
1589 struct regulator *_regulator_get(struct device *dev, const char *id,
1590 enum regulator_get_type get_type)
1592 struct regulator_dev *rdev;
1593 struct regulator *regulator;
1594 const char *devname = dev ? dev_name(dev) : "deviceless";
1597 if (get_type >= MAX_GET_TYPE) {
1598 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1599 return ERR_PTR(-EINVAL);
1603 pr_err("get() with no identifier\n");
1604 return ERR_PTR(-EINVAL);
1607 rdev = regulator_dev_lookup(dev, id);
1609 ret = PTR_ERR(rdev);
1612 * If regulator_dev_lookup() fails with error other
1613 * than -ENODEV our job here is done, we simply return it.
1616 return ERR_PTR(ret);
1618 if (!have_full_constraints()) {
1620 "incomplete constraints, dummy supplies not allowed\n");
1621 return ERR_PTR(-ENODEV);
1627 * Assume that a regulator is physically present and
1628 * enabled, even if it isn't hooked up, and just
1632 "%s supply %s not found, using dummy regulator\n",
1634 rdev = dummy_regulator_rdev;
1635 get_device(&rdev->dev);
1640 "dummy supplies not allowed for exclusive requests\n");
1644 return ERR_PTR(-ENODEV);
1648 if (rdev->exclusive) {
1649 regulator = ERR_PTR(-EPERM);
1650 put_device(&rdev->dev);
1654 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1655 regulator = ERR_PTR(-EBUSY);
1656 put_device(&rdev->dev);
1660 ret = regulator_resolve_supply(rdev);
1662 regulator = ERR_PTR(ret);
1663 put_device(&rdev->dev);
1667 if (!try_module_get(rdev->owner)) {
1668 regulator = ERR_PTR(-EPROBE_DEFER);
1669 put_device(&rdev->dev);
1673 regulator = create_regulator(rdev, dev, id);
1674 if (regulator == NULL) {
1675 regulator = ERR_PTR(-ENOMEM);
1676 put_device(&rdev->dev);
1677 module_put(rdev->owner);
1682 if (get_type == EXCLUSIVE_GET) {
1683 rdev->exclusive = 1;
1685 ret = _regulator_is_enabled(rdev);
1687 rdev->use_count = 1;
1689 rdev->use_count = 0;
1696 * regulator_get - lookup and obtain a reference to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1703 * Use of supply names configured via regulator_set_device_supply() is
1704 * strongly encouraged. It is recommended that the supply name used
1705 * should match the name used for the supply and/or the relevant
1706 * device pins in the datasheet.
1708 struct regulator *regulator_get(struct device *dev, const char *id)
1710 return _regulator_get(dev, id, NORMAL_GET);
1712 EXPORT_SYMBOL_GPL(regulator_get);
1715 * regulator_get_exclusive - obtain exclusive access to a regulator.
1716 * @dev: device for regulator "consumer"
1717 * @id: Supply name or regulator ID.
1719 * Returns a struct regulator corresponding to the regulator producer,
1720 * or IS_ERR() condition containing errno. Other consumers will be
1721 * unable to obtain this regulator while this reference is held and the
1722 * use count for the regulator will be initialised to reflect the current
1723 * state of the regulator.
1725 * This is intended for use by consumers which cannot tolerate shared
1726 * use of the regulator such as those which need to force the
1727 * regulator off for correct operation of the hardware they are
1730 * Use of supply names configured via regulator_set_device_supply() is
1731 * strongly encouraged. It is recommended that the supply name used
1732 * should match the name used for the supply and/or the relevant
1733 * device pins in the datasheet.
1735 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1737 return _regulator_get(dev, id, EXCLUSIVE_GET);
1739 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1742 * regulator_get_optional - obtain optional access to a regulator.
1743 * @dev: device for regulator "consumer"
1744 * @id: Supply name or regulator ID.
1746 * Returns a struct regulator corresponding to the regulator producer,
1747 * or IS_ERR() condition containing errno.
1749 * This is intended for use by consumers for devices which can have
1750 * some supplies unconnected in normal use, such as some MMC devices.
1751 * It can allow the regulator core to provide stub supplies for other
1752 * supplies requested using normal regulator_get() calls without
1753 * disrupting the operation of drivers that can handle absent
1756 * Use of supply names configured via regulator_set_device_supply() is
1757 * strongly encouraged. It is recommended that the supply name used
1758 * should match the name used for the supply and/or the relevant
1759 * device pins in the datasheet.
1761 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1763 return _regulator_get(dev, id, OPTIONAL_GET);
1765 EXPORT_SYMBOL_GPL(regulator_get_optional);
1767 /* regulator_list_mutex lock held by regulator_put() */
1768 static void _regulator_put(struct regulator *regulator)
1770 struct regulator_dev *rdev;
1772 if (IS_ERR_OR_NULL(regulator))
1775 lockdep_assert_held_once(®ulator_list_mutex);
1777 rdev = regulator->rdev;
1779 debugfs_remove_recursive(regulator->debugfs);
1781 /* remove any sysfs entries */
1783 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1784 mutex_lock(&rdev->mutex);
1785 list_del(®ulator->list);
1788 rdev->exclusive = 0;
1789 put_device(&rdev->dev);
1790 mutex_unlock(&rdev->mutex);
1792 kfree_const(regulator->supply_name);
1795 module_put(rdev->owner);
1799 * regulator_put - "free" the regulator source
1800 * @regulator: regulator source
1802 * Note: drivers must ensure that all regulator_enable calls made on this
1803 * regulator source are balanced by regulator_disable calls prior to calling
1806 void regulator_put(struct regulator *regulator)
1808 mutex_lock(®ulator_list_mutex);
1809 _regulator_put(regulator);
1810 mutex_unlock(®ulator_list_mutex);
1812 EXPORT_SYMBOL_GPL(regulator_put);
1815 * regulator_register_supply_alias - Provide device alias for supply lookup
1817 * @dev: device that will be given as the regulator "consumer"
1818 * @id: Supply name or regulator ID
1819 * @alias_dev: device that should be used to lookup the supply
1820 * @alias_id: Supply name or regulator ID that should be used to lookup the
1823 * All lookups for id on dev will instead be conducted for alias_id on
1826 int regulator_register_supply_alias(struct device *dev, const char *id,
1827 struct device *alias_dev,
1828 const char *alias_id)
1830 struct regulator_supply_alias *map;
1832 map = regulator_find_supply_alias(dev, id);
1836 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1841 map->src_supply = id;
1842 map->alias_dev = alias_dev;
1843 map->alias_supply = alias_id;
1845 list_add(&map->list, ®ulator_supply_alias_list);
1847 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1848 id, dev_name(dev), alias_id, dev_name(alias_dev));
1852 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1855 * regulator_unregister_supply_alias - Remove device alias
1857 * @dev: device that will be given as the regulator "consumer"
1858 * @id: Supply name or regulator ID
1860 * Remove a lookup alias if one exists for id on dev.
1862 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1864 struct regulator_supply_alias *map;
1866 map = regulator_find_supply_alias(dev, id);
1868 list_del(&map->list);
1872 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1875 * regulator_bulk_register_supply_alias - register multiple aliases
1877 * @dev: device that will be given as the regulator "consumer"
1878 * @id: List of supply names or regulator IDs
1879 * @alias_dev: device that should be used to lookup the supply
1880 * @alias_id: List of supply names or regulator IDs that should be used to
1882 * @num_id: Number of aliases to register
1884 * @return 0 on success, an errno on failure.
1886 * This helper function allows drivers to register several supply
1887 * aliases in one operation. If any of the aliases cannot be
1888 * registered any aliases that were registered will be removed
1889 * before returning to the caller.
1891 int regulator_bulk_register_supply_alias(struct device *dev,
1892 const char *const *id,
1893 struct device *alias_dev,
1894 const char *const *alias_id,
1900 for (i = 0; i < num_id; ++i) {
1901 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1911 "Failed to create supply alias %s,%s -> %s,%s\n",
1912 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1915 regulator_unregister_supply_alias(dev, id[i]);
1919 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1922 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1924 * @dev: device that will be given as the regulator "consumer"
1925 * @id: List of supply names or regulator IDs
1926 * @num_id: Number of aliases to unregister
1928 * This helper function allows drivers to unregister several supply
1929 * aliases in one operation.
1931 void regulator_bulk_unregister_supply_alias(struct device *dev,
1932 const char *const *id,
1937 for (i = 0; i < num_id; ++i)
1938 regulator_unregister_supply_alias(dev, id[i]);
1940 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1943 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1944 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1945 const struct regulator_config *config)
1947 struct regulator_enable_gpio *pin;
1948 struct gpio_desc *gpiod;
1951 gpiod = gpio_to_desc(config->ena_gpio);
1953 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1954 if (pin->gpiod == gpiod) {
1955 rdev_dbg(rdev, "GPIO %d is already used\n",
1957 goto update_ena_gpio_to_rdev;
1961 ret = gpio_request_one(config->ena_gpio,
1962 GPIOF_DIR_OUT | config->ena_gpio_flags,
1963 rdev_get_name(rdev));
1967 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1969 gpio_free(config->ena_gpio);
1974 pin->ena_gpio_invert = config->ena_gpio_invert;
1975 list_add(&pin->list, ®ulator_ena_gpio_list);
1977 update_ena_gpio_to_rdev:
1978 pin->request_count++;
1979 rdev->ena_pin = pin;
1983 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1985 struct regulator_enable_gpio *pin, *n;
1990 /* Free the GPIO only in case of no use */
1991 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1992 if (pin->gpiod == rdev->ena_pin->gpiod) {
1993 if (pin->request_count <= 1) {
1994 pin->request_count = 0;
1995 gpiod_put(pin->gpiod);
1996 list_del(&pin->list);
1998 rdev->ena_pin = NULL;
2001 pin->request_count--;
2008 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2009 * @rdev: regulator_dev structure
2010 * @enable: enable GPIO at initial use?
2012 * GPIO is enabled in case of initial use. (enable_count is 0)
2013 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2015 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2017 struct regulator_enable_gpio *pin = rdev->ena_pin;
2023 /* Enable GPIO at initial use */
2024 if (pin->enable_count == 0)
2025 gpiod_set_value_cansleep(pin->gpiod,
2026 !pin->ena_gpio_invert);
2028 pin->enable_count++;
2030 if (pin->enable_count > 1) {
2031 pin->enable_count--;
2035 /* Disable GPIO if not used */
2036 if (pin->enable_count <= 1) {
2037 gpiod_set_value_cansleep(pin->gpiod,
2038 pin->ena_gpio_invert);
2039 pin->enable_count = 0;
2047 * _regulator_enable_delay - a delay helper function
2048 * @delay: time to delay in microseconds
2050 * Delay for the requested amount of time as per the guidelines in:
2052 * Documentation/timers/timers-howto.txt
2054 * The assumption here is that regulators will never be enabled in
2055 * atomic context and therefore sleeping functions can be used.
2057 static void _regulator_enable_delay(unsigned int delay)
2059 unsigned int ms = delay / 1000;
2060 unsigned int us = delay % 1000;
2064 * For small enough values, handle super-millisecond
2065 * delays in the usleep_range() call below.
2074 * Give the scheduler some room to coalesce with any other
2075 * wakeup sources. For delays shorter than 10 us, don't even
2076 * bother setting up high-resolution timers and just busy-
2080 usleep_range(us, us + 100);
2085 static int _regulator_do_enable(struct regulator_dev *rdev)
2089 /* Query before enabling in case configuration dependent. */
2090 ret = _regulator_get_enable_time(rdev);
2094 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2098 trace_regulator_enable(rdev_get_name(rdev));
2100 if (rdev->desc->off_on_delay) {
2101 /* if needed, keep a distance of off_on_delay from last time
2102 * this regulator was disabled.
2104 unsigned long start_jiffy = jiffies;
2105 unsigned long intended, max_delay, remaining;
2107 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2108 intended = rdev->last_off_jiffy + max_delay;
2110 if (time_before(start_jiffy, intended)) {
2111 /* calc remaining jiffies to deal with one-time
2113 * in case of multiple timer wrapping, either it can be
2114 * detected by out-of-range remaining, or it cannot be
2115 * detected and we gets a panelty of
2116 * _regulator_enable_delay().
2118 remaining = intended - start_jiffy;
2119 if (remaining <= max_delay)
2120 _regulator_enable_delay(
2121 jiffies_to_usecs(remaining));
2125 if (rdev->ena_pin) {
2126 if (!rdev->ena_gpio_state) {
2127 ret = regulator_ena_gpio_ctrl(rdev, true);
2130 rdev->ena_gpio_state = 1;
2132 } else if (rdev->desc->ops->enable) {
2133 ret = rdev->desc->ops->enable(rdev);
2140 /* Allow the regulator to ramp; it would be useful to extend
2141 * this for bulk operations so that the regulators can ramp
2143 trace_regulator_enable_delay(rdev_get_name(rdev));
2145 _regulator_enable_delay(delay);
2147 trace_regulator_enable_complete(rdev_get_name(rdev));
2152 /* locks held by regulator_enable() */
2153 static int _regulator_enable(struct regulator_dev *rdev)
2157 lockdep_assert_held_once(&rdev->mutex);
2159 /* check voltage and requested load before enabling */
2160 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2161 drms_uA_update(rdev);
2163 if (rdev->use_count == 0) {
2164 /* The regulator may on if it's not switchable or left on */
2165 ret = _regulator_is_enabled(rdev);
2166 if (ret == -EINVAL || ret == 0) {
2167 if (!regulator_ops_is_valid(rdev,
2168 REGULATOR_CHANGE_STATUS))
2171 ret = _regulator_do_enable(rdev);
2175 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2177 } else if (ret < 0) {
2178 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2181 /* Fallthrough on positive return values - already enabled */
2190 * regulator_enable - enable regulator output
2191 * @regulator: regulator source
2193 * Request that the regulator be enabled with the regulator output at
2194 * the predefined voltage or current value. Calls to regulator_enable()
2195 * must be balanced with calls to regulator_disable().
2197 * NOTE: the output value can be set by other drivers, boot loader or may be
2198 * hardwired in the regulator.
2200 int regulator_enable(struct regulator *regulator)
2202 struct regulator_dev *rdev = regulator->rdev;
2205 if (regulator->always_on)
2209 ret = regulator_enable(rdev->supply);
2214 mutex_lock(&rdev->mutex);
2215 ret = _regulator_enable(rdev);
2216 mutex_unlock(&rdev->mutex);
2218 if (ret != 0 && rdev->supply)
2219 regulator_disable(rdev->supply);
2223 EXPORT_SYMBOL_GPL(regulator_enable);
2225 static int _regulator_do_disable(struct regulator_dev *rdev)
2229 trace_regulator_disable(rdev_get_name(rdev));
2231 if (rdev->ena_pin) {
2232 if (rdev->ena_gpio_state) {
2233 ret = regulator_ena_gpio_ctrl(rdev, false);
2236 rdev->ena_gpio_state = 0;
2239 } else if (rdev->desc->ops->disable) {
2240 ret = rdev->desc->ops->disable(rdev);
2245 /* cares about last_off_jiffy only if off_on_delay is required by
2248 if (rdev->desc->off_on_delay)
2249 rdev->last_off_jiffy = jiffies;
2251 trace_regulator_disable_complete(rdev_get_name(rdev));
2256 /* locks held by regulator_disable() */
2257 static int _regulator_disable(struct regulator_dev *rdev)
2261 lockdep_assert_held_once(&rdev->mutex);
2263 if (WARN(rdev->use_count <= 0,
2264 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2267 /* are we the last user and permitted to disable ? */
2268 if (rdev->use_count == 1 &&
2269 (rdev->constraints && !rdev->constraints->always_on)) {
2271 /* we are last user */
2272 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2273 ret = _notifier_call_chain(rdev,
2274 REGULATOR_EVENT_PRE_DISABLE,
2276 if (ret & NOTIFY_STOP_MASK)
2279 ret = _regulator_do_disable(rdev);
2281 rdev_err(rdev, "failed to disable\n");
2282 _notifier_call_chain(rdev,
2283 REGULATOR_EVENT_ABORT_DISABLE,
2287 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2291 rdev->use_count = 0;
2292 } else if (rdev->use_count > 1) {
2293 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2294 drms_uA_update(rdev);
2303 * regulator_disable - disable regulator output
2304 * @regulator: regulator source
2306 * Disable the regulator output voltage or current. Calls to
2307 * regulator_enable() must be balanced with calls to
2308 * regulator_disable().
2310 * NOTE: this will only disable the regulator output if no other consumer
2311 * devices have it enabled, the regulator device supports disabling and
2312 * machine constraints permit this operation.
2314 int regulator_disable(struct regulator *regulator)
2316 struct regulator_dev *rdev = regulator->rdev;
2319 if (regulator->always_on)
2322 mutex_lock(&rdev->mutex);
2323 ret = _regulator_disable(rdev);
2324 mutex_unlock(&rdev->mutex);
2326 if (ret == 0 && rdev->supply)
2327 regulator_disable(rdev->supply);
2331 EXPORT_SYMBOL_GPL(regulator_disable);
2333 /* locks held by regulator_force_disable() */
2334 static int _regulator_force_disable(struct regulator_dev *rdev)
2338 lockdep_assert_held_once(&rdev->mutex);
2340 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 REGULATOR_EVENT_PRE_DISABLE, NULL);
2342 if (ret & NOTIFY_STOP_MASK)
2345 ret = _regulator_do_disable(rdev);
2347 rdev_err(rdev, "failed to force disable\n");
2348 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2353 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2354 REGULATOR_EVENT_DISABLE, NULL);
2360 * regulator_force_disable - force disable regulator output
2361 * @regulator: regulator source
2363 * Forcibly disable the regulator output voltage or current.
2364 * NOTE: this *will* disable the regulator output even if other consumer
2365 * devices have it enabled. This should be used for situations when device
2366 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2368 int regulator_force_disable(struct regulator *regulator)
2370 struct regulator_dev *rdev = regulator->rdev;
2373 mutex_lock(&rdev->mutex);
2374 regulator->uA_load = 0;
2375 ret = _regulator_force_disable(regulator->rdev);
2376 mutex_unlock(&rdev->mutex);
2379 while (rdev->open_count--)
2380 regulator_disable(rdev->supply);
2384 EXPORT_SYMBOL_GPL(regulator_force_disable);
2386 static void regulator_disable_work(struct work_struct *work)
2388 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2392 mutex_lock(&rdev->mutex);
2394 BUG_ON(!rdev->deferred_disables);
2396 count = rdev->deferred_disables;
2397 rdev->deferred_disables = 0;
2399 for (i = 0; i < count; i++) {
2400 ret = _regulator_disable(rdev);
2402 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2405 mutex_unlock(&rdev->mutex);
2408 for (i = 0; i < count; i++) {
2409 ret = regulator_disable(rdev->supply);
2412 "Supply disable failed: %d\n", ret);
2419 * regulator_disable_deferred - disable regulator output with delay
2420 * @regulator: regulator source
2421 * @ms: miliseconds until the regulator is disabled
2423 * Execute regulator_disable() on the regulator after a delay. This
2424 * is intended for use with devices that require some time to quiesce.
2426 * NOTE: this will only disable the regulator output if no other consumer
2427 * devices have it enabled, the regulator device supports disabling and
2428 * machine constraints permit this operation.
2430 int regulator_disable_deferred(struct regulator *regulator, int ms)
2432 struct regulator_dev *rdev = regulator->rdev;
2434 if (regulator->always_on)
2438 return regulator_disable(regulator);
2440 mutex_lock(&rdev->mutex);
2441 rdev->deferred_disables++;
2442 mutex_unlock(&rdev->mutex);
2444 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2445 msecs_to_jiffies(ms));
2448 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2450 static int _regulator_is_enabled(struct regulator_dev *rdev)
2452 /* A GPIO control always takes precedence */
2454 return rdev->ena_gpio_state;
2456 /* If we don't know then assume that the regulator is always on */
2457 if (!rdev->desc->ops->is_enabled)
2460 return rdev->desc->ops->is_enabled(rdev);
2463 static int _regulator_list_voltage(struct regulator *regulator,
2464 unsigned selector, int lock)
2466 struct regulator_dev *rdev = regulator->rdev;
2467 const struct regulator_ops *ops = rdev->desc->ops;
2470 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2471 return rdev->desc->fixed_uV;
2473 if (ops->list_voltage) {
2474 if (selector >= rdev->desc->n_voltages)
2477 mutex_lock(&rdev->mutex);
2478 ret = ops->list_voltage(rdev, selector);
2480 mutex_unlock(&rdev->mutex);
2481 } else if (rdev->is_switch && rdev->supply) {
2482 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2488 if (ret < rdev->constraints->min_uV)
2490 else if (ret > rdev->constraints->max_uV)
2498 * regulator_is_enabled - is the regulator output enabled
2499 * @regulator: regulator source
2501 * Returns positive if the regulator driver backing the source/client
2502 * has requested that the device be enabled, zero if it hasn't, else a
2503 * negative errno code.
2505 * Note that the device backing this regulator handle can have multiple
2506 * users, so it might be enabled even if regulator_enable() was never
2507 * called for this particular source.
2509 int regulator_is_enabled(struct regulator *regulator)
2513 if (regulator->always_on)
2516 mutex_lock(®ulator->rdev->mutex);
2517 ret = _regulator_is_enabled(regulator->rdev);
2518 mutex_unlock(®ulator->rdev->mutex);
2522 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2525 * regulator_count_voltages - count regulator_list_voltage() selectors
2526 * @regulator: regulator source
2528 * Returns number of selectors, or negative errno. Selectors are
2529 * numbered starting at zero, and typically correspond to bitfields
2530 * in hardware registers.
2532 int regulator_count_voltages(struct regulator *regulator)
2534 struct regulator_dev *rdev = regulator->rdev;
2536 if (rdev->desc->n_voltages)
2537 return rdev->desc->n_voltages;
2539 if (!rdev->is_switch || !rdev->supply)
2542 return regulator_count_voltages(rdev->supply);
2544 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2547 * regulator_list_voltage - enumerate supported voltages
2548 * @regulator: regulator source
2549 * @selector: identify voltage to list
2550 * Context: can sleep
2552 * Returns a voltage that can be passed to @regulator_set_voltage(),
2553 * zero if this selector code can't be used on this system, or a
2556 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2558 return _regulator_list_voltage(regulator, selector, 1);
2560 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2563 * regulator_get_regmap - get the regulator's register map
2564 * @regulator: regulator source
2566 * Returns the register map for the given regulator, or an ERR_PTR value
2567 * if the regulator doesn't use regmap.
2569 struct regmap *regulator_get_regmap(struct regulator *regulator)
2571 struct regmap *map = regulator->rdev->regmap;
2573 return map ? map : ERR_PTR(-EOPNOTSUPP);
2577 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2578 * @regulator: regulator source
2579 * @vsel_reg: voltage selector register, output parameter
2580 * @vsel_mask: mask for voltage selector bitfield, output parameter
2582 * Returns the hardware register offset and bitmask used for setting the
2583 * regulator voltage. This might be useful when configuring voltage-scaling
2584 * hardware or firmware that can make I2C requests behind the kernel's back,
2587 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2588 * and 0 is returned, otherwise a negative errno is returned.
2590 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2592 unsigned *vsel_mask)
2594 struct regulator_dev *rdev = regulator->rdev;
2595 const struct regulator_ops *ops = rdev->desc->ops;
2597 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2600 *vsel_reg = rdev->desc->vsel_reg;
2601 *vsel_mask = rdev->desc->vsel_mask;
2605 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2608 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2609 * @regulator: regulator source
2610 * @selector: identify voltage to list
2612 * Converts the selector to a hardware-specific voltage selector that can be
2613 * directly written to the regulator registers. The address of the voltage
2614 * register can be determined by calling @regulator_get_hardware_vsel_register.
2616 * On error a negative errno is returned.
2618 int regulator_list_hardware_vsel(struct regulator *regulator,
2621 struct regulator_dev *rdev = regulator->rdev;
2622 const struct regulator_ops *ops = rdev->desc->ops;
2624 if (selector >= rdev->desc->n_voltages)
2626 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2631 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2634 * regulator_get_linear_step - return the voltage step size between VSEL values
2635 * @regulator: regulator source
2637 * Returns the voltage step size between VSEL values for linear
2638 * regulators, or return 0 if the regulator isn't a linear regulator.
2640 unsigned int regulator_get_linear_step(struct regulator *regulator)
2642 struct regulator_dev *rdev = regulator->rdev;
2644 return rdev->desc->uV_step;
2646 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2649 * regulator_is_supported_voltage - check if a voltage range can be supported
2651 * @regulator: Regulator to check.
2652 * @min_uV: Minimum required voltage in uV.
2653 * @max_uV: Maximum required voltage in uV.
2655 * Returns a boolean or a negative error code.
2657 int regulator_is_supported_voltage(struct regulator *regulator,
2658 int min_uV, int max_uV)
2660 struct regulator_dev *rdev = regulator->rdev;
2661 int i, voltages, ret;
2663 /* If we can't change voltage check the current voltage */
2664 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2665 ret = regulator_get_voltage(regulator);
2667 return min_uV <= ret && ret <= max_uV;
2672 /* Any voltage within constrains range is fine? */
2673 if (rdev->desc->continuous_voltage_range)
2674 return min_uV >= rdev->constraints->min_uV &&
2675 max_uV <= rdev->constraints->max_uV;
2677 ret = regulator_count_voltages(regulator);
2682 for (i = 0; i < voltages; i++) {
2683 ret = regulator_list_voltage(regulator, i);
2685 if (ret >= min_uV && ret <= max_uV)
2691 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2693 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2696 const struct regulator_desc *desc = rdev->desc;
2698 if (desc->ops->map_voltage)
2699 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2701 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2702 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2704 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2705 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2707 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2710 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2711 int min_uV, int max_uV,
2714 struct pre_voltage_change_data data;
2717 data.old_uV = _regulator_get_voltage(rdev);
2718 data.min_uV = min_uV;
2719 data.max_uV = max_uV;
2720 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2722 if (ret & NOTIFY_STOP_MASK)
2725 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2729 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2730 (void *)data.old_uV);
2735 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2736 int uV, unsigned selector)
2738 struct pre_voltage_change_data data;
2741 data.old_uV = _regulator_get_voltage(rdev);
2744 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2746 if (ret & NOTIFY_STOP_MASK)
2749 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2753 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2754 (void *)data.old_uV);
2759 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2760 int old_uV, int new_uV)
2762 unsigned int ramp_delay = 0;
2764 if (rdev->constraints->ramp_delay)
2765 ramp_delay = rdev->constraints->ramp_delay;
2766 else if (rdev->desc->ramp_delay)
2767 ramp_delay = rdev->desc->ramp_delay;
2768 else if (rdev->constraints->settling_time)
2769 return rdev->constraints->settling_time;
2771 if (ramp_delay == 0) {
2772 rdev_dbg(rdev, "ramp_delay not set\n");
2776 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2779 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2780 int min_uV, int max_uV)
2785 unsigned int selector;
2786 int old_selector = -1;
2787 const struct regulator_ops *ops = rdev->desc->ops;
2788 int old_uV = _regulator_get_voltage(rdev);
2790 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2792 min_uV += rdev->constraints->uV_offset;
2793 max_uV += rdev->constraints->uV_offset;
2796 * If we can't obtain the old selector there is not enough
2797 * info to call set_voltage_time_sel().
2799 if (_regulator_is_enabled(rdev) &&
2800 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2801 old_selector = ops->get_voltage_sel(rdev);
2802 if (old_selector < 0)
2803 return old_selector;
2806 if (ops->set_voltage) {
2807 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2811 if (ops->list_voltage)
2812 best_val = ops->list_voltage(rdev,
2815 best_val = _regulator_get_voltage(rdev);
2818 } else if (ops->set_voltage_sel) {
2819 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2821 best_val = ops->list_voltage(rdev, ret);
2822 if (min_uV <= best_val && max_uV >= best_val) {
2824 if (old_selector == selector)
2827 ret = _regulator_call_set_voltage_sel(
2828 rdev, best_val, selector);
2840 if (ops->set_voltage_time_sel) {
2842 * Call set_voltage_time_sel if successfully obtained
2845 if (old_selector >= 0 && old_selector != selector)
2846 delay = ops->set_voltage_time_sel(rdev, old_selector,
2849 if (old_uV != best_val) {
2850 if (ops->set_voltage_time)
2851 delay = ops->set_voltage_time(rdev, old_uV,
2854 delay = _regulator_set_voltage_time(rdev,
2861 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2865 /* Insert any necessary delays */
2866 if (delay >= 1000) {
2867 mdelay(delay / 1000);
2868 udelay(delay % 1000);
2873 if (best_val >= 0) {
2874 unsigned long data = best_val;
2876 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2881 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2886 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2887 int min_uV, int max_uV)
2889 struct regulator_dev *rdev = regulator->rdev;
2891 int old_min_uV, old_max_uV;
2893 int best_supply_uV = 0;
2894 int supply_change_uV = 0;
2896 /* If we're setting the same range as last time the change
2897 * should be a noop (some cpufreq implementations use the same
2898 * voltage for multiple frequencies, for example).
2900 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2903 /* If we're trying to set a range that overlaps the current voltage,
2904 * return successfully even though the regulator does not support
2905 * changing the voltage.
2907 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2908 current_uV = _regulator_get_voltage(rdev);
2909 if (min_uV <= current_uV && current_uV <= max_uV) {
2910 regulator->min_uV = min_uV;
2911 regulator->max_uV = max_uV;
2917 if (!rdev->desc->ops->set_voltage &&
2918 !rdev->desc->ops->set_voltage_sel) {
2923 /* constraints check */
2924 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2928 /* restore original values in case of error */
2929 old_min_uV = regulator->min_uV;
2930 old_max_uV = regulator->max_uV;
2931 regulator->min_uV = min_uV;
2932 regulator->max_uV = max_uV;
2934 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2939 regulator_ops_is_valid(rdev->supply->rdev,
2940 REGULATOR_CHANGE_VOLTAGE) &&
2941 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2942 rdev->desc->ops->get_voltage_sel))) {
2943 int current_supply_uV;
2946 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2952 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2953 if (best_supply_uV < 0) {
2954 ret = best_supply_uV;
2958 best_supply_uV += rdev->desc->min_dropout_uV;
2960 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2961 if (current_supply_uV < 0) {
2962 ret = current_supply_uV;
2966 supply_change_uV = best_supply_uV - current_supply_uV;
2969 if (supply_change_uV > 0) {
2970 ret = regulator_set_voltage_unlocked(rdev->supply,
2971 best_supply_uV, INT_MAX);
2973 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2979 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2983 if (supply_change_uV < 0) {
2984 ret = regulator_set_voltage_unlocked(rdev->supply,
2985 best_supply_uV, INT_MAX);
2987 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2989 /* No need to fail here */
2996 regulator->min_uV = old_min_uV;
2997 regulator->max_uV = old_max_uV;
3003 * regulator_set_voltage - set regulator output voltage
3004 * @regulator: regulator source
3005 * @min_uV: Minimum required voltage in uV
3006 * @max_uV: Maximum acceptable voltage in uV
3008 * Sets a voltage regulator to the desired output voltage. This can be set
3009 * during any regulator state. IOW, regulator can be disabled or enabled.
3011 * If the regulator is enabled then the voltage will change to the new value
3012 * immediately otherwise if the regulator is disabled the regulator will
3013 * output at the new voltage when enabled.
3015 * NOTE: If the regulator is shared between several devices then the lowest
3016 * request voltage that meets the system constraints will be used.
3017 * Regulator system constraints must be set for this regulator before
3018 * calling this function otherwise this call will fail.
3020 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3024 regulator_lock_supply(regulator->rdev);
3026 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3028 regulator_unlock_supply(regulator->rdev);
3032 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3035 * regulator_set_voltage_time - get raise/fall time
3036 * @regulator: regulator source
3037 * @old_uV: starting voltage in microvolts
3038 * @new_uV: target voltage in microvolts
3040 * Provided with the starting and ending voltage, this function attempts to
3041 * calculate the time in microseconds required to rise or fall to this new
3044 int regulator_set_voltage_time(struct regulator *regulator,
3045 int old_uV, int new_uV)
3047 struct regulator_dev *rdev = regulator->rdev;
3048 const struct regulator_ops *ops = rdev->desc->ops;
3054 if (ops->set_voltage_time)
3055 return ops->set_voltage_time(rdev, old_uV, new_uV);
3056 else if (!ops->set_voltage_time_sel)
3057 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3059 /* Currently requires operations to do this */
3060 if (!ops->list_voltage || !rdev->desc->n_voltages)
3063 for (i = 0; i < rdev->desc->n_voltages; i++) {
3064 /* We only look for exact voltage matches here */
3065 voltage = regulator_list_voltage(regulator, i);
3070 if (voltage == old_uV)
3072 if (voltage == new_uV)
3076 if (old_sel < 0 || new_sel < 0)
3079 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3081 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3084 * regulator_set_voltage_time_sel - get raise/fall time
3085 * @rdev: regulator source device
3086 * @old_selector: selector for starting voltage
3087 * @new_selector: selector for target voltage
3089 * Provided with the starting and target voltage selectors, this function
3090 * returns time in microseconds required to rise or fall to this new voltage
3092 * Drivers providing ramp_delay in regulation_constraints can use this as their
3093 * set_voltage_time_sel() operation.
3095 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3096 unsigned int old_selector,
3097 unsigned int new_selector)
3099 int old_volt, new_volt;
3102 if (!rdev->desc->ops->list_voltage)
3105 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3106 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3108 if (rdev->desc->ops->set_voltage_time)
3109 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3112 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3114 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3117 * regulator_sync_voltage - re-apply last regulator output voltage
3118 * @regulator: regulator source
3120 * Re-apply the last configured voltage. This is intended to be used
3121 * where some external control source the consumer is cooperating with
3122 * has caused the configured voltage to change.
3124 int regulator_sync_voltage(struct regulator *regulator)
3126 struct regulator_dev *rdev = regulator->rdev;
3127 int ret, min_uV, max_uV;
3129 mutex_lock(&rdev->mutex);
3131 if (!rdev->desc->ops->set_voltage &&
3132 !rdev->desc->ops->set_voltage_sel) {
3137 /* This is only going to work if we've had a voltage configured. */
3138 if (!regulator->min_uV && !regulator->max_uV) {
3143 min_uV = regulator->min_uV;
3144 max_uV = regulator->max_uV;
3146 /* This should be a paranoia check... */
3147 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3151 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3155 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3158 mutex_unlock(&rdev->mutex);
3161 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3163 static int _regulator_get_voltage(struct regulator_dev *rdev)
3168 if (rdev->desc->ops->get_bypass) {
3169 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3173 /* if bypassed the regulator must have a supply */
3174 if (!rdev->supply) {
3176 "bypassed regulator has no supply!\n");
3177 return -EPROBE_DEFER;
3180 return _regulator_get_voltage(rdev->supply->rdev);
3184 if (rdev->desc->ops->get_voltage_sel) {
3185 sel = rdev->desc->ops->get_voltage_sel(rdev);
3188 ret = rdev->desc->ops->list_voltage(rdev, sel);
3189 } else if (rdev->desc->ops->get_voltage) {
3190 ret = rdev->desc->ops->get_voltage(rdev);
3191 } else if (rdev->desc->ops->list_voltage) {
3192 ret = rdev->desc->ops->list_voltage(rdev, 0);
3193 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3194 ret = rdev->desc->fixed_uV;
3195 } else if (rdev->supply) {
3196 ret = _regulator_get_voltage(rdev->supply->rdev);
3203 return ret - rdev->constraints->uV_offset;
3207 * regulator_get_voltage - get regulator output voltage
3208 * @regulator: regulator source
3210 * This returns the current regulator voltage in uV.
3212 * NOTE: If the regulator is disabled it will return the voltage value. This
3213 * function should not be used to determine regulator state.
3215 int regulator_get_voltage(struct regulator *regulator)
3219 regulator_lock_supply(regulator->rdev);
3221 ret = _regulator_get_voltage(regulator->rdev);
3223 regulator_unlock_supply(regulator->rdev);
3227 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3230 * regulator_set_current_limit - set regulator output current limit
3231 * @regulator: regulator source
3232 * @min_uA: Minimum supported current in uA
3233 * @max_uA: Maximum supported current in uA
3235 * Sets current sink to the desired output current. This can be set during
3236 * any regulator state. IOW, regulator can be disabled or enabled.
3238 * If the regulator is enabled then the current will change to the new value
3239 * immediately otherwise if the regulator is disabled the regulator will
3240 * output at the new current when enabled.
3242 * NOTE: Regulator system constraints must be set for this regulator before
3243 * calling this function otherwise this call will fail.
3245 int regulator_set_current_limit(struct regulator *regulator,
3246 int min_uA, int max_uA)
3248 struct regulator_dev *rdev = regulator->rdev;
3251 mutex_lock(&rdev->mutex);
3254 if (!rdev->desc->ops->set_current_limit) {
3259 /* constraints check */
3260 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3264 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3266 mutex_unlock(&rdev->mutex);
3269 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3271 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3275 mutex_lock(&rdev->mutex);
3278 if (!rdev->desc->ops->get_current_limit) {
3283 ret = rdev->desc->ops->get_current_limit(rdev);
3285 mutex_unlock(&rdev->mutex);
3290 * regulator_get_current_limit - get regulator output current
3291 * @regulator: regulator source
3293 * This returns the current supplied by the specified current sink in uA.
3295 * NOTE: If the regulator is disabled it will return the current value. This
3296 * function should not be used to determine regulator state.
3298 int regulator_get_current_limit(struct regulator *regulator)
3300 return _regulator_get_current_limit(regulator->rdev);
3302 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3305 * regulator_set_mode - set regulator operating mode
3306 * @regulator: regulator source
3307 * @mode: operating mode - one of the REGULATOR_MODE constants
3309 * Set regulator operating mode to increase regulator efficiency or improve
3310 * regulation performance.
3312 * NOTE: Regulator system constraints must be set for this regulator before
3313 * calling this function otherwise this call will fail.
3315 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3317 struct regulator_dev *rdev = regulator->rdev;
3319 int regulator_curr_mode;
3321 mutex_lock(&rdev->mutex);
3324 if (!rdev->desc->ops->set_mode) {
3329 /* return if the same mode is requested */
3330 if (rdev->desc->ops->get_mode) {
3331 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3332 if (regulator_curr_mode == mode) {
3338 /* constraints check */
3339 ret = regulator_mode_constrain(rdev, &mode);
3343 ret = rdev->desc->ops->set_mode(rdev, mode);
3345 mutex_unlock(&rdev->mutex);
3348 EXPORT_SYMBOL_GPL(regulator_set_mode);
3350 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3354 mutex_lock(&rdev->mutex);
3357 if (!rdev->desc->ops->get_mode) {
3362 ret = rdev->desc->ops->get_mode(rdev);
3364 mutex_unlock(&rdev->mutex);
3369 * regulator_get_mode - get regulator operating mode
3370 * @regulator: regulator source
3372 * Get the current regulator operating mode.
3374 unsigned int regulator_get_mode(struct regulator *regulator)
3376 return _regulator_get_mode(regulator->rdev);
3378 EXPORT_SYMBOL_GPL(regulator_get_mode);
3380 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3381 unsigned int *flags)
3385 mutex_lock(&rdev->mutex);
3388 if (!rdev->desc->ops->get_error_flags) {
3393 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3395 mutex_unlock(&rdev->mutex);
3400 * regulator_get_error_flags - get regulator error information
3401 * @regulator: regulator source
3402 * @flags: pointer to store error flags
3404 * Get the current regulator error information.
3406 int regulator_get_error_flags(struct regulator *regulator,
3407 unsigned int *flags)
3409 return _regulator_get_error_flags(regulator->rdev, flags);
3411 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3414 * regulator_set_load - set regulator load
3415 * @regulator: regulator source
3416 * @uA_load: load current
3418 * Notifies the regulator core of a new device load. This is then used by
3419 * DRMS (if enabled by constraints) to set the most efficient regulator
3420 * operating mode for the new regulator loading.
3422 * Consumer devices notify their supply regulator of the maximum power
3423 * they will require (can be taken from device datasheet in the power
3424 * consumption tables) when they change operational status and hence power
3425 * state. Examples of operational state changes that can affect power
3426 * consumption are :-
3428 * o Device is opened / closed.
3429 * o Device I/O is about to begin or has just finished.
3430 * o Device is idling in between work.
3432 * This information is also exported via sysfs to userspace.
3434 * DRMS will sum the total requested load on the regulator and change
3435 * to the most efficient operating mode if platform constraints allow.
3437 * On error a negative errno is returned.
3439 int regulator_set_load(struct regulator *regulator, int uA_load)
3441 struct regulator_dev *rdev = regulator->rdev;
3444 mutex_lock(&rdev->mutex);
3445 regulator->uA_load = uA_load;
3446 ret = drms_uA_update(rdev);
3447 mutex_unlock(&rdev->mutex);
3451 EXPORT_SYMBOL_GPL(regulator_set_load);
3454 * regulator_allow_bypass - allow the regulator to go into bypass mode
3456 * @regulator: Regulator to configure
3457 * @enable: enable or disable bypass mode
3459 * Allow the regulator to go into bypass mode if all other consumers
3460 * for the regulator also enable bypass mode and the machine
3461 * constraints allow this. Bypass mode means that the regulator is
3462 * simply passing the input directly to the output with no regulation.
3464 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3466 struct regulator_dev *rdev = regulator->rdev;
3469 if (!rdev->desc->ops->set_bypass)
3472 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3475 mutex_lock(&rdev->mutex);
3477 if (enable && !regulator->bypass) {
3478 rdev->bypass_count++;
3480 if (rdev->bypass_count == rdev->open_count) {
3481 ret = rdev->desc->ops->set_bypass(rdev, enable);
3483 rdev->bypass_count--;
3486 } else if (!enable && regulator->bypass) {
3487 rdev->bypass_count--;
3489 if (rdev->bypass_count != rdev->open_count) {
3490 ret = rdev->desc->ops->set_bypass(rdev, enable);
3492 rdev->bypass_count++;
3497 regulator->bypass = enable;
3499 mutex_unlock(&rdev->mutex);
3503 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3506 * regulator_register_notifier - register regulator event notifier
3507 * @regulator: regulator source
3508 * @nb: notifier block
3510 * Register notifier block to receive regulator events.
3512 int regulator_register_notifier(struct regulator *regulator,
3513 struct notifier_block *nb)
3515 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3518 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3521 * regulator_unregister_notifier - unregister regulator event notifier
3522 * @regulator: regulator source
3523 * @nb: notifier block
3525 * Unregister regulator event notifier block.
3527 int regulator_unregister_notifier(struct regulator *regulator,
3528 struct notifier_block *nb)
3530 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3533 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3535 /* notify regulator consumers and downstream regulator consumers.
3536 * Note mutex must be held by caller.
3538 static int _notifier_call_chain(struct regulator_dev *rdev,
3539 unsigned long event, void *data)
3541 /* call rdev chain first */
3542 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3546 * regulator_bulk_get - get multiple regulator consumers
3548 * @dev: Device to supply
3549 * @num_consumers: Number of consumers to register
3550 * @consumers: Configuration of consumers; clients are stored here.
3552 * @return 0 on success, an errno on failure.
3554 * This helper function allows drivers to get several regulator
3555 * consumers in one operation. If any of the regulators cannot be
3556 * acquired then any regulators that were allocated will be freed
3557 * before returning to the caller.
3559 int regulator_bulk_get(struct device *dev, int num_consumers,
3560 struct regulator_bulk_data *consumers)
3565 for (i = 0; i < num_consumers; i++)
3566 consumers[i].consumer = NULL;
3568 for (i = 0; i < num_consumers; i++) {
3569 consumers[i].consumer = regulator_get(dev,
3570 consumers[i].supply);
3571 if (IS_ERR(consumers[i].consumer)) {
3572 ret = PTR_ERR(consumers[i].consumer);
3573 dev_err(dev, "Failed to get supply '%s': %d\n",
3574 consumers[i].supply, ret);
3575 consumers[i].consumer = NULL;
3584 regulator_put(consumers[i].consumer);
3588 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3590 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3592 struct regulator_bulk_data *bulk = data;
3594 bulk->ret = regulator_enable(bulk->consumer);
3598 * regulator_bulk_enable - enable multiple regulator consumers
3600 * @num_consumers: Number of consumers
3601 * @consumers: Consumer data; clients are stored here.
3602 * @return 0 on success, an errno on failure
3604 * This convenience API allows consumers to enable multiple regulator
3605 * clients in a single API call. If any consumers cannot be enabled
3606 * then any others that were enabled will be disabled again prior to
3609 int regulator_bulk_enable(int num_consumers,
3610 struct regulator_bulk_data *consumers)
3612 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3616 for (i = 0; i < num_consumers; i++) {
3617 if (consumers[i].consumer->always_on)
3618 consumers[i].ret = 0;
3620 async_schedule_domain(regulator_bulk_enable_async,
3621 &consumers[i], &async_domain);
3624 async_synchronize_full_domain(&async_domain);
3626 /* If any consumer failed we need to unwind any that succeeded */
3627 for (i = 0; i < num_consumers; i++) {
3628 if (consumers[i].ret != 0) {
3629 ret = consumers[i].ret;
3637 for (i = 0; i < num_consumers; i++) {
3638 if (consumers[i].ret < 0)
3639 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3642 regulator_disable(consumers[i].consumer);
3647 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3650 * regulator_bulk_disable - disable multiple regulator consumers
3652 * @num_consumers: Number of consumers
3653 * @consumers: Consumer data; clients are stored here.
3654 * @return 0 on success, an errno on failure
3656 * This convenience API allows consumers to disable multiple regulator
3657 * clients in a single API call. If any consumers cannot be disabled
3658 * then any others that were disabled will be enabled again prior to
3661 int regulator_bulk_disable(int num_consumers,
3662 struct regulator_bulk_data *consumers)
3667 for (i = num_consumers - 1; i >= 0; --i) {
3668 ret = regulator_disable(consumers[i].consumer);
3676 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3677 for (++i; i < num_consumers; ++i) {
3678 r = regulator_enable(consumers[i].consumer);
3680 pr_err("Failed to re-enable %s: %d\n",
3681 consumers[i].supply, r);
3686 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3689 * regulator_bulk_force_disable - force disable multiple regulator consumers
3691 * @num_consumers: Number of consumers
3692 * @consumers: Consumer data; clients are stored here.
3693 * @return 0 on success, an errno on failure
3695 * This convenience API allows consumers to forcibly disable multiple regulator
3696 * clients in a single API call.
3697 * NOTE: This should be used for situations when device damage will
3698 * likely occur if the regulators are not disabled (e.g. over temp).
3699 * Although regulator_force_disable function call for some consumers can
3700 * return error numbers, the function is called for all consumers.
3702 int regulator_bulk_force_disable(int num_consumers,
3703 struct regulator_bulk_data *consumers)
3708 for (i = 0; i < num_consumers; i++) {
3710 regulator_force_disable(consumers[i].consumer);
3712 /* Store first error for reporting */
3713 if (consumers[i].ret && !ret)
3714 ret = consumers[i].ret;
3719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3722 * regulator_bulk_free - free multiple regulator consumers
3724 * @num_consumers: Number of consumers
3725 * @consumers: Consumer data; clients are stored here.
3727 * This convenience API allows consumers to free multiple regulator
3728 * clients in a single API call.
3730 void regulator_bulk_free(int num_consumers,
3731 struct regulator_bulk_data *consumers)
3735 for (i = 0; i < num_consumers; i++) {
3736 regulator_put(consumers[i].consumer);
3737 consumers[i].consumer = NULL;
3740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3743 * regulator_notifier_call_chain - call regulator event notifier
3744 * @rdev: regulator source
3745 * @event: notifier block
3746 * @data: callback-specific data.
3748 * Called by regulator drivers to notify clients a regulator event has
3749 * occurred. We also notify regulator clients downstream.
3750 * Note lock must be held by caller.
3752 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3753 unsigned long event, void *data)
3755 lockdep_assert_held_once(&rdev->mutex);
3757 _notifier_call_chain(rdev, event, data);
3761 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3764 * regulator_mode_to_status - convert a regulator mode into a status
3766 * @mode: Mode to convert
3768 * Convert a regulator mode into a status.
3770 int regulator_mode_to_status(unsigned int mode)
3773 case REGULATOR_MODE_FAST:
3774 return REGULATOR_STATUS_FAST;
3775 case REGULATOR_MODE_NORMAL:
3776 return REGULATOR_STATUS_NORMAL;
3777 case REGULATOR_MODE_IDLE:
3778 return REGULATOR_STATUS_IDLE;
3779 case REGULATOR_MODE_STANDBY:
3780 return REGULATOR_STATUS_STANDBY;
3782 return REGULATOR_STATUS_UNDEFINED;
3785 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3787 static struct attribute *regulator_dev_attrs[] = {
3788 &dev_attr_name.attr,
3789 &dev_attr_num_users.attr,
3790 &dev_attr_type.attr,
3791 &dev_attr_microvolts.attr,
3792 &dev_attr_microamps.attr,
3793 &dev_attr_opmode.attr,
3794 &dev_attr_state.attr,
3795 &dev_attr_status.attr,
3796 &dev_attr_bypass.attr,
3797 &dev_attr_requested_microamps.attr,
3798 &dev_attr_min_microvolts.attr,
3799 &dev_attr_max_microvolts.attr,
3800 &dev_attr_min_microamps.attr,
3801 &dev_attr_max_microamps.attr,
3802 &dev_attr_suspend_standby_state.attr,
3803 &dev_attr_suspend_mem_state.attr,
3804 &dev_attr_suspend_disk_state.attr,
3805 &dev_attr_suspend_standby_microvolts.attr,
3806 &dev_attr_suspend_mem_microvolts.attr,
3807 &dev_attr_suspend_disk_microvolts.attr,
3808 &dev_attr_suspend_standby_mode.attr,
3809 &dev_attr_suspend_mem_mode.attr,
3810 &dev_attr_suspend_disk_mode.attr,
3815 * To avoid cluttering sysfs (and memory) with useless state, only
3816 * create attributes that can be meaningfully displayed.
3818 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3819 struct attribute *attr, int idx)
3821 struct device *dev = kobj_to_dev(kobj);
3822 struct regulator_dev *rdev = dev_to_rdev(dev);
3823 const struct regulator_ops *ops = rdev->desc->ops;
3824 umode_t mode = attr->mode;
3826 /* these three are always present */
3827 if (attr == &dev_attr_name.attr ||
3828 attr == &dev_attr_num_users.attr ||
3829 attr == &dev_attr_type.attr)
3832 /* some attributes need specific methods to be displayed */
3833 if (attr == &dev_attr_microvolts.attr) {
3834 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3835 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3836 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3837 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3842 if (attr == &dev_attr_microamps.attr)
3843 return ops->get_current_limit ? mode : 0;
3845 if (attr == &dev_attr_opmode.attr)
3846 return ops->get_mode ? mode : 0;
3848 if (attr == &dev_attr_state.attr)
3849 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3851 if (attr == &dev_attr_status.attr)
3852 return ops->get_status ? mode : 0;
3854 if (attr == &dev_attr_bypass.attr)
3855 return ops->get_bypass ? mode : 0;
3857 /* some attributes are type-specific */
3858 if (attr == &dev_attr_requested_microamps.attr)
3859 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3861 /* constraints need specific supporting methods */
3862 if (attr == &dev_attr_min_microvolts.attr ||
3863 attr == &dev_attr_max_microvolts.attr)
3864 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3866 if (attr == &dev_attr_min_microamps.attr ||
3867 attr == &dev_attr_max_microamps.attr)
3868 return ops->set_current_limit ? mode : 0;
3870 if (attr == &dev_attr_suspend_standby_state.attr ||
3871 attr == &dev_attr_suspend_mem_state.attr ||
3872 attr == &dev_attr_suspend_disk_state.attr)
3875 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3876 attr == &dev_attr_suspend_mem_microvolts.attr ||
3877 attr == &dev_attr_suspend_disk_microvolts.attr)
3878 return ops->set_suspend_voltage ? mode : 0;
3880 if (attr == &dev_attr_suspend_standby_mode.attr ||
3881 attr == &dev_attr_suspend_mem_mode.attr ||
3882 attr == &dev_attr_suspend_disk_mode.attr)
3883 return ops->set_suspend_mode ? mode : 0;
3888 static const struct attribute_group regulator_dev_group = {
3889 .attrs = regulator_dev_attrs,
3890 .is_visible = regulator_attr_is_visible,
3893 static const struct attribute_group *regulator_dev_groups[] = {
3894 ®ulator_dev_group,
3898 static void regulator_dev_release(struct device *dev)
3900 struct regulator_dev *rdev = dev_get_drvdata(dev);
3902 kfree(rdev->constraints);
3903 of_node_put(rdev->dev.of_node);
3907 static struct class regulator_class = {
3908 .name = "regulator",
3909 .dev_release = regulator_dev_release,
3910 .dev_groups = regulator_dev_groups,
3913 static void rdev_init_debugfs(struct regulator_dev *rdev)
3915 struct device *parent = rdev->dev.parent;
3916 const char *rname = rdev_get_name(rdev);
3917 char name[NAME_MAX];
3919 /* Avoid duplicate debugfs directory names */
3920 if (parent && rname == rdev->desc->name) {
3921 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3926 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3927 if (!rdev->debugfs) {
3928 rdev_warn(rdev, "Failed to create debugfs directory\n");
3932 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3934 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3936 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3937 &rdev->bypass_count);
3940 static int regulator_register_resolve_supply(struct device *dev, void *data)
3942 struct regulator_dev *rdev = dev_to_rdev(dev);
3944 if (regulator_resolve_supply(rdev))
3945 rdev_dbg(rdev, "unable to resolve supply\n");
3951 * regulator_register - register regulator
3952 * @regulator_desc: regulator to register
3953 * @cfg: runtime configuration for regulator
3955 * Called by regulator drivers to register a regulator.
3956 * Returns a valid pointer to struct regulator_dev on success
3957 * or an ERR_PTR() on error.
3959 struct regulator_dev *
3960 regulator_register(const struct regulator_desc *regulator_desc,
3961 const struct regulator_config *cfg)
3963 const struct regulation_constraints *constraints = NULL;
3964 const struct regulator_init_data *init_data;
3965 struct regulator_config *config = NULL;
3966 static atomic_t regulator_no = ATOMIC_INIT(-1);
3967 struct regulator_dev *rdev;
3971 if (regulator_desc == NULL || cfg == NULL)
3972 return ERR_PTR(-EINVAL);
3977 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3978 return ERR_PTR(-EINVAL);
3980 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3981 regulator_desc->type != REGULATOR_CURRENT)
3982 return ERR_PTR(-EINVAL);
3984 /* Only one of each should be implemented */
3985 WARN_ON(regulator_desc->ops->get_voltage &&
3986 regulator_desc->ops->get_voltage_sel);
3987 WARN_ON(regulator_desc->ops->set_voltage &&
3988 regulator_desc->ops->set_voltage_sel);
3990 /* If we're using selectors we must implement list_voltage. */
3991 if (regulator_desc->ops->get_voltage_sel &&
3992 !regulator_desc->ops->list_voltage) {
3993 return ERR_PTR(-EINVAL);
3995 if (regulator_desc->ops->set_voltage_sel &&
3996 !regulator_desc->ops->list_voltage) {
3997 return ERR_PTR(-EINVAL);
4000 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4002 return ERR_PTR(-ENOMEM);
4005 * Duplicate the config so the driver could override it after
4006 * parsing init data.
4008 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4009 if (config == NULL) {
4011 return ERR_PTR(-ENOMEM);
4014 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4015 &rdev->dev.of_node);
4017 init_data = config->init_data;
4018 rdev->dev.of_node = of_node_get(config->of_node);
4021 mutex_init(&rdev->mutex);
4022 rdev->reg_data = config->driver_data;
4023 rdev->owner = regulator_desc->owner;
4024 rdev->desc = regulator_desc;
4026 rdev->regmap = config->regmap;
4027 else if (dev_get_regmap(dev, NULL))
4028 rdev->regmap = dev_get_regmap(dev, NULL);
4029 else if (dev->parent)
4030 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4031 INIT_LIST_HEAD(&rdev->consumer_list);
4032 INIT_LIST_HEAD(&rdev->list);
4033 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4034 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4036 /* preform any regulator specific init */
4037 if (init_data && init_data->regulator_init) {
4038 ret = init_data->regulator_init(rdev->reg_data);
4043 if ((config->ena_gpio || config->ena_gpio_initialized) &&
4044 gpio_is_valid(config->ena_gpio)) {
4045 mutex_lock(®ulator_list_mutex);
4046 ret = regulator_ena_gpio_request(rdev, config);
4047 mutex_unlock(®ulator_list_mutex);
4049 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4050 config->ena_gpio, ret);
4055 /* register with sysfs */
4056 rdev->dev.class = ®ulator_class;
4057 rdev->dev.parent = dev;
4058 dev_set_name(&rdev->dev, "regulator.%lu",
4059 (unsigned long) atomic_inc_return(®ulator_no));
4061 /* set regulator constraints */
4063 constraints = &init_data->constraints;
4065 if (init_data && init_data->supply_regulator)
4066 rdev->supply_name = init_data->supply_regulator;
4067 else if (regulator_desc->supply_name)
4068 rdev->supply_name = regulator_desc->supply_name;
4071 * Attempt to resolve the regulator supply, if specified,
4072 * but don't return an error if we fail because we will try
4073 * to resolve it again later as more regulators are added.
4075 if (regulator_resolve_supply(rdev))
4076 rdev_dbg(rdev, "unable to resolve supply\n");
4078 ret = set_machine_constraints(rdev, constraints);
4082 /* add consumers devices */
4084 mutex_lock(®ulator_list_mutex);
4085 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4086 ret = set_consumer_device_supply(rdev,
4087 init_data->consumer_supplies[i].dev_name,
4088 init_data->consumer_supplies[i].supply);
4090 mutex_unlock(®ulator_list_mutex);
4091 dev_err(dev, "Failed to set supply %s\n",
4092 init_data->consumer_supplies[i].supply);
4093 goto unset_supplies;
4096 mutex_unlock(®ulator_list_mutex);
4099 if (!rdev->desc->ops->get_voltage &&
4100 !rdev->desc->ops->list_voltage &&
4101 !rdev->desc->fixed_uV)
4102 rdev->is_switch = true;
4104 ret = device_register(&rdev->dev);
4106 put_device(&rdev->dev);
4107 goto unset_supplies;
4110 dev_set_drvdata(&rdev->dev, rdev);
4111 rdev_init_debugfs(rdev);
4113 /* try to resolve regulators supply since a new one was registered */
4114 class_for_each_device(®ulator_class, NULL, NULL,
4115 regulator_register_resolve_supply);
4120 mutex_lock(®ulator_list_mutex);
4121 unset_regulator_supplies(rdev);
4122 mutex_unlock(®ulator_list_mutex);
4124 kfree(rdev->constraints);
4125 mutex_lock(®ulator_list_mutex);
4126 regulator_ena_gpio_free(rdev);
4127 mutex_unlock(®ulator_list_mutex);
4131 return ERR_PTR(ret);
4133 EXPORT_SYMBOL_GPL(regulator_register);
4136 * regulator_unregister - unregister regulator
4137 * @rdev: regulator to unregister
4139 * Called by regulator drivers to unregister a regulator.
4141 void regulator_unregister(struct regulator_dev *rdev)
4147 while (rdev->use_count--)
4148 regulator_disable(rdev->supply);
4149 regulator_put(rdev->supply);
4151 mutex_lock(®ulator_list_mutex);
4152 debugfs_remove_recursive(rdev->debugfs);
4153 flush_work(&rdev->disable_work.work);
4154 WARN_ON(rdev->open_count);
4155 unset_regulator_supplies(rdev);
4156 list_del(&rdev->list);
4157 regulator_ena_gpio_free(rdev);
4158 mutex_unlock(®ulator_list_mutex);
4159 device_unregister(&rdev->dev);
4161 EXPORT_SYMBOL_GPL(regulator_unregister);
4163 static int _regulator_suspend_prepare(struct device *dev, void *data)
4165 struct regulator_dev *rdev = dev_to_rdev(dev);
4166 const suspend_state_t *state = data;
4169 mutex_lock(&rdev->mutex);
4170 ret = suspend_prepare(rdev, *state);
4171 mutex_unlock(&rdev->mutex);
4177 * regulator_suspend_prepare - prepare regulators for system wide suspend
4178 * @state: system suspend state
4180 * Configure each regulator with it's suspend operating parameters for state.
4181 * This will usually be called by machine suspend code prior to supending.
4183 int regulator_suspend_prepare(suspend_state_t state)
4185 /* ON is handled by regulator active state */
4186 if (state == PM_SUSPEND_ON)
4189 return class_for_each_device(®ulator_class, NULL, &state,
4190 _regulator_suspend_prepare);
4192 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4194 static int _regulator_suspend_finish(struct device *dev, void *data)
4196 struct regulator_dev *rdev = dev_to_rdev(dev);
4199 mutex_lock(&rdev->mutex);
4200 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4201 if (!_regulator_is_enabled(rdev)) {
4202 ret = _regulator_do_enable(rdev);
4205 "Failed to resume regulator %d\n",
4209 if (!have_full_constraints())
4211 if (!_regulator_is_enabled(rdev))
4214 ret = _regulator_do_disable(rdev);
4216 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4219 mutex_unlock(&rdev->mutex);
4221 /* Keep processing regulators in spite of any errors */
4226 * regulator_suspend_finish - resume regulators from system wide suspend
4228 * Turn on regulators that might be turned off by regulator_suspend_prepare
4229 * and that should be turned on according to the regulators properties.
4231 int regulator_suspend_finish(void)
4233 return class_for_each_device(®ulator_class, NULL, NULL,
4234 _regulator_suspend_finish);
4236 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4239 * regulator_has_full_constraints - the system has fully specified constraints
4241 * Calling this function will cause the regulator API to disable all
4242 * regulators which have a zero use count and don't have an always_on
4243 * constraint in a late_initcall.
4245 * The intention is that this will become the default behaviour in a
4246 * future kernel release so users are encouraged to use this facility
4249 void regulator_has_full_constraints(void)
4251 has_full_constraints = 1;
4253 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4256 * rdev_get_drvdata - get rdev regulator driver data
4259 * Get rdev regulator driver private data. This call can be used in the
4260 * regulator driver context.
4262 void *rdev_get_drvdata(struct regulator_dev *rdev)
4264 return rdev->reg_data;
4266 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4269 * regulator_get_drvdata - get regulator driver data
4270 * @regulator: regulator
4272 * Get regulator driver private data. This call can be used in the consumer
4273 * driver context when non API regulator specific functions need to be called.
4275 void *regulator_get_drvdata(struct regulator *regulator)
4277 return regulator->rdev->reg_data;
4279 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4282 * regulator_set_drvdata - set regulator driver data
4283 * @regulator: regulator
4286 void regulator_set_drvdata(struct regulator *regulator, void *data)
4288 regulator->rdev->reg_data = data;
4290 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4293 * regulator_get_id - get regulator ID
4296 int rdev_get_id(struct regulator_dev *rdev)
4298 return rdev->desc->id;
4300 EXPORT_SYMBOL_GPL(rdev_get_id);
4302 struct device *rdev_get_dev(struct regulator_dev *rdev)
4306 EXPORT_SYMBOL_GPL(rdev_get_dev);
4308 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4310 return reg_init_data->driver_data;
4312 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4314 #ifdef CONFIG_DEBUG_FS
4315 static int supply_map_show(struct seq_file *sf, void *data)
4317 struct regulator_map *map;
4319 list_for_each_entry(map, ®ulator_map_list, list) {
4320 seq_printf(sf, "%s -> %s.%s\n",
4321 rdev_get_name(map->regulator), map->dev_name,
4328 static int supply_map_open(struct inode *inode, struct file *file)
4330 return single_open(file, supply_map_show, inode->i_private);
4334 static const struct file_operations supply_map_fops = {
4335 #ifdef CONFIG_DEBUG_FS
4336 .open = supply_map_open,
4338 .llseek = seq_lseek,
4339 .release = single_release,
4343 #ifdef CONFIG_DEBUG_FS
4344 struct summary_data {
4346 struct regulator_dev *parent;
4350 static void regulator_summary_show_subtree(struct seq_file *s,
4351 struct regulator_dev *rdev,
4354 static int regulator_summary_show_children(struct device *dev, void *data)
4356 struct regulator_dev *rdev = dev_to_rdev(dev);
4357 struct summary_data *summary_data = data;
4359 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4360 regulator_summary_show_subtree(summary_data->s, rdev,
4361 summary_data->level + 1);
4366 static void regulator_summary_show_subtree(struct seq_file *s,
4367 struct regulator_dev *rdev,
4370 struct regulation_constraints *c;
4371 struct regulator *consumer;
4372 struct summary_data summary_data;
4377 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4379 30 - level * 3, rdev_get_name(rdev),
4380 rdev->use_count, rdev->open_count, rdev->bypass_count);
4382 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4383 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4385 c = rdev->constraints;
4387 switch (rdev->desc->type) {
4388 case REGULATOR_VOLTAGE:
4389 seq_printf(s, "%5dmV %5dmV ",
4390 c->min_uV / 1000, c->max_uV / 1000);
4392 case REGULATOR_CURRENT:
4393 seq_printf(s, "%5dmA %5dmA ",
4394 c->min_uA / 1000, c->max_uA / 1000);
4401 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4402 if (consumer->dev && consumer->dev->class == ®ulator_class)
4405 seq_printf(s, "%*s%-*s ",
4406 (level + 1) * 3 + 1, "",
4407 30 - (level + 1) * 3,
4408 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4410 switch (rdev->desc->type) {
4411 case REGULATOR_VOLTAGE:
4412 seq_printf(s, "%37dmV %5dmV",
4413 consumer->min_uV / 1000,
4414 consumer->max_uV / 1000);
4416 case REGULATOR_CURRENT:
4424 summary_data.level = level;
4425 summary_data.parent = rdev;
4427 class_for_each_device(®ulator_class, NULL, &summary_data,
4428 regulator_summary_show_children);
4431 static int regulator_summary_show_roots(struct device *dev, void *data)
4433 struct regulator_dev *rdev = dev_to_rdev(dev);
4434 struct seq_file *s = data;
4437 regulator_summary_show_subtree(s, rdev, 0);
4442 static int regulator_summary_show(struct seq_file *s, void *data)
4444 seq_puts(s, " regulator use open bypass voltage current min max\n");
4445 seq_puts(s, "-------------------------------------------------------------------------------\n");
4447 class_for_each_device(®ulator_class, NULL, s,
4448 regulator_summary_show_roots);
4453 static int regulator_summary_open(struct inode *inode, struct file *file)
4455 return single_open(file, regulator_summary_show, inode->i_private);
4459 static const struct file_operations regulator_summary_fops = {
4460 #ifdef CONFIG_DEBUG_FS
4461 .open = regulator_summary_open,
4463 .llseek = seq_lseek,
4464 .release = single_release,
4468 static int __init regulator_init(void)
4472 ret = class_register(®ulator_class);
4474 debugfs_root = debugfs_create_dir("regulator", NULL);
4476 pr_warn("regulator: Failed to create debugfs directory\n");
4478 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4481 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4482 NULL, ®ulator_summary_fops);
4484 regulator_dummy_init();
4489 /* init early to allow our consumers to complete system booting */
4490 core_initcall(regulator_init);
4492 static int __init regulator_late_cleanup(struct device *dev, void *data)
4494 struct regulator_dev *rdev = dev_to_rdev(dev);
4495 const struct regulator_ops *ops = rdev->desc->ops;
4496 struct regulation_constraints *c = rdev->constraints;
4499 if (c && c->always_on)
4502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4505 mutex_lock(&rdev->mutex);
4507 if (rdev->use_count)
4510 /* If we can't read the status assume it's on. */
4511 if (ops->is_enabled)
4512 enabled = ops->is_enabled(rdev);
4519 if (have_full_constraints()) {
4520 /* We log since this may kill the system if it goes
4522 rdev_info(rdev, "disabling\n");
4523 ret = _regulator_do_disable(rdev);
4525 rdev_err(rdev, "couldn't disable: %d\n", ret);
4527 /* The intention is that in future we will
4528 * assume that full constraints are provided
4529 * so warn even if we aren't going to do
4532 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4536 mutex_unlock(&rdev->mutex);
4541 static int __init regulator_init_complete(void)
4544 * Since DT doesn't provide an idiomatic mechanism for
4545 * enabling full constraints and since it's much more natural
4546 * with DT to provide them just assume that a DT enabled
4547 * system has full constraints.
4549 if (of_have_populated_dt())
4550 has_full_constraints = true;
4553 * Regulators may had failed to resolve their input supplies
4554 * when were registered, either because the input supply was
4555 * not registered yet or because its parent device was not
4556 * bound yet. So attempt to resolve the input supplies for
4557 * pending regulators before trying to disable unused ones.
4559 class_for_each_device(®ulator_class, NULL, NULL,
4560 regulator_register_resolve_supply);
4562 /* If we have a full configuration then disable any regulators
4563 * we have permission to change the status for and which are
4564 * not in use or always_on. This is effectively the default
4565 * for DT and ACPI as they have full constraints.
4567 class_for_each_device(®ulator_class, NULL, NULL,
4568 regulator_late_cleanup);
4572 late_initcall_sync(regulator_init_complete);