drm/prime: add return check for dma_buf_fd
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 #ifdef CONFIG_SLEEP_MONITOR
35 #include <linux/power/sleep_monitor.h>
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/regulator.h>
40
41 #include "dummy.h"
42
43 #define rdev_crit(rdev, fmt, ...)                                       \
44         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_err(rdev, fmt, ...)                                        \
46         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_warn(rdev, fmt, ...)                                       \
48         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_info(rdev, fmt, ...)                                       \
50         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 #define rdev_dbg(rdev, fmt, ...)                                        \
52         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53
54 static DEFINE_MUTEX(regulator_list_mutex);
55 static LIST_HEAD(regulator_list);
56 static LIST_HEAD(regulator_map_list);
57 static LIST_HEAD(regulator_ena_gpio_list);
58 static bool has_full_constraints;
59 static bool board_wants_dummy_regulator;
60
61 static struct dentry *debugfs_root;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         int gpio;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator
90  *
91  * One for each consumer device.
92  */
93 struct regulator {
94         struct device *dev;
95         struct list_head list;
96         unsigned int always_on:1;
97         unsigned int bypass:1;
98         int uA_load;
99         int min_uV;
100         int max_uV;
101         char *supply_name;
102         struct device_attribute dev_attr;
103         struct regulator_dev *rdev;
104         struct dentry *debugfs;
105 };
106
107 static int _regulator_is_enabled(struct regulator_dev *rdev);
108 static int _regulator_disable(struct regulator_dev *rdev);
109 static int _regulator_get_voltage(struct regulator_dev *rdev);
110 static int _regulator_get_current_limit(struct regulator_dev *rdev);
111 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
112 static void _notifier_call_chain(struct regulator_dev *rdev,
113                                   unsigned long event, void *data);
114 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
115                                      int min_uV, int max_uV);
116 static struct regulator *create_regulator(struct regulator_dev *rdev,
117                                           struct device *dev,
118                                           const char *supply_name);
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 /**
131  * of_get_regulator - get a regulator device node based on supply name
132  * @dev: Device pointer for the consumer (of regulator) device
133  * @supply: regulator supply name
134  *
135  * Extract the regulator device node corresponding to the supply name.
136  * returns the device node corresponding to the regulator if found, else
137  * returns NULL.
138  */
139 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
140 {
141         struct device_node *regnode = NULL;
142         char prop_name[32]; /* 32 is max size of property name */
143
144         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
145
146         snprintf(prop_name, 32, "%s-supply", supply);
147         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
148
149         if (!regnode) {
150                 dev_dbg(dev, "Looking up %s property in node %s failed",
151                                 prop_name, dev->of_node->full_name);
152                 return NULL;
153         }
154         return regnode;
155 }
156
157 static int _regulator_can_change_status(struct regulator_dev *rdev)
158 {
159         if (!rdev->constraints)
160                 return 0;
161
162         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
163                 return 1;
164         else
165                 return 0;
166 }
167
168 /* Platform voltage constraint check */
169 static int regulator_check_voltage(struct regulator_dev *rdev,
170                                    int *min_uV, int *max_uV)
171 {
172         BUG_ON(*min_uV > *max_uV);
173
174         if (!rdev->constraints) {
175                 rdev_err(rdev, "no constraints\n");
176                 return -ENODEV;
177         }
178         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
179                 rdev_err(rdev, "operation not allowed\n");
180                 return -EPERM;
181         }
182
183         if (*max_uV > rdev->constraints->max_uV)
184                 *max_uV = rdev->constraints->max_uV;
185         if (*min_uV < rdev->constraints->min_uV)
186                 *min_uV = rdev->constraints->min_uV;
187
188         if (*min_uV > *max_uV) {
189                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
190                          *min_uV, *max_uV);
191                 return -EINVAL;
192         }
193
194         return 0;
195 }
196
197 /* Make sure we select a voltage that suits the needs of all
198  * regulator consumers
199  */
200 static int regulator_check_consumers(struct regulator_dev *rdev,
201                                      int *min_uV, int *max_uV)
202 {
203         struct regulator *regulator;
204
205         list_for_each_entry(regulator, &rdev->consumer_list, list) {
206                 /*
207                  * Assume consumers that didn't say anything are OK
208                  * with anything in the constraint range.
209                  */
210                 if (!regulator->min_uV && !regulator->max_uV)
211                         continue;
212
213                 if (*max_uV > regulator->max_uV)
214                         *max_uV = regulator->max_uV;
215                 if (*min_uV < regulator->min_uV)
216                         *min_uV = regulator->min_uV;
217         }
218
219         if (*min_uV > *max_uV) {
220                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
221                         *min_uV, *max_uV);
222                 return -EINVAL;
223         }
224
225         return 0;
226 }
227
228 /* current constraint check */
229 static int regulator_check_current_limit(struct regulator_dev *rdev,
230                                         int *min_uA, int *max_uA)
231 {
232         BUG_ON(*min_uA > *max_uA);
233
234         if (!rdev->constraints) {
235                 rdev_err(rdev, "no constraints\n");
236                 return -ENODEV;
237         }
238         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239                 rdev_err(rdev, "operation not allowed\n");
240                 return -EPERM;
241         }
242
243         if (*max_uA > rdev->constraints->max_uA)
244                 *max_uA = rdev->constraints->max_uA;
245         if (*min_uA < rdev->constraints->min_uA)
246                 *min_uA = rdev->constraints->min_uA;
247
248         if (*min_uA > *max_uA) {
249                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250                          *min_uA, *max_uA);
251                 return -EINVAL;
252         }
253
254         return 0;
255 }
256
257 /* operating mode constraint check */
258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 {
260         switch (*mode) {
261         case REGULATOR_MODE_FAST:
262         case REGULATOR_MODE_NORMAL:
263         case REGULATOR_MODE_IDLE:
264         case REGULATOR_MODE_STANDBY:
265                 break;
266         default:
267                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
268                 return -EINVAL;
269         }
270
271         if (!rdev->constraints) {
272                 rdev_err(rdev, "no constraints\n");
273                 return -ENODEV;
274         }
275         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276                 rdev_err(rdev, "operation not allowed\n");
277                 return -EPERM;
278         }
279
280         /* The modes are bitmasks, the most power hungry modes having
281          * the lowest values. If the requested mode isn't supported
282          * try higher modes. */
283         while (*mode) {
284                 if (rdev->constraints->valid_modes_mask & *mode)
285                         return 0;
286                 *mode /= 2;
287         }
288
289         return -EINVAL;
290 }
291
292 /* dynamic regulator mode switching constraint check */
293 static int regulator_check_drms(struct regulator_dev *rdev)
294 {
295         if (!rdev->constraints) {
296                 rdev_err(rdev, "no constraints\n");
297                 return -ENODEV;
298         }
299         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300                 rdev_err(rdev, "operation not allowed\n");
301                 return -EPERM;
302         }
303         return 0;
304 }
305
306 static ssize_t regulator_uV_show(struct device *dev,
307                                 struct device_attribute *attr, char *buf)
308 {
309         struct regulator_dev *rdev = dev_get_drvdata(dev);
310         ssize_t ret;
311
312         mutex_lock(&rdev->mutex);
313         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
314         mutex_unlock(&rdev->mutex);
315
316         return ret;
317 }
318 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
319
320 static ssize_t regulator_uA_show(struct device *dev,
321                                 struct device_attribute *attr, char *buf)
322 {
323         struct regulator_dev *rdev = dev_get_drvdata(dev);
324
325         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
326 }
327 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
328
329 static ssize_t regulator_name_show(struct device *dev,
330                              struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         return sprintf(buf, "%s\n", rdev_get_name(rdev));
335 }
336
337 static ssize_t regulator_print_opmode(char *buf, int mode)
338 {
339         switch (mode) {
340         case REGULATOR_MODE_FAST:
341                 return sprintf(buf, "fast\n");
342         case REGULATOR_MODE_NORMAL:
343                 return sprintf(buf, "normal\n");
344         case REGULATOR_MODE_IDLE:
345                 return sprintf(buf, "idle\n");
346         case REGULATOR_MODE_STANDBY:
347                 return sprintf(buf, "standby\n");
348         }
349         return sprintf(buf, "unknown\n");
350 }
351
352 static ssize_t regulator_opmode_show(struct device *dev,
353                                     struct device_attribute *attr, char *buf)
354 {
355         struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
358 }
359 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
360
361 static ssize_t regulator_print_state(char *buf, int state)
362 {
363         if (state > 0)
364                 return sprintf(buf, "enabled\n");
365         else if (state == 0)
366                 return sprintf(buf, "disabled\n");
367         else
368                 return sprintf(buf, "unknown\n");
369 }
370
371 static ssize_t regulator_state_show(struct device *dev,
372                                    struct device_attribute *attr, char *buf)
373 {
374         struct regulator_dev *rdev = dev_get_drvdata(dev);
375         ssize_t ret;
376
377         mutex_lock(&rdev->mutex);
378         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
379         mutex_unlock(&rdev->mutex);
380
381         return ret;
382 }
383 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
384
385 static ssize_t regulator_status_show(struct device *dev,
386                                    struct device_attribute *attr, char *buf)
387 {
388         struct regulator_dev *rdev = dev_get_drvdata(dev);
389         int status;
390         char *label;
391
392         status = rdev->desc->ops->get_status(rdev);
393         if (status < 0)
394                 return status;
395
396         switch (status) {
397         case REGULATOR_STATUS_OFF:
398                 label = "off";
399                 break;
400         case REGULATOR_STATUS_ON:
401                 label = "on";
402                 break;
403         case REGULATOR_STATUS_ERROR:
404                 label = "error";
405                 break;
406         case REGULATOR_STATUS_FAST:
407                 label = "fast";
408                 break;
409         case REGULATOR_STATUS_NORMAL:
410                 label = "normal";
411                 break;
412         case REGULATOR_STATUS_IDLE:
413                 label = "idle";
414                 break;
415         case REGULATOR_STATUS_STANDBY:
416                 label = "standby";
417                 break;
418         case REGULATOR_STATUS_BYPASS:
419                 label = "bypass";
420                 break;
421         case REGULATOR_STATUS_UNDEFINED:
422                 label = "undefined";
423                 break;
424         default:
425                 return -ERANGE;
426         }
427
428         return sprintf(buf, "%s\n", label);
429 }
430 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
431
432 static ssize_t regulator_min_uA_show(struct device *dev,
433                                     struct device_attribute *attr, char *buf)
434 {
435         struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437         if (!rdev->constraints)
438                 return sprintf(buf, "constraint not defined\n");
439
440         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
441 }
442 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
443
444 static ssize_t regulator_max_uA_show(struct device *dev,
445                                     struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         if (!rdev->constraints)
450                 return sprintf(buf, "constraint not defined\n");
451
452         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
453 }
454 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
455
456 static ssize_t regulator_min_uV_show(struct device *dev,
457                                     struct device_attribute *attr, char *buf)
458 {
459         struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461         if (!rdev->constraints)
462                 return sprintf(buf, "constraint not defined\n");
463
464         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
465 }
466 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
467
468 static ssize_t regulator_max_uV_show(struct device *dev,
469                                     struct device_attribute *attr, char *buf)
470 {
471         struct regulator_dev *rdev = dev_get_drvdata(dev);
472
473         if (!rdev->constraints)
474                 return sprintf(buf, "constraint not defined\n");
475
476         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
477 }
478 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
479
480 static ssize_t regulator_total_uA_show(struct device *dev,
481                                       struct device_attribute *attr, char *buf)
482 {
483         struct regulator_dev *rdev = dev_get_drvdata(dev);
484         struct regulator *regulator;
485         int uA = 0;
486
487         mutex_lock(&rdev->mutex);
488         list_for_each_entry(regulator, &rdev->consumer_list, list)
489                 uA += regulator->uA_load;
490         mutex_unlock(&rdev->mutex);
491         return sprintf(buf, "%d\n", uA);
492 }
493 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
494
495 static ssize_t regulator_num_users_show(struct device *dev,
496                                       struct device_attribute *attr, char *buf)
497 {
498         struct regulator_dev *rdev = dev_get_drvdata(dev);
499         return sprintf(buf, "%d\n", rdev->use_count);
500 }
501
502 static ssize_t regulator_type_show(struct device *dev,
503                                   struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct device_attribute regulator_dev_attrs[] = {
639         __ATTR(name, 0444, regulator_name_show, NULL),
640         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
641         __ATTR(type, 0444, regulator_type_show, NULL),
642         __ATTR_NULL,
643 };
644
645 static void regulator_dev_release(struct device *dev)
646 {
647         struct regulator_dev *rdev = dev_get_drvdata(dev);
648         kfree(rdev);
649 }
650
651 static struct class regulator_class = {
652         .name = "regulator",
653         .dev_release = regulator_dev_release,
654         .dev_attrs = regulator_dev_attrs,
655 };
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static void drms_uA_update(struct regulator_dev *rdev)
660 {
661         struct regulator *sibling;
662         int current_uA = 0, output_uV, input_uV, err;
663         unsigned int mode;
664
665         err = regulator_check_drms(rdev);
666         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
667             (!rdev->desc->ops->get_voltage &&
668              !rdev->desc->ops->get_voltage_sel) ||
669             !rdev->desc->ops->set_mode)
670                 return;
671
672         /* get output voltage */
673         output_uV = _regulator_get_voltage(rdev);
674         if (output_uV <= 0)
675                 return;
676
677         /* get input voltage */
678         input_uV = 0;
679         if (rdev->supply)
680                 input_uV = regulator_get_voltage(rdev->supply);
681         if (input_uV <= 0)
682                 input_uV = rdev->constraints->input_uV;
683         if (input_uV <= 0)
684                 return;
685
686         /* calc total requested load */
687         list_for_each_entry(sibling, &rdev->consumer_list, list)
688                 current_uA += sibling->uA_load;
689
690         /* now get the optimum mode for our new total regulator load */
691         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
692                                                   output_uV, current_uA);
693
694         /* check the new mode is allowed */
695         err = regulator_mode_constrain(rdev, &mode);
696         if (err == 0)
697                 rdev->desc->ops->set_mode(rdev, mode);
698 }
699
700 static int suspend_set_state(struct regulator_dev *rdev,
701         struct regulator_state *rstate)
702 {
703         int ret = 0;
704
705         /* If we have no suspend mode configration don't set anything;
706          * only warn if the driver implements set_suspend_voltage or
707          * set_suspend_mode callback.
708          */
709         if (!rstate->enabled && !rstate->disabled) {
710                 if (rdev->desc->ops->set_suspend_voltage ||
711                     rdev->desc->ops->set_suspend_mode)
712                         rdev_warn(rdev, "No configuration\n");
713                 return 0;
714         }
715
716         if (rstate->enabled && rstate->disabled) {
717                 rdev_err(rdev, "invalid configuration\n");
718                 return -EINVAL;
719         }
720
721         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
722                 ret = rdev->desc->ops->set_suspend_enable(rdev);
723         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
724                 ret = rdev->desc->ops->set_suspend_disable(rdev);
725         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
726                 ret = 0;
727
728         if (ret < 0) {
729                 rdev_err(rdev, "failed to enabled/disable\n");
730                 return ret;
731         }
732
733         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
734                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
735                 if (ret < 0) {
736                         rdev_err(rdev, "failed to set voltage\n");
737                         return ret;
738                 }
739         }
740
741         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
742                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
743                 if (ret < 0) {
744                         rdev_err(rdev, "failed to set mode\n");
745                         return ret;
746                 }
747         }
748         return ret;
749 }
750
751 /* locks held by caller */
752 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
753 {
754         if (!rdev->constraints)
755                 return -EINVAL;
756
757         switch (state) {
758         case PM_SUSPEND_STANDBY:
759                 return suspend_set_state(rdev,
760                         &rdev->constraints->state_standby);
761         case PM_SUSPEND_MEM:
762                 return suspend_set_state(rdev,
763                         &rdev->constraints->state_mem);
764         case PM_SUSPEND_MAX:
765                 return suspend_set_state(rdev,
766                         &rdev->constraints->state_disk);
767         default:
768                 return -EINVAL;
769         }
770 }
771
772 static void print_constraints(struct regulator_dev *rdev)
773 {
774         struct regulation_constraints *constraints = rdev->constraints;
775         char buf[80] = "";
776         int count = 0;
777         int ret;
778
779         if (constraints->min_uV && constraints->max_uV) {
780                 if (constraints->min_uV == constraints->max_uV)
781                         count += sprintf(buf + count, "%d mV ",
782                                          constraints->min_uV / 1000);
783                 else
784                         count += sprintf(buf + count, "%d <--> %d mV ",
785                                          constraints->min_uV / 1000,
786                                          constraints->max_uV / 1000);
787         }
788
789         if (!constraints->min_uV ||
790             constraints->min_uV != constraints->max_uV) {
791                 ret = _regulator_get_voltage(rdev);
792                 if (ret > 0)
793                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
794         }
795
796         if (constraints->uV_offset)
797                 count += sprintf(buf, "%dmV offset ",
798                                  constraints->uV_offset / 1000);
799
800         if (constraints->min_uA && constraints->max_uA) {
801                 if (constraints->min_uA == constraints->max_uA)
802                         count += sprintf(buf + count, "%d mA ",
803                                          constraints->min_uA / 1000);
804                 else
805                         count += sprintf(buf + count, "%d <--> %d mA ",
806                                          constraints->min_uA / 1000,
807                                          constraints->max_uA / 1000);
808         }
809
810         if (!constraints->min_uA ||
811             constraints->min_uA != constraints->max_uA) {
812                 ret = _regulator_get_current_limit(rdev);
813                 if (ret > 0)
814                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
815         }
816
817         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
818                 count += sprintf(buf + count, "fast ");
819         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
820                 count += sprintf(buf + count, "normal ");
821         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
822                 count += sprintf(buf + count, "idle ");
823         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
824                 count += sprintf(buf + count, "standby");
825
826         if (!count)
827                 sprintf(buf, "no parameters");
828
829         rdev_info(rdev, "%s\n", buf);
830
831         if ((constraints->min_uV != constraints->max_uV) &&
832             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
833                 rdev_warn(rdev,
834                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
835 }
836
837 static int machine_constraints_voltage(struct regulator_dev *rdev,
838         struct regulation_constraints *constraints)
839 {
840         struct regulator_ops *ops = rdev->desc->ops;
841         int ret;
842
843         /* do we need to apply the constraint voltage */
844         if (rdev->constraints->apply_uV &&
845             rdev->constraints->min_uV == rdev->constraints->max_uV) {
846                 ret = _regulator_do_set_voltage(rdev,
847                                                 rdev->constraints->min_uV,
848                                                 rdev->constraints->max_uV);
849                 if (ret < 0) {
850                         rdev_err(rdev, "failed to apply %duV constraint\n",
851                                  rdev->constraints->min_uV);
852                         return ret;
853                 }
854         }
855
856         /* constrain machine-level voltage specs to fit
857          * the actual range supported by this regulator.
858          */
859         if (ops->list_voltage && rdev->desc->n_voltages) {
860                 int     count = rdev->desc->n_voltages;
861                 int     i;
862                 int     min_uV = INT_MAX;
863                 int     max_uV = INT_MIN;
864                 int     cmin = constraints->min_uV;
865                 int     cmax = constraints->max_uV;
866
867                 /* it's safe to autoconfigure fixed-voltage supplies
868                    and the constraints are used by list_voltage. */
869                 if (count == 1 && !cmin) {
870                         cmin = 1;
871                         cmax = INT_MAX;
872                         constraints->min_uV = cmin;
873                         constraints->max_uV = cmax;
874                 }
875
876                 /* voltage constraints are optional */
877                 if ((cmin == 0) && (cmax == 0))
878                         return 0;
879
880                 /* else require explicit machine-level constraints */
881                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
882                         rdev_err(rdev, "invalid voltage constraints\n");
883                         return -EINVAL;
884                 }
885
886                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
887                 for (i = 0; i < count; i++) {
888                         int     value;
889
890                         value = ops->list_voltage(rdev, i);
891                         if (value <= 0)
892                                 continue;
893
894                         /* maybe adjust [min_uV..max_uV] */
895                         if (value >= cmin && value < min_uV)
896                                 min_uV = value;
897                         if (value <= cmax && value > max_uV)
898                                 max_uV = value;
899                 }
900
901                 /* final: [min_uV..max_uV] valid iff constraints valid */
902                 if (max_uV < min_uV) {
903                         rdev_err(rdev,
904                                  "unsupportable voltage constraints %u-%uuV\n",
905                                  min_uV, max_uV);
906                         return -EINVAL;
907                 }
908
909                 /* use regulator's subset of machine constraints */
910                 if (constraints->min_uV < min_uV) {
911                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
912                                  constraints->min_uV, min_uV);
913                         constraints->min_uV = min_uV;
914                 }
915                 if (constraints->max_uV > max_uV) {
916                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
917                                  constraints->max_uV, max_uV);
918                         constraints->max_uV = max_uV;
919                 }
920         }
921
922         return 0;
923 }
924
925 static int _regulator_do_enable(struct regulator_dev *rdev);
926
927 /**
928  * set_machine_constraints - sets regulator constraints
929  * @rdev: regulator source
930  * @constraints: constraints to apply
931  *
932  * Allows platform initialisation code to define and constrain
933  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
934  * Constraints *must* be set by platform code in order for some
935  * regulator operations to proceed i.e. set_voltage, set_current_limit,
936  * set_mode.
937  */
938 static int set_machine_constraints(struct regulator_dev *rdev,
939         const struct regulation_constraints *constraints)
940 {
941         int ret = 0;
942         struct regulator_ops *ops = rdev->desc->ops;
943
944         if (constraints)
945                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
946                                             GFP_KERNEL);
947         else
948                 rdev->constraints = kzalloc(sizeof(*constraints),
949                                             GFP_KERNEL);
950         if (!rdev->constraints)
951                 return -ENOMEM;
952
953         ret = machine_constraints_voltage(rdev, rdev->constraints);
954         if (ret != 0)
955                 goto out;
956
957         /* do we need to setup our suspend state */
958         if (rdev->constraints->initial_state) {
959                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
960                 if (ret < 0) {
961                         rdev_err(rdev, "failed to set suspend state\n");
962                         goto out;
963                 }
964         }
965
966         if (rdev->constraints->initial_mode) {
967                 if (!ops->set_mode) {
968                         rdev_err(rdev, "no set_mode operation\n");
969                         ret = -EINVAL;
970                         goto out;
971                 }
972
973                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
974                 if (ret < 0) {
975                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
976                         goto out;
977                 }
978         }
979
980         /* If the constraints say the regulator should be on at this point
981          * and we have control then make sure it is enabled.
982          */
983         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
984                 ret = _regulator_do_enable(rdev);
985                 if (ret < 0 && ret != -EINVAL) {
986                         rdev_err(rdev, "failed to enable\n");
987                         goto out;
988                 }
989         }
990
991         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
992                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
993                 if (ret < 0) {
994                         rdev_err(rdev, "failed to set ramp_delay\n");
995                         goto out;
996                 }
997         }
998
999         print_constraints(rdev);
1000         return 0;
1001 out:
1002         kfree(rdev->constraints);
1003         rdev->constraints = NULL;
1004         return ret;
1005 }
1006
1007 /**
1008  * set_supply - set regulator supply regulator
1009  * @rdev: regulator name
1010  * @supply_rdev: supply regulator name
1011  *
1012  * Called by platform initialisation code to set the supply regulator for this
1013  * regulator. This ensures that a regulators supply will also be enabled by the
1014  * core if it's child is enabled.
1015  */
1016 static int set_supply(struct regulator_dev *rdev,
1017                       struct regulator_dev *supply_rdev)
1018 {
1019         int err;
1020
1021         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1022
1023         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024         if (rdev->supply == NULL) {
1025                 err = -ENOMEM;
1026                 return err;
1027         }
1028         supply_rdev->open_count++;
1029
1030         return 0;
1031 }
1032
1033 /**
1034  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035  * @rdev:         regulator source
1036  * @consumer_dev_name: dev_name() string for device supply applies to
1037  * @supply:       symbolic name for supply
1038  *
1039  * Allows platform initialisation code to map physical regulator
1040  * sources to symbolic names for supplies for use by devices.  Devices
1041  * should use these symbolic names to request regulators, avoiding the
1042  * need to provide board-specific regulator names as platform data.
1043  */
1044 static int set_consumer_device_supply(struct regulator_dev *rdev,
1045                                       const char *consumer_dev_name,
1046                                       const char *supply)
1047 {
1048         struct regulator_map *node;
1049         int has_dev;
1050
1051         if (supply == NULL)
1052                 return -EINVAL;
1053
1054         if (consumer_dev_name != NULL)
1055                 has_dev = 1;
1056         else
1057                 has_dev = 0;
1058
1059         list_for_each_entry(node, &regulator_map_list, list) {
1060                 if (node->dev_name && consumer_dev_name) {
1061                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1062                                 continue;
1063                 } else if (node->dev_name || consumer_dev_name) {
1064                         continue;
1065                 }
1066
1067                 if (strcmp(node->supply, supply) != 0)
1068                         continue;
1069
1070                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1071                          consumer_dev_name,
1072                          dev_name(&node->regulator->dev),
1073                          node->regulator->desc->name,
1074                          supply,
1075                          dev_name(&rdev->dev), rdev_get_name(rdev));
1076                 return -EBUSY;
1077         }
1078
1079         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080         if (node == NULL)
1081                 return -ENOMEM;
1082
1083         node->regulator = rdev;
1084         node->supply = supply;
1085
1086         if (has_dev) {
1087                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088                 if (node->dev_name == NULL) {
1089                         kfree(node);
1090                         return -ENOMEM;
1091                 }
1092         }
1093
1094         list_add(&node->list, &regulator_map_list);
1095         return 0;
1096 }
1097
1098 static void unset_regulator_supplies(struct regulator_dev *rdev)
1099 {
1100         struct regulator_map *node, *n;
1101
1102         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1103                 if (rdev == node->regulator) {
1104                         list_del(&node->list);
1105                         kfree(node->dev_name);
1106                         kfree(node);
1107                 }
1108         }
1109 }
1110
1111 #define REG_STR_SIZE    64
1112
1113 static struct regulator *create_regulator(struct regulator_dev *rdev,
1114                                           struct device *dev,
1115                                           const char *supply_name)
1116 {
1117         struct regulator *regulator;
1118         char buf[REG_STR_SIZE];
1119         int err, size;
1120
1121         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122         if (regulator == NULL)
1123                 return NULL;
1124
1125         mutex_lock(&rdev->mutex);
1126         regulator->rdev = rdev;
1127         list_add(&regulator->list, &rdev->consumer_list);
1128
1129         if (dev) {
1130                 regulator->dev = dev;
1131
1132                 /* Add a link to the device sysfs entry */
1133                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134                                  dev->kobj.name, supply_name);
1135                 if (size >= REG_STR_SIZE)
1136                         goto overflow_err;
1137
1138                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139                 if (regulator->supply_name == NULL)
1140                         goto overflow_err;
1141
1142                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1143                                         buf);
1144                 if (err) {
1145                         rdev_warn(rdev, "could not add device link %s err %d\n",
1146                                   dev->kobj.name, err);
1147                         /* non-fatal */
1148                 }
1149         } else {
1150                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151                 if (regulator->supply_name == NULL)
1152                         goto overflow_err;
1153         }
1154
1155         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1156                                                 rdev->debugfs);
1157         if (!regulator->debugfs) {
1158                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1159         } else {
1160                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161                                    &regulator->uA_load);
1162                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163                                    &regulator->min_uV);
1164                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165                                    &regulator->max_uV);
1166         }
1167
1168         /*
1169          * Check now if the regulator is an always on regulator - if
1170          * it is then we don't need to do nearly so much work for
1171          * enable/disable calls.
1172          */
1173         if (!_regulator_can_change_status(rdev) &&
1174             _regulator_is_enabled(rdev))
1175                 regulator->always_on = true;
1176
1177         mutex_unlock(&rdev->mutex);
1178         return regulator;
1179 overflow_err:
1180         list_del(&regulator->list);
1181         kfree(regulator);
1182         mutex_unlock(&rdev->mutex);
1183         return NULL;
1184 }
1185
1186 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1187 {
1188         if (!rdev->desc->ops->enable_time)
1189                 return rdev->desc->enable_time;
1190         return rdev->desc->ops->enable_time(rdev);
1191 }
1192
1193 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194                                                   const char *supply,
1195                                                   int *ret)
1196 {
1197         struct regulator_dev *r;
1198         struct device_node *node;
1199         struct regulator_map *map;
1200         const char *devname = NULL;
1201
1202         /* first do a dt based lookup */
1203         if (dev && dev->of_node) {
1204                 node = of_get_regulator(dev, supply);
1205                 if (node) {
1206                         list_for_each_entry(r, &regulator_list, list)
1207                                 if (r->dev.parent &&
1208                                         node == r->dev.of_node)
1209                                         return r;
1210                 } else {
1211                         /*
1212                          * If we couldn't even get the node then it's
1213                          * not just that the device didn't register
1214                          * yet, there's no node and we'll never
1215                          * succeed.
1216                          */
1217                         *ret = -ENODEV;
1218                 }
1219         }
1220
1221         /* if not found, try doing it non-dt way */
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         list_for_each_entry(r, &regulator_list, list)
1226                 if (strcmp(rdev_get_name(r), supply) == 0)
1227                         return r;
1228
1229         list_for_each_entry(map, &regulator_map_list, list) {
1230                 /* If the mapping has a device set up it must match */
1231                 if (map->dev_name &&
1232                     (!devname || strcmp(map->dev_name, devname)))
1233                         continue;
1234
1235                 if (strcmp(map->supply, supply) == 0)
1236                         return map->regulator;
1237         }
1238
1239
1240         return NULL;
1241 }
1242
1243 /* Internal regulator request function */
1244 static struct regulator *_regulator_get(struct device *dev, const char *id,
1245                                         int exclusive)
1246 {
1247         struct regulator_dev *rdev;
1248         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249         const char *devname = NULL;
1250         int ret = 0;
1251
1252         if (id == NULL) {
1253                 pr_err("get() with no identifier\n");
1254                 return regulator;
1255         }
1256
1257         if (dev)
1258                 devname = dev_name(dev);
1259
1260         mutex_lock(&regulator_list_mutex);
1261
1262         rdev = regulator_dev_lookup(dev, id, &ret);
1263         if (rdev)
1264                 goto found;
1265
1266         /*
1267          * If we have return value from dev_lookup fail, we do not expect to
1268          * succeed, so, quit with appropriate error value
1269          */
1270         if (ret) {
1271                 regulator = ERR_PTR(ret);
1272                 goto out;
1273         }
1274
1275         if (board_wants_dummy_regulator) {
1276                 rdev = dummy_regulator_rdev;
1277                 goto found;
1278         }
1279
1280 #ifdef CONFIG_REGULATOR_DUMMY
1281         if (!devname)
1282                 devname = "deviceless";
1283
1284         /* If the board didn't flag that it was fully constrained then
1285          * substitute in a dummy regulator so consumers can continue.
1286          */
1287         if (!has_full_constraints) {
1288                 pr_warn("%s supply %s not found, using dummy regulator\n",
1289                         devname, id);
1290                 rdev = dummy_regulator_rdev;
1291                 goto found;
1292         }
1293 #endif
1294
1295         mutex_unlock(&regulator_list_mutex);
1296         return regulator;
1297
1298 found:
1299         if (rdev->exclusive) {
1300                 regulator = ERR_PTR(-EPERM);
1301                 goto out;
1302         }
1303
1304         if (exclusive && rdev->open_count) {
1305                 regulator = ERR_PTR(-EBUSY);
1306                 goto out;
1307         }
1308
1309         if (!try_module_get(rdev->owner))
1310                 goto out;
1311
1312         regulator = create_regulator(rdev, dev, id);
1313         if (regulator == NULL) {
1314                 regulator = ERR_PTR(-ENOMEM);
1315                 module_put(rdev->owner);
1316                 goto out;
1317         }
1318
1319         rdev->open_count++;
1320         if (exclusive) {
1321                 rdev->exclusive = 1;
1322
1323                 ret = _regulator_is_enabled(rdev);
1324                 if (ret > 0)
1325                         rdev->use_count = 1;
1326                 else
1327                         rdev->use_count = 0;
1328         }
1329
1330 out:
1331         mutex_unlock(&regulator_list_mutex);
1332
1333         return regulator;
1334 }
1335
1336 /**
1337  * regulator_get - lookup and obtain a reference to a regulator.
1338  * @dev: device for regulator "consumer"
1339  * @id: Supply name or regulator ID.
1340  *
1341  * Returns a struct regulator corresponding to the regulator producer,
1342  * or IS_ERR() condition containing errno.
1343  *
1344  * Use of supply names configured via regulator_set_device_supply() is
1345  * strongly encouraged.  It is recommended that the supply name used
1346  * should match the name used for the supply and/or the relevant
1347  * device pins in the datasheet.
1348  */
1349 struct regulator *regulator_get(struct device *dev, const char *id)
1350 {
1351         return _regulator_get(dev, id, 0);
1352 }
1353 EXPORT_SYMBOL_GPL(regulator_get);
1354
1355 static void devm_regulator_release(struct device *dev, void *res)
1356 {
1357         regulator_put(*(struct regulator **)res);
1358 }
1359
1360 /**
1361  * devm_regulator_get - Resource managed regulator_get()
1362  * @dev: device for regulator "consumer"
1363  * @id: Supply name or regulator ID.
1364  *
1365  * Managed regulator_get(). Regulators returned from this function are
1366  * automatically regulator_put() on driver detach. See regulator_get() for more
1367  * information.
1368  */
1369 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1370 {
1371         struct regulator **ptr, *regulator;
1372
1373         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1374         if (!ptr)
1375                 return ERR_PTR(-ENOMEM);
1376
1377         regulator = regulator_get(dev, id);
1378         if (!IS_ERR(regulator)) {
1379                 *ptr = regulator;
1380                 devres_add(dev, ptr);
1381         } else {
1382                 devres_free(ptr);
1383         }
1384
1385         return regulator;
1386 }
1387 EXPORT_SYMBOL_GPL(devm_regulator_get);
1388
1389 /**
1390  * regulator_get_exclusive - obtain exclusive access to a regulator.
1391  * @dev: device for regulator "consumer"
1392  * @id: Supply name or regulator ID.
1393  *
1394  * Returns a struct regulator corresponding to the regulator producer,
1395  * or IS_ERR() condition containing errno.  Other consumers will be
1396  * unable to obtain this reference is held and the use count for the
1397  * regulator will be initialised to reflect the current state of the
1398  * regulator.
1399  *
1400  * This is intended for use by consumers which cannot tolerate shared
1401  * use of the regulator such as those which need to force the
1402  * regulator off for correct operation of the hardware they are
1403  * controlling.
1404  *
1405  * Use of supply names configured via regulator_set_device_supply() is
1406  * strongly encouraged.  It is recommended that the supply name used
1407  * should match the name used for the supply and/or the relevant
1408  * device pins in the datasheet.
1409  */
1410 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1411 {
1412         return _regulator_get(dev, id, 1);
1413 }
1414 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1415
1416 /* Locks held by regulator_put() */
1417 static void _regulator_put(struct regulator *regulator)
1418 {
1419         struct regulator_dev *rdev;
1420
1421         if (regulator == NULL || IS_ERR(regulator))
1422                 return;
1423
1424         rdev = regulator->rdev;
1425
1426         debugfs_remove_recursive(regulator->debugfs);
1427
1428         /* remove any sysfs entries */
1429         if (regulator->dev)
1430                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1431         kfree(regulator->supply_name);
1432         list_del(&regulator->list);
1433         kfree(regulator);
1434
1435         rdev->open_count--;
1436         rdev->exclusive = 0;
1437
1438         module_put(rdev->owner);
1439 }
1440
1441 /**
1442  * regulator_put - "free" the regulator source
1443  * @regulator: regulator source
1444  *
1445  * Note: drivers must ensure that all regulator_enable calls made on this
1446  * regulator source are balanced by regulator_disable calls prior to calling
1447  * this function.
1448  */
1449 void regulator_put(struct regulator *regulator)
1450 {
1451         mutex_lock(&regulator_list_mutex);
1452         _regulator_put(regulator);
1453         mutex_unlock(&regulator_list_mutex);
1454 }
1455 EXPORT_SYMBOL_GPL(regulator_put);
1456
1457 static int devm_regulator_match(struct device *dev, void *res, void *data)
1458 {
1459         struct regulator **r = res;
1460         if (!r || !*r) {
1461                 WARN_ON(!r || !*r);
1462                 return 0;
1463         }
1464         return *r == data;
1465 }
1466
1467 /**
1468  * devm_regulator_put - Resource managed regulator_put()
1469  * @regulator: regulator to free
1470  *
1471  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1472  * this function will not need to be called and the resource management
1473  * code will ensure that the resource is freed.
1474  */
1475 void devm_regulator_put(struct regulator *regulator)
1476 {
1477         int rc;
1478
1479         rc = devres_release(regulator->dev, devm_regulator_release,
1480                             devm_regulator_match, regulator);
1481         if (rc != 0)
1482                 WARN_ON(rc);
1483 }
1484 EXPORT_SYMBOL_GPL(devm_regulator_put);
1485
1486 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1487 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1488                                 const struct regulator_config *config)
1489 {
1490         struct regulator_enable_gpio *pin;
1491         int ret;
1492
1493         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1494                 if (pin->gpio == config->ena_gpio) {
1495                         rdev_dbg(rdev, "GPIO %d is already used\n",
1496                                 config->ena_gpio);
1497                         goto update_ena_gpio_to_rdev;
1498                 }
1499         }
1500
1501         ret = gpio_request_one(config->ena_gpio,
1502                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1503                                 rdev_get_name(rdev));
1504         if (ret)
1505                 return ret;
1506
1507         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1508         if (pin == NULL) {
1509                 gpio_free(config->ena_gpio);
1510                 return -ENOMEM;
1511         }
1512
1513         pin->gpio = config->ena_gpio;
1514         pin->ena_gpio_invert = config->ena_gpio_invert;
1515         list_add(&pin->list, &regulator_ena_gpio_list);
1516
1517 update_ena_gpio_to_rdev:
1518         pin->request_count++;
1519         rdev->ena_pin = pin;
1520         return 0;
1521 }
1522
1523 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1524 {
1525         struct regulator_enable_gpio *pin, *n;
1526
1527         if (!rdev->ena_pin)
1528                 return;
1529
1530         /* Free the GPIO only in case of no use */
1531         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1532                 if (pin->gpio == rdev->ena_pin->gpio) {
1533                         if (pin->request_count <= 1) {
1534                                 pin->request_count = 0;
1535                                 gpio_free(pin->gpio);
1536                                 list_del(&pin->list);
1537                                 kfree(pin);
1538                         } else {
1539                                 pin->request_count--;
1540                         }
1541                 }
1542         }
1543 }
1544
1545 /**
1546  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1547  * @rdev: regulator_dev structure
1548  * @enable: enable GPIO at initial use?
1549  *
1550  * GPIO is enabled in case of initial use. (enable_count is 0)
1551  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1552  */
1553 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1554 {
1555         struct regulator_enable_gpio *pin = rdev->ena_pin;
1556
1557         if (!pin)
1558                 return -EINVAL;
1559
1560         if (enable) {
1561                 /* Enable GPIO at initial use */
1562                 if (pin->enable_count == 0)
1563                         gpio_set_value_cansleep(pin->gpio,
1564                                                 !pin->ena_gpio_invert);
1565
1566                 pin->enable_count++;
1567         } else {
1568                 if (pin->enable_count > 1) {
1569                         pin->enable_count--;
1570                         return 0;
1571                 }
1572
1573                 /* Disable GPIO if not used */
1574                 if (pin->enable_count <= 1) {
1575                         gpio_set_value_cansleep(pin->gpio,
1576                                                 pin->ena_gpio_invert);
1577                         pin->enable_count = 0;
1578                 }
1579         }
1580
1581         return 0;
1582 }
1583
1584 static int _regulator_do_enable(struct regulator_dev *rdev)
1585 {
1586         int ret, delay;
1587
1588         /* Query before enabling in case configuration dependent.  */
1589         ret = _regulator_get_enable_time(rdev);
1590         if (ret >= 0) {
1591                 delay = ret;
1592         } else {
1593                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1594                 delay = 0;
1595         }
1596
1597         trace_regulator_enable(rdev_get_name(rdev));
1598
1599         if (rdev->ena_pin) {
1600                 ret = regulator_ena_gpio_ctrl(rdev, true);
1601                 if (ret < 0)
1602                         return ret;
1603                 rdev->ena_gpio_state = 1;
1604         } else if (rdev->desc->ops->enable) {
1605                 ret = rdev->desc->ops->enable(rdev);
1606                 if (ret < 0)
1607                         return ret;
1608         } else {
1609                 return -EINVAL;
1610         }
1611
1612         /* Allow the regulator to ramp; it would be useful to extend
1613          * this for bulk operations so that the regulators can ramp
1614          * together.  */
1615         trace_regulator_enable_delay(rdev_get_name(rdev));
1616
1617         if (delay >= 1000) {
1618                 mdelay(delay / 1000);
1619                 udelay(delay % 1000);
1620         } else if (delay) {
1621                 udelay(delay);
1622         }
1623
1624         trace_regulator_enable_complete(rdev_get_name(rdev));
1625
1626         return 0;
1627 }
1628
1629 /* locks held by regulator_enable() */
1630 static int _regulator_enable(struct regulator_dev *rdev)
1631 {
1632         int ret;
1633
1634         /* check voltage and requested load before enabling */
1635         if (rdev->constraints &&
1636             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1637                 drms_uA_update(rdev);
1638
1639         if (rdev->use_count == 0) {
1640                 /* The regulator may on if it's not switchable or left on */
1641                 ret = _regulator_is_enabled(rdev);
1642                 if (ret == -EINVAL || ret == 0) {
1643                         if (!_regulator_can_change_status(rdev))
1644                                 return -EPERM;
1645
1646                         ret = _regulator_do_enable(rdev);
1647                         if (ret < 0)
1648                                 return ret;
1649
1650                 } else if (ret < 0) {
1651                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1652                         return ret;
1653                 }
1654                 /* Fallthrough on positive return values - already enabled */
1655         }
1656
1657         rdev->use_count++;
1658
1659         return 0;
1660 }
1661
1662 /**
1663  * regulator_enable - enable regulator output
1664  * @regulator: regulator source
1665  *
1666  * Request that the regulator be enabled with the regulator output at
1667  * the predefined voltage or current value.  Calls to regulator_enable()
1668  * must be balanced with calls to regulator_disable().
1669  *
1670  * NOTE: the output value can be set by other drivers, boot loader or may be
1671  * hardwired in the regulator.
1672  */
1673 int regulator_enable(struct regulator *regulator)
1674 {
1675         struct regulator_dev *rdev = regulator->rdev;
1676         int ret = 0;
1677
1678         if (regulator->always_on)
1679                 return 0;
1680
1681         if (rdev->supply) {
1682                 ret = regulator_enable(rdev->supply);
1683                 if (ret != 0)
1684                         return ret;
1685         }
1686
1687         mutex_lock(&rdev->mutex);
1688         ret = _regulator_enable(rdev);
1689         mutex_unlock(&rdev->mutex);
1690
1691         if (ret != 0 && rdev->supply)
1692                 regulator_disable(rdev->supply);
1693
1694         return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_enable);
1697
1698 static int _regulator_do_disable(struct regulator_dev *rdev)
1699 {
1700         int ret;
1701
1702         trace_regulator_disable(rdev_get_name(rdev));
1703
1704         if (rdev->ena_pin) {
1705                 ret = regulator_ena_gpio_ctrl(rdev, false);
1706                 if (ret < 0)
1707                         return ret;
1708                 rdev->ena_gpio_state = 0;
1709
1710         } else if (rdev->desc->ops->disable) {
1711                 ret = rdev->desc->ops->disable(rdev);
1712                 if (ret != 0)
1713                         return ret;
1714         }
1715
1716         trace_regulator_disable_complete(rdev_get_name(rdev));
1717
1718         return 0;
1719 }
1720
1721 /* locks held by regulator_disable() */
1722 static int _regulator_disable(struct regulator_dev *rdev)
1723 {
1724         int ret = 0;
1725
1726         if (WARN(rdev->use_count <= 0,
1727                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1728                 return -EIO;
1729
1730         /* are we the last user and permitted to disable ? */
1731         if (rdev->use_count == 1 &&
1732             (rdev->constraints && !rdev->constraints->always_on)) {
1733
1734                 /* we are last user */
1735                 if (_regulator_can_change_status(rdev)) {
1736                         ret = _regulator_do_disable(rdev);
1737                         if (ret < 0) {
1738                                 rdev_err(rdev, "failed to disable\n");
1739                                 return ret;
1740                         }
1741                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1742                                         NULL);
1743                 }
1744
1745                 rdev->use_count = 0;
1746         } else if (rdev->use_count > 1) {
1747
1748                 if (rdev->constraints &&
1749                         (rdev->constraints->valid_ops_mask &
1750                         REGULATOR_CHANGE_DRMS))
1751                         drms_uA_update(rdev);
1752
1753                 rdev->use_count--;
1754         }
1755
1756         return ret;
1757 }
1758
1759 /**
1760  * regulator_disable - disable regulator output
1761  * @regulator: regulator source
1762  *
1763  * Disable the regulator output voltage or current.  Calls to
1764  * regulator_enable() must be balanced with calls to
1765  * regulator_disable().
1766  *
1767  * NOTE: this will only disable the regulator output if no other consumer
1768  * devices have it enabled, the regulator device supports disabling and
1769  * machine constraints permit this operation.
1770  */
1771 int regulator_disable(struct regulator *regulator)
1772 {
1773         struct regulator_dev *rdev = regulator->rdev;
1774         int ret = 0;
1775
1776         if (regulator->always_on)
1777                 return 0;
1778
1779         mutex_lock(&rdev->mutex);
1780         ret = _regulator_disable(rdev);
1781         mutex_unlock(&rdev->mutex);
1782
1783         if (ret == 0 && rdev->supply)
1784                 regulator_disable(rdev->supply);
1785
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_disable);
1789
1790 /* locks held by regulator_force_disable() */
1791 static int _regulator_force_disable(struct regulator_dev *rdev)
1792 {
1793         int ret = 0;
1794
1795         ret = _regulator_do_disable(rdev);
1796         if (ret < 0) {
1797                 rdev_err(rdev, "failed to force disable\n");
1798                 return ret;
1799         }
1800
1801         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1802                         REGULATOR_EVENT_DISABLE, NULL);
1803
1804         return 0;
1805 }
1806
1807 /**
1808  * regulator_force_disable - force disable regulator output
1809  * @regulator: regulator source
1810  *
1811  * Forcibly disable the regulator output voltage or current.
1812  * NOTE: this *will* disable the regulator output even if other consumer
1813  * devices have it enabled. This should be used for situations when device
1814  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1815  */
1816 int regulator_force_disable(struct regulator *regulator)
1817 {
1818         struct regulator_dev *rdev = regulator->rdev;
1819         int ret;
1820
1821         mutex_lock(&rdev->mutex);
1822         regulator->uA_load = 0;
1823         ret = _regulator_force_disable(regulator->rdev);
1824         mutex_unlock(&rdev->mutex);
1825
1826         if (rdev->supply)
1827                 while (rdev->open_count--)
1828                         regulator_disable(rdev->supply);
1829
1830         return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_force_disable);
1833
1834 static void regulator_disable_work(struct work_struct *work)
1835 {
1836         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837                                                   disable_work.work);
1838         int count, i, ret;
1839
1840         mutex_lock(&rdev->mutex);
1841
1842         BUG_ON(!rdev->deferred_disables);
1843
1844         count = rdev->deferred_disables;
1845         rdev->deferred_disables = 0;
1846
1847         for (i = 0; i < count; i++) {
1848                 ret = _regulator_disable(rdev);
1849                 if (ret != 0)
1850                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1851         }
1852
1853         mutex_unlock(&rdev->mutex);
1854
1855         if (rdev->supply) {
1856                 for (i = 0; i < count; i++) {
1857                         ret = regulator_disable(rdev->supply);
1858                         if (ret != 0) {
1859                                 rdev_err(rdev,
1860                                          "Supply disable failed: %d\n", ret);
1861                         }
1862                 }
1863         }
1864 }
1865
1866 /**
1867  * regulator_disable_deferred - disable regulator output with delay
1868  * @regulator: regulator source
1869  * @ms: miliseconds until the regulator is disabled
1870  *
1871  * Execute regulator_disable() on the regulator after a delay.  This
1872  * is intended for use with devices that require some time to quiesce.
1873  *
1874  * NOTE: this will only disable the regulator output if no other consumer
1875  * devices have it enabled, the regulator device supports disabling and
1876  * machine constraints permit this operation.
1877  */
1878 int regulator_disable_deferred(struct regulator *regulator, int ms)
1879 {
1880         struct regulator_dev *rdev = regulator->rdev;
1881         int ret;
1882
1883         if (regulator->always_on)
1884                 return 0;
1885
1886         if (!ms)
1887                 return regulator_disable(regulator);
1888
1889         mutex_lock(&rdev->mutex);
1890         rdev->deferred_disables++;
1891         mutex_unlock(&rdev->mutex);
1892
1893         ret = queue_delayed_work(system_power_efficient_wq,
1894                                  &rdev->disable_work,
1895                                  msecs_to_jiffies(ms));
1896         if (ret < 0)
1897                 return ret;
1898         else
1899                 return 0;
1900 }
1901 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1902
1903 /**
1904  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1905  *
1906  * @rdev: regulator to operate on
1907  *
1908  * Regulators that use regmap for their register I/O can set the
1909  * enable_reg and enable_mask fields in their descriptor and then use
1910  * this as their is_enabled operation, saving some code.
1911  */
1912 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1913 {
1914         unsigned int val;
1915         int ret;
1916
1917         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1918         if (ret != 0)
1919                 return ret;
1920
1921         if (rdev->desc->enable_is_inverted)
1922                 return (val & rdev->desc->enable_mask) == 0;
1923         else
1924                 return (val & rdev->desc->enable_mask) != 0;
1925 }
1926 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1927
1928 /**
1929  * regulator_enable_regmap - standard enable() for regmap users
1930  *
1931  * @rdev: regulator to operate on
1932  *
1933  * Regulators that use regmap for their register I/O can set the
1934  * enable_reg and enable_mask fields in their descriptor and then use
1935  * this as their enable() operation, saving some code.
1936  */
1937 int regulator_enable_regmap(struct regulator_dev *rdev)
1938 {
1939         unsigned int val;
1940
1941         if (rdev->desc->enable_is_inverted)
1942                 val = 0;
1943         else
1944                 val = rdev->desc->enable_mask;
1945
1946         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1947                                   rdev->desc->enable_mask, val);
1948 }
1949 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1950
1951 /**
1952  * regulator_disable_regmap - standard disable() for regmap users
1953  *
1954  * @rdev: regulator to operate on
1955  *
1956  * Regulators that use regmap for their register I/O can set the
1957  * enable_reg and enable_mask fields in their descriptor and then use
1958  * this as their disable() operation, saving some code.
1959  */
1960 int regulator_disable_regmap(struct regulator_dev *rdev)
1961 {
1962         unsigned int val;
1963
1964         if (rdev->desc->enable_is_inverted)
1965                 val = rdev->desc->enable_mask;
1966         else
1967                 val = 0;
1968
1969         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1970                                   rdev->desc->enable_mask, val);
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1973
1974 static int _regulator_is_enabled(struct regulator_dev *rdev)
1975 {
1976         /* A GPIO control always takes precedence */
1977         if (rdev->ena_pin)
1978                 return rdev->ena_gpio_state;
1979
1980         /* If we don't know then assume that the regulator is always on */
1981         if (!rdev->desc->ops->is_enabled)
1982                 return 1;
1983
1984         return rdev->desc->ops->is_enabled(rdev);
1985 }
1986
1987 /**
1988  * regulator_is_enabled - is the regulator output enabled
1989  * @regulator: regulator source
1990  *
1991  * Returns positive if the regulator driver backing the source/client
1992  * has requested that the device be enabled, zero if it hasn't, else a
1993  * negative errno code.
1994  *
1995  * Note that the device backing this regulator handle can have multiple
1996  * users, so it might be enabled even if regulator_enable() was never
1997  * called for this particular source.
1998  */
1999 int regulator_is_enabled(struct regulator *regulator)
2000 {
2001         int ret;
2002
2003         if (regulator->always_on)
2004                 return 1;
2005
2006         mutex_lock(&regulator->rdev->mutex);
2007         ret = _regulator_is_enabled(regulator->rdev);
2008         mutex_unlock(&regulator->rdev->mutex);
2009
2010         return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2013
2014 /**
2015  * regulator_can_change_voltage - check if regulator can change voltage
2016  * @regulator: regulator source
2017  *
2018  * Returns positive if the regulator driver backing the source/client
2019  * can change its voltage, false otherwise. Usefull for detecting fixed
2020  * or dummy regulators and disabling voltage change logic in the client
2021  * driver.
2022  */
2023 int regulator_can_change_voltage(struct regulator *regulator)
2024 {
2025         struct regulator_dev    *rdev = regulator->rdev;
2026
2027         if (rdev->constraints &&
2028             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2029                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2030                         return 1;
2031
2032                 if (rdev->desc->continuous_voltage_range &&
2033                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2034                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2035                         return 1;
2036         }
2037
2038         return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2041
2042 /**
2043  * regulator_count_voltages - count regulator_list_voltage() selectors
2044  * @regulator: regulator source
2045  *
2046  * Returns number of selectors, or negative errno.  Selectors are
2047  * numbered starting at zero, and typically correspond to bitfields
2048  * in hardware registers.
2049  */
2050 int regulator_count_voltages(struct regulator *regulator)
2051 {
2052         struct regulator_dev    *rdev = regulator->rdev;
2053
2054         return rdev->desc->n_voltages ? : -EINVAL;
2055 }
2056 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2057
2058 /**
2059  * regulator_list_voltage_linear - List voltages with simple calculation
2060  *
2061  * @rdev: Regulator device
2062  * @selector: Selector to convert into a voltage
2063  *
2064  * Regulators with a simple linear mapping between voltages and
2065  * selectors can set min_uV and uV_step in the regulator descriptor
2066  * and then use this function as their list_voltage() operation,
2067  */
2068 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2069                                   unsigned int selector)
2070 {
2071         if (selector >= rdev->desc->n_voltages)
2072                 return -EINVAL;
2073         if (selector < rdev->desc->linear_min_sel)
2074                 return 0;
2075
2076         selector -= rdev->desc->linear_min_sel;
2077
2078         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2079 }
2080 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2081
2082 /**
2083  * regulator_list_voltage_table - List voltages with table based mapping
2084  *
2085  * @rdev: Regulator device
2086  * @selector: Selector to convert into a voltage
2087  *
2088  * Regulators with table based mapping between voltages and
2089  * selectors can set volt_table in the regulator descriptor
2090  * and then use this function as their list_voltage() operation.
2091  */
2092 int regulator_list_voltage_table(struct regulator_dev *rdev,
2093                                  unsigned int selector)
2094 {
2095         if (!rdev->desc->volt_table) {
2096                 BUG_ON(!rdev->desc->volt_table);
2097                 return -EINVAL;
2098         }
2099
2100         if (selector >= rdev->desc->n_voltages)
2101                 return -EINVAL;
2102
2103         return rdev->desc->volt_table[selector];
2104 }
2105 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2106
2107 /**
2108  * regulator_list_voltage - enumerate supported voltages
2109  * @regulator: regulator source
2110  * @selector: identify voltage to list
2111  * Context: can sleep
2112  *
2113  * Returns a voltage that can be passed to @regulator_set_voltage(),
2114  * zero if this selector code can't be used on this system, or a
2115  * negative errno.
2116  */
2117 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2118 {
2119         struct regulator_dev    *rdev = regulator->rdev;
2120         struct regulator_ops    *ops = rdev->desc->ops;
2121         int                     ret;
2122
2123         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2124                 return -EINVAL;
2125
2126         mutex_lock(&rdev->mutex);
2127         ret = ops->list_voltage(rdev, selector);
2128         mutex_unlock(&rdev->mutex);
2129
2130         if (ret > 0) {
2131                 if (ret < rdev->constraints->min_uV)
2132                         ret = 0;
2133                 else if (ret > rdev->constraints->max_uV)
2134                         ret = 0;
2135         }
2136
2137         return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2140
2141 /**
2142  * regulator_is_supported_voltage - check if a voltage range can be supported
2143  *
2144  * @regulator: Regulator to check.
2145  * @min_uV: Minimum required voltage in uV.
2146  * @max_uV: Maximum required voltage in uV.
2147  *
2148  * Returns a boolean or a negative error code.
2149  */
2150 int regulator_is_supported_voltage(struct regulator *regulator,
2151                                    int min_uV, int max_uV)
2152 {
2153         struct regulator_dev *rdev = regulator->rdev;
2154         int i, voltages, ret;
2155
2156         /* If we can't change voltage check the current voltage */
2157         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2158                 ret = regulator_get_voltage(regulator);
2159                 if (ret >= 0)
2160                         return (min_uV <= ret && ret <= max_uV);
2161                 else
2162                         return ret;
2163         }
2164
2165         /* Any voltage within constrains range is fine? */
2166         if (rdev->desc->continuous_voltage_range)
2167                 return min_uV >= rdev->constraints->min_uV &&
2168                                 max_uV <= rdev->constraints->max_uV;
2169
2170         ret = regulator_count_voltages(regulator);
2171         if (ret < 0)
2172                 return ret;
2173         voltages = ret;
2174
2175         for (i = 0; i < voltages; i++) {
2176                 ret = regulator_list_voltage(regulator, i);
2177
2178                 if (ret >= min_uV && ret <= max_uV)
2179                         return 1;
2180         }
2181
2182         return 0;
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2185
2186 /**
2187  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2188  *
2189  * @rdev: regulator to operate on
2190  *
2191  * Regulators that use regmap for their register I/O can set the
2192  * vsel_reg and vsel_mask fields in their descriptor and then use this
2193  * as their get_voltage_vsel operation, saving some code.
2194  */
2195 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2196 {
2197         unsigned int val;
2198         int ret;
2199
2200         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2201         if (ret != 0)
2202                 return ret;
2203
2204         val &= rdev->desc->vsel_mask;
2205         val >>= ffs(rdev->desc->vsel_mask) - 1;
2206
2207         return val;
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2210
2211 /**
2212  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2213  *
2214  * @rdev: regulator to operate on
2215  * @sel: Selector to set
2216  *
2217  * Regulators that use regmap for their register I/O can set the
2218  * vsel_reg and vsel_mask fields in their descriptor and then use this
2219  * as their set_voltage_vsel operation, saving some code.
2220  */
2221 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2222 {
2223         int ret;
2224
2225         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2226
2227         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2228                                   rdev->desc->vsel_mask, sel);
2229         if (ret)
2230                 return ret;
2231
2232         if (rdev->desc->apply_bit)
2233                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2234                                          rdev->desc->apply_bit,
2235                                          rdev->desc->apply_bit);
2236         return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2239
2240 /**
2241  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2242  *
2243  * @rdev: Regulator to operate on
2244  * @min_uV: Lower bound for voltage
2245  * @max_uV: Upper bound for voltage
2246  *
2247  * Drivers implementing set_voltage_sel() and list_voltage() can use
2248  * this as their map_voltage() operation.  It will find a suitable
2249  * voltage by calling list_voltage() until it gets something in bounds
2250  * for the requested voltages.
2251  */
2252 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2253                                   int min_uV, int max_uV)
2254 {
2255         int best_val = INT_MAX;
2256         int selector = 0;
2257         int i, ret;
2258
2259         /* Find the smallest voltage that falls within the specified
2260          * range.
2261          */
2262         for (i = 0; i < rdev->desc->n_voltages; i++) {
2263                 ret = rdev->desc->ops->list_voltage(rdev, i);
2264                 if (ret < 0)
2265                         continue;
2266
2267                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2268                         best_val = ret;
2269                         selector = i;
2270                 }
2271         }
2272
2273         if (best_val != INT_MAX)
2274                 return selector;
2275         else
2276                 return -EINVAL;
2277 }
2278 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2279
2280 /**
2281  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2282  *
2283  * @rdev: Regulator to operate on
2284  * @min_uV: Lower bound for voltage
2285  * @max_uV: Upper bound for voltage
2286  *
2287  * Drivers that have ascendant voltage list can use this as their
2288  * map_voltage() operation.
2289  */
2290 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2291                                  int min_uV, int max_uV)
2292 {
2293         int i, ret;
2294
2295         for (i = 0; i < rdev->desc->n_voltages; i++) {
2296                 ret = rdev->desc->ops->list_voltage(rdev, i);
2297                 if (ret < 0)
2298                         continue;
2299
2300                 if (ret > max_uV)
2301                         break;
2302
2303                 if (ret >= min_uV && ret <= max_uV)
2304                         return i;
2305         }
2306
2307         return -EINVAL;
2308 }
2309 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2310
2311 /**
2312  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2313  *
2314  * @rdev: Regulator to operate on
2315  * @min_uV: Lower bound for voltage
2316  * @max_uV: Upper bound for voltage
2317  *
2318  * Drivers providing min_uV and uV_step in their regulator_desc can
2319  * use this as their map_voltage() operation.
2320  */
2321 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2322                                  int min_uV, int max_uV)
2323 {
2324         int ret, voltage;
2325
2326         /* Allow uV_step to be 0 for fixed voltage */
2327         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2328                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2329                         return 0;
2330                 else
2331                         return -EINVAL;
2332         }
2333
2334         if (!rdev->desc->uV_step) {
2335                 BUG_ON(!rdev->desc->uV_step);
2336                 return -EINVAL;
2337         }
2338
2339         if (min_uV < rdev->desc->min_uV)
2340                 min_uV = rdev->desc->min_uV;
2341
2342         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2343         if (ret < 0)
2344                 return ret;
2345
2346         ret += rdev->desc->linear_min_sel;
2347
2348         /* Map back into a voltage to verify we're still in bounds */
2349         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2350         if (voltage < min_uV || voltage > max_uV)
2351                 return -EINVAL;
2352
2353         return ret;
2354 }
2355 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2356
2357 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2358                                      int min_uV, int max_uV)
2359 {
2360         int ret;
2361         int delay = 0;
2362         int best_val = 0;
2363         unsigned int selector;
2364         int old_selector = -1;
2365
2366         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2367
2368         min_uV += rdev->constraints->uV_offset;
2369         max_uV += rdev->constraints->uV_offset;
2370
2371         /*
2372          * If we can't obtain the old selector there is not enough
2373          * info to call set_voltage_time_sel().
2374          */
2375         if (_regulator_is_enabled(rdev) &&
2376             rdev->desc->ops->set_voltage_time_sel &&
2377             rdev->desc->ops->get_voltage_sel) {
2378                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2379                 if (old_selector < 0)
2380                         return old_selector;
2381         }
2382
2383         if (rdev->desc->ops->set_voltage) {
2384                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2385                                                    &selector);
2386
2387                 if (ret >= 0) {
2388                         if (rdev->desc->ops->list_voltage)
2389                                 best_val = rdev->desc->ops->list_voltage(rdev,
2390                                                                          selector);
2391                         else
2392                                 best_val = _regulator_get_voltage(rdev);
2393                 }
2394
2395         } else if (rdev->desc->ops->set_voltage_sel) {
2396                 if (rdev->desc->ops->map_voltage) {
2397                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2398                                                            max_uV);
2399                 } else {
2400                         if (rdev->desc->ops->list_voltage ==
2401                             regulator_list_voltage_linear)
2402                                 ret = regulator_map_voltage_linear(rdev,
2403                                                                 min_uV, max_uV);
2404                         else
2405                                 ret = regulator_map_voltage_iterate(rdev,
2406                                                                 min_uV, max_uV);
2407                 }
2408
2409                 if (ret >= 0) {
2410                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2411                         if (min_uV <= best_val && max_uV >= best_val) {
2412                                 selector = ret;
2413                                 if (old_selector == selector)
2414                                         ret = 0;
2415                                 else
2416                                         ret = rdev->desc->ops->set_voltage_sel(
2417                                                                 rdev, ret);
2418                         } else {
2419                                 ret = -EINVAL;
2420                         }
2421                 }
2422         } else {
2423                 ret = -EINVAL;
2424         }
2425
2426         /* Call set_voltage_time_sel if successfully obtained old_selector */
2427         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2428             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2429
2430                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2431                                                 old_selector, selector);
2432                 if (delay < 0) {
2433                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2434                                   delay);
2435                         delay = 0;
2436                 }
2437
2438                 /* Insert any necessary delays */
2439                 if (delay >= 1000) {
2440                         mdelay(delay / 1000);
2441                         udelay(delay % 1000);
2442                 } else if (delay) {
2443                         udelay(delay);
2444                 }
2445         }
2446
2447         if (ret == 0 && best_val >= 0) {
2448                 unsigned long data = best_val;
2449
2450                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2451                                      (void *)data);
2452         }
2453
2454         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2455
2456         return ret;
2457 }
2458
2459 /**
2460  * regulator_set_voltage - set regulator output voltage
2461  * @regulator: regulator source
2462  * @min_uV: Minimum required voltage in uV
2463  * @max_uV: Maximum acceptable voltage in uV
2464  *
2465  * Sets a voltage regulator to the desired output voltage. This can be set
2466  * during any regulator state. IOW, regulator can be disabled or enabled.
2467  *
2468  * If the regulator is enabled then the voltage will change to the new value
2469  * immediately otherwise if the regulator is disabled the regulator will
2470  * output at the new voltage when enabled.
2471  *
2472  * NOTE: If the regulator is shared between several devices then the lowest
2473  * request voltage that meets the system constraints will be used.
2474  * Regulator system constraints must be set for this regulator before
2475  * calling this function otherwise this call will fail.
2476  */
2477 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2478 {
2479         struct regulator_dev *rdev = regulator->rdev;
2480         int ret = 0;
2481         int old_min_uV, old_max_uV;
2482
2483         mutex_lock(&rdev->mutex);
2484
2485         /* If we're setting the same range as last time the change
2486          * should be a noop (some cpufreq implementations use the same
2487          * voltage for multiple frequencies, for example).
2488          */
2489         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2490                 goto out;
2491
2492         /* sanity check */
2493         if (!rdev->desc->ops->set_voltage &&
2494             !rdev->desc->ops->set_voltage_sel) {
2495                 ret = -EINVAL;
2496                 goto out;
2497         }
2498
2499         /* constraints check */
2500         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2501         if (ret < 0)
2502                 goto out;
2503         
2504         /* restore original values in case of error */
2505         old_min_uV = regulator->min_uV;
2506         old_max_uV = regulator->max_uV;
2507         regulator->min_uV = min_uV;
2508         regulator->max_uV = max_uV;
2509
2510         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2511         if (ret < 0)
2512                 goto out2;
2513
2514         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2515         if (ret < 0)
2516                 goto out2;
2517         
2518 out:
2519         mutex_unlock(&rdev->mutex);
2520         return ret;
2521 out2:
2522         regulator->min_uV = old_min_uV;
2523         regulator->max_uV = old_max_uV;
2524         mutex_unlock(&rdev->mutex);
2525         return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2528
2529 /**
2530  * regulator_set_voltage_time - get raise/fall time
2531  * @regulator: regulator source
2532  * @old_uV: starting voltage in microvolts
2533  * @new_uV: target voltage in microvolts
2534  *
2535  * Provided with the starting and ending voltage, this function attempts to
2536  * calculate the time in microseconds required to rise or fall to this new
2537  * voltage.
2538  */
2539 int regulator_set_voltage_time(struct regulator *regulator,
2540                                int old_uV, int new_uV)
2541 {
2542         struct regulator_dev    *rdev = regulator->rdev;
2543         struct regulator_ops    *ops = rdev->desc->ops;
2544         int old_sel = -1;
2545         int new_sel = -1;
2546         int voltage;
2547         int i;
2548
2549         /* Currently requires operations to do this */
2550         if (!ops->list_voltage || !ops->set_voltage_time_sel
2551             || !rdev->desc->n_voltages)
2552                 return -EINVAL;
2553
2554         for (i = 0; i < rdev->desc->n_voltages; i++) {
2555                 /* We only look for exact voltage matches here */
2556                 voltage = regulator_list_voltage(regulator, i);
2557                 if (voltage < 0)
2558                         return -EINVAL;
2559                 if (voltage == 0)
2560                         continue;
2561                 if (voltage == old_uV)
2562                         old_sel = i;
2563                 if (voltage == new_uV)
2564                         new_sel = i;
2565         }
2566
2567         if (old_sel < 0 || new_sel < 0)
2568                 return -EINVAL;
2569
2570         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2573
2574 /**
2575  * regulator_set_voltage_time_sel - get raise/fall time
2576  * @rdev: regulator source device
2577  * @old_selector: selector for starting voltage
2578  * @new_selector: selector for target voltage
2579  *
2580  * Provided with the starting and target voltage selectors, this function
2581  * returns time in microseconds required to rise or fall to this new voltage
2582  *
2583  * Drivers providing ramp_delay in regulation_constraints can use this as their
2584  * set_voltage_time_sel() operation.
2585  */
2586 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2587                                    unsigned int old_selector,
2588                                    unsigned int new_selector)
2589 {
2590         unsigned int ramp_delay = 0;
2591         int old_volt, new_volt;
2592
2593         if (rdev->constraints->ramp_delay)
2594                 ramp_delay = rdev->constraints->ramp_delay;
2595         else if (rdev->desc->ramp_delay)
2596                 ramp_delay = rdev->desc->ramp_delay;
2597
2598         if (ramp_delay == 0) {
2599                 rdev_warn(rdev, "ramp_delay not set\n");
2600                 return 0;
2601         }
2602
2603         /* sanity check */
2604         if (!rdev->desc->ops->list_voltage)
2605                 return -EINVAL;
2606
2607         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2608         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2609
2610         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2611 }
2612 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2613
2614 /**
2615  * regulator_sync_voltage - re-apply last regulator output voltage
2616  * @regulator: regulator source
2617  *
2618  * Re-apply the last configured voltage.  This is intended to be used
2619  * where some external control source the consumer is cooperating with
2620  * has caused the configured voltage to change.
2621  */
2622 int regulator_sync_voltage(struct regulator *regulator)
2623 {
2624         struct regulator_dev *rdev = regulator->rdev;
2625         int ret, min_uV, max_uV;
2626
2627         mutex_lock(&rdev->mutex);
2628
2629         if (!rdev->desc->ops->set_voltage &&
2630             !rdev->desc->ops->set_voltage_sel) {
2631                 ret = -EINVAL;
2632                 goto out;
2633         }
2634
2635         /* This is only going to work if we've had a voltage configured. */
2636         if (!regulator->min_uV && !regulator->max_uV) {
2637                 ret = -EINVAL;
2638                 goto out;
2639         }
2640
2641         min_uV = regulator->min_uV;
2642         max_uV = regulator->max_uV;
2643
2644         /* This should be a paranoia check... */
2645         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2646         if (ret < 0)
2647                 goto out;
2648
2649         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2650         if (ret < 0)
2651                 goto out;
2652
2653         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2654
2655 out:
2656         mutex_unlock(&rdev->mutex);
2657         return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2660
2661 static int _regulator_get_voltage(struct regulator_dev *rdev)
2662 {
2663         int sel, ret;
2664
2665         if (rdev->desc->ops->get_voltage_sel) {
2666                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2667                 if (sel < 0)
2668                         return sel;
2669                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2670         } else if (rdev->desc->ops->get_voltage) {
2671                 ret = rdev->desc->ops->get_voltage(rdev);
2672         } else if (rdev->desc->ops->list_voltage) {
2673                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2674         } else {
2675                 return -EINVAL;
2676         }
2677
2678         if (ret < 0)
2679                 return ret;
2680         return ret - rdev->constraints->uV_offset;
2681 }
2682
2683 /**
2684  * regulator_get_voltage - get regulator output voltage
2685  * @regulator: regulator source
2686  *
2687  * This returns the current regulator voltage in uV.
2688  *
2689  * NOTE: If the regulator is disabled it will return the voltage value. This
2690  * function should not be used to determine regulator state.
2691  */
2692 int regulator_get_voltage(struct regulator *regulator)
2693 {
2694         int ret;
2695
2696         mutex_lock(&regulator->rdev->mutex);
2697
2698         ret = _regulator_get_voltage(regulator->rdev);
2699
2700         mutex_unlock(&regulator->rdev->mutex);
2701
2702         return ret;
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2705
2706 /**
2707  * regulator_set_current_limit - set regulator output current limit
2708  * @regulator: regulator source
2709  * @min_uA: Minimum supported current in uA
2710  * @max_uA: Maximum supported current in uA
2711  *
2712  * Sets current sink to the desired output current. This can be set during
2713  * any regulator state. IOW, regulator can be disabled or enabled.
2714  *
2715  * If the regulator is enabled then the current will change to the new value
2716  * immediately otherwise if the regulator is disabled the regulator will
2717  * output at the new current when enabled.
2718  *
2719  * NOTE: Regulator system constraints must be set for this regulator before
2720  * calling this function otherwise this call will fail.
2721  */
2722 int regulator_set_current_limit(struct regulator *regulator,
2723                                int min_uA, int max_uA)
2724 {
2725         struct regulator_dev *rdev = regulator->rdev;
2726         int ret;
2727
2728         mutex_lock(&rdev->mutex);
2729
2730         /* sanity check */
2731         if (!rdev->desc->ops->set_current_limit) {
2732                 ret = -EINVAL;
2733                 goto out;
2734         }
2735
2736         /* constraints check */
2737         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2738         if (ret < 0)
2739                 goto out;
2740
2741         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2742 out:
2743         mutex_unlock(&rdev->mutex);
2744         return ret;
2745 }
2746 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2747
2748 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2749 {
2750         int ret;
2751
2752         mutex_lock(&rdev->mutex);
2753
2754         /* sanity check */
2755         if (!rdev->desc->ops->get_current_limit) {
2756                 ret = -EINVAL;
2757                 goto out;
2758         }
2759
2760         ret = rdev->desc->ops->get_current_limit(rdev);
2761 out:
2762         mutex_unlock(&rdev->mutex);
2763         return ret;
2764 }
2765
2766 /**
2767  * regulator_get_current_limit - get regulator output current
2768  * @regulator: regulator source
2769  *
2770  * This returns the current supplied by the specified current sink in uA.
2771  *
2772  * NOTE: If the regulator is disabled it will return the current value. This
2773  * function should not be used to determine regulator state.
2774  */
2775 int regulator_get_current_limit(struct regulator *regulator)
2776 {
2777         return _regulator_get_current_limit(regulator->rdev);
2778 }
2779 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2780
2781 /**
2782  * regulator_set_mode - set regulator operating mode
2783  * @regulator: regulator source
2784  * @mode: operating mode - one of the REGULATOR_MODE constants
2785  *
2786  * Set regulator operating mode to increase regulator efficiency or improve
2787  * regulation performance.
2788  *
2789  * NOTE: Regulator system constraints must be set for this regulator before
2790  * calling this function otherwise this call will fail.
2791  */
2792 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2793 {
2794         struct regulator_dev *rdev = regulator->rdev;
2795         int ret;
2796         int regulator_curr_mode;
2797
2798         mutex_lock(&rdev->mutex);
2799
2800         /* sanity check */
2801         if (!rdev->desc->ops->set_mode) {
2802                 ret = -EINVAL;
2803                 goto out;
2804         }
2805
2806         /* return if the same mode is requested */
2807         if (rdev->desc->ops->get_mode) {
2808                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2809                 if (regulator_curr_mode == mode) {
2810                         ret = 0;
2811                         goto out;
2812                 }
2813         }
2814
2815         /* constraints check */
2816         ret = regulator_mode_constrain(rdev, &mode);
2817         if (ret < 0)
2818                 goto out;
2819
2820         ret = rdev->desc->ops->set_mode(rdev, mode);
2821 out:
2822         mutex_unlock(&rdev->mutex);
2823         return ret;
2824 }
2825 EXPORT_SYMBOL_GPL(regulator_set_mode);
2826
2827 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2828 {
2829         int ret;
2830
2831         mutex_lock(&rdev->mutex);
2832
2833         /* sanity check */
2834         if (!rdev->desc->ops->get_mode) {
2835                 ret = -EINVAL;
2836                 goto out;
2837         }
2838
2839         ret = rdev->desc->ops->get_mode(rdev);
2840 out:
2841         mutex_unlock(&rdev->mutex);
2842         return ret;
2843 }
2844
2845 /**
2846  * regulator_get_mode - get regulator operating mode
2847  * @regulator: regulator source
2848  *
2849  * Get the current regulator operating mode.
2850  */
2851 unsigned int regulator_get_mode(struct regulator *regulator)
2852 {
2853         return _regulator_get_mode(regulator->rdev);
2854 }
2855 EXPORT_SYMBOL_GPL(regulator_get_mode);
2856
2857 /**
2858  * regulator_set_optimum_mode - set regulator optimum operating mode
2859  * @regulator: regulator source
2860  * @uA_load: load current
2861  *
2862  * Notifies the regulator core of a new device load. This is then used by
2863  * DRMS (if enabled by constraints) to set the most efficient regulator
2864  * operating mode for the new regulator loading.
2865  *
2866  * Consumer devices notify their supply regulator of the maximum power
2867  * they will require (can be taken from device datasheet in the power
2868  * consumption tables) when they change operational status and hence power
2869  * state. Examples of operational state changes that can affect power
2870  * consumption are :-
2871  *
2872  *    o Device is opened / closed.
2873  *    o Device I/O is about to begin or has just finished.
2874  *    o Device is idling in between work.
2875  *
2876  * This information is also exported via sysfs to userspace.
2877  *
2878  * DRMS will sum the total requested load on the regulator and change
2879  * to the most efficient operating mode if platform constraints allow.
2880  *
2881  * Returns the new regulator mode or error.
2882  */
2883 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2884 {
2885         struct regulator_dev *rdev = regulator->rdev;
2886         struct regulator *consumer;
2887         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2888         unsigned int mode;
2889
2890         if (rdev->supply)
2891                 input_uV = regulator_get_voltage(rdev->supply);
2892
2893         mutex_lock(&rdev->mutex);
2894
2895         /*
2896          * first check to see if we can set modes at all, otherwise just
2897          * tell the consumer everything is OK.
2898          */
2899         regulator->uA_load = uA_load;
2900         ret = regulator_check_drms(rdev);
2901         if (ret < 0) {
2902                 ret = 0;
2903                 goto out;
2904         }
2905
2906         if (!rdev->desc->ops->get_optimum_mode)
2907                 goto out;
2908
2909         /*
2910          * we can actually do this so any errors are indicators of
2911          * potential real failure.
2912          */
2913         ret = -EINVAL;
2914
2915         if (!rdev->desc->ops->set_mode)
2916                 goto out;
2917
2918         /* get output voltage */
2919         output_uV = _regulator_get_voltage(rdev);
2920         if (output_uV <= 0) {
2921                 rdev_err(rdev, "invalid output voltage found\n");
2922                 goto out;
2923         }
2924
2925         /* No supply? Use constraint voltage */
2926         if (input_uV <= 0)
2927                 input_uV = rdev->constraints->input_uV;
2928         if (input_uV <= 0) {
2929                 rdev_err(rdev, "invalid input voltage found\n");
2930                 goto out;
2931         }
2932
2933         /* calc total requested load for this regulator */
2934         list_for_each_entry(consumer, &rdev->consumer_list, list)
2935                 total_uA_load += consumer->uA_load;
2936
2937         mode = rdev->desc->ops->get_optimum_mode(rdev,
2938                                                  input_uV, output_uV,
2939                                                  total_uA_load);
2940         ret = regulator_mode_constrain(rdev, &mode);
2941         if (ret < 0) {
2942                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2943                          total_uA_load, input_uV, output_uV);
2944                 goto out;
2945         }
2946
2947         ret = rdev->desc->ops->set_mode(rdev, mode);
2948         if (ret < 0) {
2949                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2950                 goto out;
2951         }
2952         ret = mode;
2953 out:
2954         mutex_unlock(&rdev->mutex);
2955         return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2958
2959 /**
2960  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2961  *
2962  * @rdev: device to operate on.
2963  * @enable: state to set.
2964  */
2965 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2966 {
2967         unsigned int val;
2968
2969         if (enable)
2970                 val = rdev->desc->bypass_mask;
2971         else
2972                 val = 0;
2973
2974         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2975                                   rdev->desc->bypass_mask, val);
2976 }
2977 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2978
2979 /**
2980  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2981  *
2982  * @rdev: device to operate on.
2983  * @enable: current state.
2984  */
2985 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2986 {
2987         unsigned int val;
2988         int ret;
2989
2990         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2991         if (ret != 0)
2992                 return ret;
2993
2994         *enable = val & rdev->desc->bypass_mask;
2995
2996         return 0;
2997 }
2998 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2999
3000 /**
3001  * regulator_allow_bypass - allow the regulator to go into bypass mode
3002  *
3003  * @regulator: Regulator to configure
3004  * @enable: enable or disable bypass mode
3005  *
3006  * Allow the regulator to go into bypass mode if all other consumers
3007  * for the regulator also enable bypass mode and the machine
3008  * constraints allow this.  Bypass mode means that the regulator is
3009  * simply passing the input directly to the output with no regulation.
3010  */
3011 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3012 {
3013         struct regulator_dev *rdev = regulator->rdev;
3014         int ret = 0;
3015
3016         if (!rdev->desc->ops->set_bypass)
3017                 return 0;
3018
3019         if (rdev->constraints &&
3020             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3021                 return 0;
3022
3023         mutex_lock(&rdev->mutex);
3024
3025         if (enable && !regulator->bypass) {
3026                 rdev->bypass_count++;
3027
3028                 if (rdev->bypass_count == rdev->open_count) {
3029                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3030                         if (ret != 0)
3031                                 rdev->bypass_count--;
3032                 }
3033
3034         } else if (!enable && regulator->bypass) {
3035                 rdev->bypass_count--;
3036
3037                 if (rdev->bypass_count != rdev->open_count) {
3038                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3039                         if (ret != 0)
3040                                 rdev->bypass_count++;
3041                 }
3042         }
3043
3044         if (ret == 0)
3045                 regulator->bypass = enable;
3046
3047         mutex_unlock(&rdev->mutex);
3048
3049         return ret;
3050 }
3051 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3052
3053 /**
3054  * regulator_register_notifier - register regulator event notifier
3055  * @regulator: regulator source
3056  * @nb: notifier block
3057  *
3058  * Register notifier block to receive regulator events.
3059  */
3060 int regulator_register_notifier(struct regulator *regulator,
3061                               struct notifier_block *nb)
3062 {
3063         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3064                                                 nb);
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3067
3068 /**
3069  * regulator_unregister_notifier - unregister regulator event notifier
3070  * @regulator: regulator source
3071  * @nb: notifier block
3072  *
3073  * Unregister regulator event notifier block.
3074  */
3075 int regulator_unregister_notifier(struct regulator *regulator,
3076                                 struct notifier_block *nb)
3077 {
3078         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3079                                                   nb);
3080 }
3081 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3082
3083 /* notify regulator consumers and downstream regulator consumers.
3084  * Note mutex must be held by caller.
3085  */
3086 static void _notifier_call_chain(struct regulator_dev *rdev,
3087                                   unsigned long event, void *data)
3088 {
3089         /* call rdev chain first */
3090         blocking_notifier_call_chain(&rdev->notifier, event, data);
3091 }
3092
3093 /**
3094  * regulator_bulk_get - get multiple regulator consumers
3095  *
3096  * @dev:           Device to supply
3097  * @num_consumers: Number of consumers to register
3098  * @consumers:     Configuration of consumers; clients are stored here.
3099  *
3100  * @return 0 on success, an errno on failure.
3101  *
3102  * This helper function allows drivers to get several regulator
3103  * consumers in one operation.  If any of the regulators cannot be
3104  * acquired then any regulators that were allocated will be freed
3105  * before returning to the caller.
3106  */
3107 int regulator_bulk_get(struct device *dev, int num_consumers,
3108                        struct regulator_bulk_data *consumers)
3109 {
3110         int i;
3111         int ret;
3112
3113         for (i = 0; i < num_consumers; i++)
3114                 consumers[i].consumer = NULL;
3115
3116         for (i = 0; i < num_consumers; i++) {
3117                 consumers[i].consumer = regulator_get(dev,
3118                                                       consumers[i].supply);
3119                 if (IS_ERR(consumers[i].consumer)) {
3120                         ret = PTR_ERR(consumers[i].consumer);
3121                         dev_err(dev, "Failed to get supply '%s': %d\n",
3122                                 consumers[i].supply, ret);
3123                         consumers[i].consumer = NULL;
3124                         goto err;
3125                 }
3126         }
3127
3128         return 0;
3129
3130 err:
3131         while (--i >= 0)
3132                 regulator_put(consumers[i].consumer);
3133
3134         return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3137
3138 /**
3139  * devm_regulator_bulk_get - managed get multiple regulator consumers
3140  *
3141  * @dev:           Device to supply
3142  * @num_consumers: Number of consumers to register
3143  * @consumers:     Configuration of consumers; clients are stored here.
3144  *
3145  * @return 0 on success, an errno on failure.
3146  *
3147  * This helper function allows drivers to get several regulator
3148  * consumers in one operation with management, the regulators will
3149  * automatically be freed when the device is unbound.  If any of the
3150  * regulators cannot be acquired then any regulators that were
3151  * allocated will be freed before returning to the caller.
3152  */
3153 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3154                             struct regulator_bulk_data *consumers)
3155 {
3156         int i;
3157         int ret;
3158
3159         for (i = 0; i < num_consumers; i++)
3160                 consumers[i].consumer = NULL;
3161
3162         for (i = 0; i < num_consumers; i++) {
3163                 consumers[i].consumer = devm_regulator_get(dev,
3164                                                            consumers[i].supply);
3165                 if (IS_ERR(consumers[i].consumer)) {
3166                         ret = PTR_ERR(consumers[i].consumer);
3167                         dev_err(dev, "Failed to get supply '%s': %d\n",
3168                                 consumers[i].supply, ret);
3169                         consumers[i].consumer = NULL;
3170                         goto err;
3171                 }
3172         }
3173
3174         return 0;
3175
3176 err:
3177         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3178                 devm_regulator_put(consumers[i].consumer);
3179
3180         return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3183
3184 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3185 {
3186         struct regulator_bulk_data *bulk = data;
3187
3188         bulk->ret = regulator_enable(bulk->consumer);
3189 }
3190
3191 /**
3192  * regulator_bulk_enable - enable multiple regulator consumers
3193  *
3194  * @num_consumers: Number of consumers
3195  * @consumers:     Consumer data; clients are stored here.
3196  * @return         0 on success, an errno on failure
3197  *
3198  * This convenience API allows consumers to enable multiple regulator
3199  * clients in a single API call.  If any consumers cannot be enabled
3200  * then any others that were enabled will be disabled again prior to
3201  * return.
3202  */
3203 int regulator_bulk_enable(int num_consumers,
3204                           struct regulator_bulk_data *consumers)
3205 {
3206         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3207         int i;
3208         int ret = 0;
3209
3210         for (i = 0; i < num_consumers; i++) {
3211                 if (consumers[i].consumer->always_on)
3212                         consumers[i].ret = 0;
3213                 else
3214                         async_schedule_domain(regulator_bulk_enable_async,
3215                                               &consumers[i], &async_domain);
3216         }
3217
3218         async_synchronize_full_domain(&async_domain);
3219
3220         /* If any consumer failed we need to unwind any that succeeded */
3221         for (i = 0; i < num_consumers; i++) {
3222                 if (consumers[i].ret != 0) {
3223                         ret = consumers[i].ret;
3224                         goto err;
3225                 }
3226         }
3227
3228         return 0;
3229
3230 err:
3231         for (i = 0; i < num_consumers; i++) {
3232                 if (consumers[i].ret < 0)
3233                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3234                                consumers[i].ret);
3235                 else
3236                         regulator_disable(consumers[i].consumer);
3237         }
3238
3239         return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3242
3243 /**
3244  * regulator_bulk_disable - disable multiple regulator consumers
3245  *
3246  * @num_consumers: Number of consumers
3247  * @consumers:     Consumer data; clients are stored here.
3248  * @return         0 on success, an errno on failure
3249  *
3250  * This convenience API allows consumers to disable multiple regulator
3251  * clients in a single API call.  If any consumers cannot be disabled
3252  * then any others that were disabled will be enabled again prior to
3253  * return.
3254  */
3255 int regulator_bulk_disable(int num_consumers,
3256                            struct regulator_bulk_data *consumers)
3257 {
3258         int i;
3259         int ret, r;
3260
3261         for (i = num_consumers - 1; i >= 0; --i) {
3262                 ret = regulator_disable(consumers[i].consumer);
3263                 if (ret != 0)
3264                         goto err;
3265         }
3266
3267         return 0;
3268
3269 err:
3270         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3271         for (++i; i < num_consumers; ++i) {
3272                 r = regulator_enable(consumers[i].consumer);
3273                 if (r != 0)
3274                         pr_err("Failed to reename %s: %d\n",
3275                                consumers[i].supply, r);
3276         }
3277
3278         return ret;
3279 }
3280 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3281
3282 /**
3283  * regulator_bulk_force_disable - force disable multiple regulator consumers
3284  *
3285  * @num_consumers: Number of consumers
3286  * @consumers:     Consumer data; clients are stored here.
3287  * @return         0 on success, an errno on failure
3288  *
3289  * This convenience API allows consumers to forcibly disable multiple regulator
3290  * clients in a single API call.
3291  * NOTE: This should be used for situations when device damage will
3292  * likely occur if the regulators are not disabled (e.g. over temp).
3293  * Although regulator_force_disable function call for some consumers can
3294  * return error numbers, the function is called for all consumers.
3295  */
3296 int regulator_bulk_force_disable(int num_consumers,
3297                            struct regulator_bulk_data *consumers)
3298 {
3299         int i;
3300         int ret;
3301
3302         for (i = 0; i < num_consumers; i++)
3303                 consumers[i].ret =
3304                             regulator_force_disable(consumers[i].consumer);
3305
3306         for (i = 0; i < num_consumers; i++) {
3307                 if (consumers[i].ret != 0) {
3308                         ret = consumers[i].ret;
3309                         goto out;
3310                 }
3311         }
3312
3313         return 0;
3314 out:
3315         return ret;
3316 }
3317 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3318
3319 /**
3320  * regulator_bulk_free - free multiple regulator consumers
3321  *
3322  * @num_consumers: Number of consumers
3323  * @consumers:     Consumer data; clients are stored here.
3324  *
3325  * This convenience API allows consumers to free multiple regulator
3326  * clients in a single API call.
3327  */
3328 void regulator_bulk_free(int num_consumers,
3329                          struct regulator_bulk_data *consumers)
3330 {
3331         int i;
3332
3333         for (i = 0; i < num_consumers; i++) {
3334                 regulator_put(consumers[i].consumer);
3335                 consumers[i].consumer = NULL;
3336         }
3337 }
3338 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3339
3340 /**
3341  * regulator_notifier_call_chain - call regulator event notifier
3342  * @rdev: regulator source
3343  * @event: notifier block
3344  * @data: callback-specific data.
3345  *
3346  * Called by regulator drivers to notify clients a regulator event has
3347  * occurred. We also notify regulator clients downstream.
3348  * Note lock must be held by caller.
3349  */
3350 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3351                                   unsigned long event, void *data)
3352 {
3353         _notifier_call_chain(rdev, event, data);
3354         return NOTIFY_DONE;
3355
3356 }
3357 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3358
3359 /**
3360  * regulator_mode_to_status - convert a regulator mode into a status
3361  *
3362  * @mode: Mode to convert
3363  *
3364  * Convert a regulator mode into a status.
3365  */
3366 int regulator_mode_to_status(unsigned int mode)
3367 {
3368         switch (mode) {
3369         case REGULATOR_MODE_FAST:
3370                 return REGULATOR_STATUS_FAST;
3371         case REGULATOR_MODE_NORMAL:
3372                 return REGULATOR_STATUS_NORMAL;
3373         case REGULATOR_MODE_IDLE:
3374                 return REGULATOR_STATUS_IDLE;
3375         case REGULATOR_MODE_STANDBY:
3376                 return REGULATOR_STATUS_STANDBY;
3377         default:
3378                 return REGULATOR_STATUS_UNDEFINED;
3379         }
3380 }
3381 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3382
3383 /*
3384  * To avoid cluttering sysfs (and memory) with useless state, only
3385  * create attributes that can be meaningfully displayed.
3386  */
3387 static int add_regulator_attributes(struct regulator_dev *rdev)
3388 {
3389         struct device           *dev = &rdev->dev;
3390         struct regulator_ops    *ops = rdev->desc->ops;
3391         int                     status = 0;
3392
3393         /* some attributes need specific methods to be displayed */
3394         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3395             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3396             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3397                 status = device_create_file(dev, &dev_attr_microvolts);
3398                 if (status < 0)
3399                         return status;
3400         }
3401         if (ops->get_current_limit) {
3402                 status = device_create_file(dev, &dev_attr_microamps);
3403                 if (status < 0)
3404                         return status;
3405         }
3406         if (ops->get_mode) {
3407                 status = device_create_file(dev, &dev_attr_opmode);
3408                 if (status < 0)
3409                         return status;
3410         }
3411         if (rdev->ena_pin || ops->is_enabled) {
3412                 status = device_create_file(dev, &dev_attr_state);
3413                 if (status < 0)
3414                         return status;
3415         }
3416         if (ops->get_status) {
3417                 status = device_create_file(dev, &dev_attr_status);
3418                 if (status < 0)
3419                         return status;
3420         }
3421         if (ops->get_bypass) {
3422                 status = device_create_file(dev, &dev_attr_bypass);
3423                 if (status < 0)
3424                         return status;
3425         }
3426
3427         /* some attributes are type-specific */
3428         if (rdev->desc->type == REGULATOR_CURRENT) {
3429                 status = device_create_file(dev, &dev_attr_requested_microamps);
3430                 if (status < 0)
3431                         return status;
3432         }
3433
3434         /* all the other attributes exist to support constraints;
3435          * don't show them if there are no constraints, or if the
3436          * relevant supporting methods are missing.
3437          */
3438         if (!rdev->constraints)
3439                 return status;
3440
3441         /* constraints need specific supporting methods */
3442         if (ops->set_voltage || ops->set_voltage_sel) {
3443                 status = device_create_file(dev, &dev_attr_min_microvolts);
3444                 if (status < 0)
3445                         return status;
3446                 status = device_create_file(dev, &dev_attr_max_microvolts);
3447                 if (status < 0)
3448                         return status;
3449         }
3450         if (ops->set_current_limit) {
3451                 status = device_create_file(dev, &dev_attr_min_microamps);
3452                 if (status < 0)
3453                         return status;
3454                 status = device_create_file(dev, &dev_attr_max_microamps);
3455                 if (status < 0)
3456                         return status;
3457         }
3458
3459         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3460         if (status < 0)
3461                 return status;
3462         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3463         if (status < 0)
3464                 return status;
3465         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3466         if (status < 0)
3467                 return status;
3468
3469         if (ops->set_suspend_voltage) {
3470                 status = device_create_file(dev,
3471                                 &dev_attr_suspend_standby_microvolts);
3472                 if (status < 0)
3473                         return status;
3474                 status = device_create_file(dev,
3475                                 &dev_attr_suspend_mem_microvolts);
3476                 if (status < 0)
3477                         return status;
3478                 status = device_create_file(dev,
3479                                 &dev_attr_suspend_disk_microvolts);
3480                 if (status < 0)
3481                         return status;
3482         }
3483
3484         if (ops->set_suspend_mode) {
3485                 status = device_create_file(dev,
3486                                 &dev_attr_suspend_standby_mode);
3487                 if (status < 0)
3488                         return status;
3489                 status = device_create_file(dev,
3490                                 &dev_attr_suspend_mem_mode);
3491                 if (status < 0)
3492                         return status;
3493                 status = device_create_file(dev,
3494                                 &dev_attr_suspend_disk_mode);
3495                 if (status < 0)
3496                         return status;
3497         }
3498
3499         return status;
3500 }
3501
3502 static void rdev_init_debugfs(struct regulator_dev *rdev)
3503 {
3504         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3505         if (!rdev->debugfs) {
3506                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3507                 return;
3508         }
3509
3510         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3511                            &rdev->use_count);
3512         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3513                            &rdev->open_count);
3514         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3515                            &rdev->bypass_count);
3516 }
3517
3518 /**
3519  * regulator_register - register regulator
3520  * @regulator_desc: regulator to register
3521  * @config: runtime configuration for regulator
3522  *
3523  * Called by regulator drivers to register a regulator.
3524  * Returns a valid pointer to struct regulator_dev on success
3525  * or an ERR_PTR() on error.
3526  */
3527 struct regulator_dev *
3528 regulator_register(const struct regulator_desc *regulator_desc,
3529                    const struct regulator_config *config)
3530 {
3531         const struct regulation_constraints *constraints = NULL;
3532         const struct regulator_init_data *init_data;
3533         static atomic_t regulator_no = ATOMIC_INIT(0);
3534         struct regulator_dev *rdev;
3535         struct device *dev;
3536         int ret, i;
3537         const char *supply = NULL;
3538
3539         if (regulator_desc == NULL || config == NULL)
3540                 return ERR_PTR(-EINVAL);
3541
3542         dev = config->dev;
3543         WARN_ON(!dev);
3544
3545         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3546                 return ERR_PTR(-EINVAL);
3547
3548         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3549             regulator_desc->type != REGULATOR_CURRENT)
3550                 return ERR_PTR(-EINVAL);
3551
3552         /* Only one of each should be implemented */
3553         WARN_ON(regulator_desc->ops->get_voltage &&
3554                 regulator_desc->ops->get_voltage_sel);
3555         WARN_ON(regulator_desc->ops->set_voltage &&
3556                 regulator_desc->ops->set_voltage_sel);
3557
3558         /* If we're using selectors we must implement list_voltage. */
3559         if (regulator_desc->ops->get_voltage_sel &&
3560             !regulator_desc->ops->list_voltage) {
3561                 return ERR_PTR(-EINVAL);
3562         }
3563         if (regulator_desc->ops->set_voltage_sel &&
3564             !regulator_desc->ops->list_voltage) {
3565                 return ERR_PTR(-EINVAL);
3566         }
3567
3568         init_data = config->init_data;
3569
3570         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3571         if (rdev == NULL)
3572                 return ERR_PTR(-ENOMEM);
3573
3574         mutex_lock(&regulator_list_mutex);
3575
3576         mutex_init(&rdev->mutex);
3577         rdev->reg_data = config->driver_data;
3578         rdev->owner = regulator_desc->owner;
3579         rdev->desc = regulator_desc;
3580         if (config->regmap)
3581                 rdev->regmap = config->regmap;
3582         else if (dev_get_regmap(dev, NULL))
3583                 rdev->regmap = dev_get_regmap(dev, NULL);
3584         else if (dev->parent)
3585                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3586         INIT_LIST_HEAD(&rdev->consumer_list);
3587         INIT_LIST_HEAD(&rdev->list);
3588         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3589         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3590
3591         /* preform any regulator specific init */
3592         if (init_data && init_data->regulator_init) {
3593                 ret = init_data->regulator_init(rdev->reg_data);
3594                 if (ret < 0)
3595                         goto clean;
3596         }
3597
3598         /* register with sysfs */
3599         rdev->dev.class = &regulator_class;
3600         rdev->dev.of_node = config->of_node;
3601         rdev->dev.parent = dev;
3602         dev_set_name(&rdev->dev, "regulator.%d",
3603                      atomic_inc_return(&regulator_no) - 1);
3604         ret = device_register(&rdev->dev);
3605         if (ret != 0) {
3606                 put_device(&rdev->dev);
3607                 goto clean;
3608         }
3609
3610         dev_set_drvdata(&rdev->dev, rdev);
3611
3612         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3613                 ret = regulator_ena_gpio_request(rdev, config);
3614                 if (ret != 0) {
3615                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3616                                  config->ena_gpio, ret);
3617                         goto wash;
3618                 }
3619
3620                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3621                         rdev->ena_gpio_state = 1;
3622
3623                 if (config->ena_gpio_invert)
3624                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3625         }
3626
3627         /* set regulator constraints */
3628         if (init_data)
3629                 constraints = &init_data->constraints;
3630
3631         ret = set_machine_constraints(rdev, constraints);
3632         if (ret < 0)
3633                 goto scrub;
3634
3635         /* add attributes supported by this regulator */
3636         ret = add_regulator_attributes(rdev);
3637         if (ret < 0)
3638                 goto scrub;
3639
3640         if (init_data && init_data->supply_regulator)
3641                 supply = init_data->supply_regulator;
3642         else if (regulator_desc->supply_name)
3643                 supply = regulator_desc->supply_name;
3644
3645         if (supply) {
3646                 struct regulator_dev *r;
3647
3648                 r = regulator_dev_lookup(dev, supply, &ret);
3649
3650                 if (ret == -ENODEV) {
3651                         /*
3652                          * No supply was specified for this regulator and
3653                          * there will never be one.
3654                          */
3655                         ret = 0;
3656                         goto add_dev;
3657                 } else if (!r) {
3658                         dev_err(dev, "Failed to find supply %s\n", supply);
3659                         ret = -EPROBE_DEFER;
3660                         goto scrub;
3661                 }
3662
3663                 ret = set_supply(rdev, r);
3664                 if (ret < 0)
3665                         goto scrub;
3666
3667                 /* Enable supply if rail is enabled */
3668                 if (_regulator_is_enabled(rdev)) {
3669                         ret = regulator_enable(rdev->supply);
3670                         if (ret < 0)
3671                                 goto scrub;
3672                 }
3673         }
3674
3675 add_dev:
3676         /* add consumers devices */
3677         if (init_data) {
3678                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3679                         ret = set_consumer_device_supply(rdev,
3680                                 init_data->consumer_supplies[i].dev_name,
3681                                 init_data->consumer_supplies[i].supply);
3682                         if (ret < 0) {
3683                                 dev_err(dev, "Failed to set supply %s\n",
3684                                         init_data->consumer_supplies[i].supply);
3685                                 goto unset_supplies;
3686                         }
3687                 }
3688         }
3689
3690         list_add(&rdev->list, &regulator_list);
3691
3692         rdev_init_debugfs(rdev);
3693 out:
3694         mutex_unlock(&regulator_list_mutex);
3695         return rdev;
3696
3697 unset_supplies:
3698         unset_regulator_supplies(rdev);
3699
3700 scrub:
3701         if (rdev->supply)
3702                 _regulator_put(rdev->supply);
3703         regulator_ena_gpio_free(rdev);
3704         kfree(rdev->constraints);
3705 wash:
3706         device_unregister(&rdev->dev);
3707         /* device core frees rdev */
3708         rdev = ERR_PTR(ret);
3709         goto out;
3710
3711 clean:
3712         kfree(rdev);
3713         rdev = ERR_PTR(ret);
3714         goto out;
3715 }
3716 EXPORT_SYMBOL_GPL(regulator_register);
3717
3718 /**
3719  * regulator_unregister - unregister regulator
3720  * @rdev: regulator to unregister
3721  *
3722  * Called by regulator drivers to unregister a regulator.
3723  */
3724 void regulator_unregister(struct regulator_dev *rdev)
3725 {
3726         if (rdev == NULL)
3727                 return;
3728
3729         if (rdev->supply)
3730                 regulator_put(rdev->supply);
3731         mutex_lock(&regulator_list_mutex);
3732         debugfs_remove_recursive(rdev->debugfs);
3733         flush_work(&rdev->disable_work.work);
3734         WARN_ON(rdev->open_count);
3735         unset_regulator_supplies(rdev);
3736         list_del(&rdev->list);
3737         kfree(rdev->constraints);
3738         regulator_ena_gpio_free(rdev);
3739         device_unregister(&rdev->dev);
3740         mutex_unlock(&regulator_list_mutex);
3741 }
3742 EXPORT_SYMBOL_GPL(regulator_unregister);
3743
3744 /**
3745  * regulator_suspend_prepare - prepare regulators for system wide suspend
3746  * @state: system suspend state
3747  *
3748  * Configure each regulator with it's suspend operating parameters for state.
3749  * This will usually be called by machine suspend code prior to supending.
3750  */
3751 int regulator_suspend_prepare(suspend_state_t state)
3752 {
3753         struct regulator_dev *rdev;
3754         int ret = 0;
3755
3756         /* ON is handled by regulator active state */
3757         if (state == PM_SUSPEND_ON)
3758                 return -EINVAL;
3759
3760         mutex_lock(&regulator_list_mutex);
3761         list_for_each_entry(rdev, &regulator_list, list) {
3762
3763                 mutex_lock(&rdev->mutex);
3764                 ret = suspend_prepare(rdev, state);
3765                 mutex_unlock(&rdev->mutex);
3766
3767                 if (ret < 0) {
3768                         rdev_err(rdev, "failed to prepare\n");
3769                         goto out;
3770                 }
3771         }
3772 out:
3773         mutex_unlock(&regulator_list_mutex);
3774         return ret;
3775 }
3776 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3777
3778 /**
3779  * regulator_suspend_finish - resume regulators from system wide suspend
3780  *
3781  * Turn on regulators that might be turned off by regulator_suspend_prepare
3782  * and that should be turned on according to the regulators properties.
3783  */
3784 int regulator_suspend_finish(void)
3785 {
3786         struct regulator_dev *rdev;
3787         int ret = 0, error;
3788
3789         mutex_lock(&regulator_list_mutex);
3790         list_for_each_entry(rdev, &regulator_list, list) {
3791                 mutex_lock(&rdev->mutex);
3792                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3793                         error = _regulator_do_enable(rdev);
3794                         if (error)
3795                                 ret = error;
3796                 } else {
3797                         if (!has_full_constraints)
3798                                 goto unlock;
3799                         if (!_regulator_is_enabled(rdev))
3800                                 goto unlock;
3801
3802                         error = _regulator_do_disable(rdev);
3803                         if (error)
3804                                 ret = error;
3805                 }
3806 unlock:
3807                 mutex_unlock(&rdev->mutex);
3808         }
3809         mutex_unlock(&regulator_list_mutex);
3810         return ret;
3811 }
3812 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3813
3814 /**
3815  * regulator_has_full_constraints - the system has fully specified constraints
3816  *
3817  * Calling this function will cause the regulator API to disable all
3818  * regulators which have a zero use count and don't have an always_on
3819  * constraint in a late_initcall.
3820  *
3821  * The intention is that this will become the default behaviour in a
3822  * future kernel release so users are encouraged to use this facility
3823  * now.
3824  */
3825 void regulator_has_full_constraints(void)
3826 {
3827         has_full_constraints = 1;
3828 }
3829 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3830
3831 /**
3832  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3833  *
3834  * Calling this function will cause the regulator API to provide a
3835  * dummy regulator to consumers if no physical regulator is found,
3836  * allowing most consumers to proceed as though a regulator were
3837  * configured.  This allows systems such as those with software
3838  * controllable regulators for the CPU core only to be brought up more
3839  * readily.
3840  */
3841 void regulator_use_dummy_regulator(void)
3842 {
3843         board_wants_dummy_regulator = true;
3844 }
3845 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3846
3847 /**
3848  * rdev_get_drvdata - get rdev regulator driver data
3849  * @rdev: regulator
3850  *
3851  * Get rdev regulator driver private data. This call can be used in the
3852  * regulator driver context.
3853  */
3854 void *rdev_get_drvdata(struct regulator_dev *rdev)
3855 {
3856         return rdev->reg_data;
3857 }
3858 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3859
3860 /**
3861  * regulator_get_drvdata - get regulator driver data
3862  * @regulator: regulator
3863  *
3864  * Get regulator driver private data. This call can be used in the consumer
3865  * driver context when non API regulator specific functions need to be called.
3866  */
3867 void *regulator_get_drvdata(struct regulator *regulator)
3868 {
3869         return regulator->rdev->reg_data;
3870 }
3871 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3872
3873 /**
3874  * regulator_set_drvdata - set regulator driver data
3875  * @regulator: regulator
3876  * @data: data
3877  */
3878 void regulator_set_drvdata(struct regulator *regulator, void *data)
3879 {
3880         regulator->rdev->reg_data = data;
3881 }
3882 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3883
3884 /**
3885  * regulator_get_id - get regulator ID
3886  * @rdev: regulator
3887  */
3888 int rdev_get_id(struct regulator_dev *rdev)
3889 {
3890         return rdev->desc->id;
3891 }
3892 EXPORT_SYMBOL_GPL(rdev_get_id);
3893
3894 struct device *rdev_get_dev(struct regulator_dev *rdev)
3895 {
3896         return &rdev->dev;
3897 }
3898 EXPORT_SYMBOL_GPL(rdev_get_dev);
3899
3900 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3901 {
3902         return reg_init_data->driver_data;
3903 }
3904 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3905
3906 #ifdef CONFIG_DEBUG_FS
3907 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3908                                     size_t count, loff_t *ppos)
3909 {
3910         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3911         ssize_t len, ret = 0;
3912         struct regulator_map *map;
3913
3914         if (!buf)
3915                 return -ENOMEM;
3916
3917         list_for_each_entry(map, &regulator_map_list, list) {
3918                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3919                                "%s -> %s.%s\n",
3920                                rdev_get_name(map->regulator), map->dev_name,
3921                                map->supply);
3922                 if (len >= 0)
3923                         ret += len;
3924                 if (ret > PAGE_SIZE) {
3925                         ret = PAGE_SIZE;
3926                         break;
3927                 }
3928         }
3929
3930         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3931
3932         kfree(buf);
3933
3934         return ret;
3935 }
3936 #endif
3937
3938 static const struct file_operations supply_map_fops = {
3939 #ifdef CONFIG_DEBUG_FS
3940         .read = supply_map_read_file,
3941         .llseek = default_llseek,
3942 #endif
3943 };
3944
3945 #ifdef CONFIG_SLEEP_MONITOR
3946 #define REGULATOR_PRETTY_OFFSET 10
3947 #define REGULATOR_MAX_NUM 64
3948 int regulator_sleep_monitor_read64(void *priv, long long *raw_val,
3949                 int check_level, int caller_type)
3950 {
3951         struct regulator_dev *rdev;
3952         int temp, idx = 0, i, enabled_num = 0;
3953         long long orig_value = 0, reverse_value = 0;
3954
3955
3956         mutex_lock(&regulator_list_mutex);
3957         list_for_each_entry(rdev, &regulator_list, list) {
3958                 mutex_lock(&rdev->mutex);
3959                 temp = _regulator_is_enabled(rdev);
3960                 mutex_unlock(&rdev->mutex);
3961
3962                 enabled_num += temp;
3963                 orig_value += ((long long)temp) << idx++;
3964                 if(idx == REGULATOR_MAX_NUM)
3965                         break;
3966         }
3967         mutex_unlock(&regulator_list_mutex);
3968
3969         /* Rearrange bit order to place regulator.0 to bit 0 */
3970         for (i = 0; i < idx; i++) {
3971                 reverse_value |= ((orig_value & (long long)1 << i) >> i) << (idx - 1 - i);
3972         }
3973
3974         *raw_val = reverse_value;
3975
3976         if (enabled_num > REGULATOR_PRETTY_OFFSET) {
3977                 if (enabled_num >= REGULATOR_PRETTY_OFFSET + DEVICE_UNKNOWN)
3978                         return DEVICE_UNKNOWN - 1;
3979                 else
3980                         return enabled_num - REGULATOR_PRETTY_OFFSET;
3981         }
3982         else /* If enabled regulator is less than REGULATOR_PRETTY_OFFSET, return 0 */
3983                 return 0;
3984 }
3985
3986 static struct sleep_monitor_ops regulator_sleep_monitor_ops = {
3987         .read64_cb_func = regulator_sleep_monitor_read64,
3988 };
3989 #endif
3990
3991 static int __init regulator_init(void)
3992 {
3993         int ret;
3994
3995         ret = class_register(&regulator_class);
3996
3997         debugfs_root = debugfs_create_dir("regulator", NULL);
3998         if (!debugfs_root)
3999                 pr_warn("regulator: Failed to create debugfs directory\n");
4000
4001         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4002                             &supply_map_fops);
4003
4004         regulator_dummy_init();
4005
4006 #ifdef CONFIG_SLEEP_MONITOR
4007                         sleep_monitor_register_ops(NULL, &regulator_sleep_monitor_ops,
4008                         SLEEP_MONITOR_REGULATOR);
4009 #endif
4010
4011         return ret;
4012 }
4013
4014 /* init early to allow our consumers to complete system booting */
4015 core_initcall(regulator_init);
4016
4017 static int __init regulator_init_complete(void)
4018 {
4019         struct regulator_dev *rdev;
4020         struct regulator_ops *ops;
4021         struct regulation_constraints *c;
4022         int enabled, ret;
4023
4024         /*
4025          * Since DT doesn't provide an idiomatic mechanism for
4026          * enabling full constraints and since it's much more natural
4027          * with DT to provide them just assume that a DT enabled
4028          * system has full constraints.
4029          */
4030         if (of_have_populated_dt())
4031                 has_full_constraints = true;
4032
4033         mutex_lock(&regulator_list_mutex);
4034
4035         /* If we have a full configuration then disable any regulators
4036          * which are not in use or always_on.  This will become the
4037          * default behaviour in the future.
4038          */
4039         list_for_each_entry(rdev, &regulator_list, list) {
4040                 ops = rdev->desc->ops;
4041                 c = rdev->constraints;
4042
4043                 if (c && c->always_on)
4044                         continue;
4045
4046                 mutex_lock(&rdev->mutex);
4047
4048                 if (rdev->use_count)
4049                         goto unlock;
4050
4051                 /* If we can't read the status assume it's on. */
4052                 if (ops->is_enabled)
4053                         enabled = ops->is_enabled(rdev);
4054                 else
4055                         enabled = 1;
4056
4057                 if (!enabled)
4058                         goto unlock;
4059
4060                 if (has_full_constraints) {
4061                         /* We log since this may kill the system if it
4062                          * goes wrong. */
4063                         rdev_info(rdev, "disabling\n");
4064                         ret = _regulator_do_disable(rdev);
4065                         if (ret != 0) {
4066                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4067                         }
4068                 } else {
4069                         /* The intention is that in future we will
4070                          * assume that full constraints are provided
4071                          * so warn even if we aren't going to do
4072                          * anything here.
4073                          */
4074                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4075                 }
4076
4077 unlock:
4078                 mutex_unlock(&rdev->mutex);
4079         }
4080
4081         mutex_unlock(&regulator_list_mutex);
4082
4083         return 0;
4084 }
4085
4086 /* FIXME:
4087  * not all module driver enable regulator before use at now,
4088  * and system regulators is not fixed, so always_on property is difficult to be set.
4089  */
4090 #if !defined(CONFIG_ARCH_SC)
4091 //late_initcall(regulator_init_complete);
4092 #endif