scsi: iscsi: Fix multiple iSCSI session unbind events sent to userspace
[platform/kernel/linux-rpi.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_current_limit(struct regulator_dev *rdev);
87 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88 static int _notifier_call_chain(struct regulator_dev *rdev,
89                                   unsigned long event, void *data);
90 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91                                      int min_uV, int max_uV);
92 static int regulator_balance_voltage(struct regulator_dev *rdev,
93                                      suspend_state_t state);
94 static struct regulator *create_regulator(struct regulator_dev *rdev,
95                                           struct device *dev,
96                                           const char *supply_name);
97 static void destroy_regulator(struct regulator *regulator);
98 static void _regulator_put(struct regulator *regulator);
99
100 const char *rdev_get_name(struct regulator_dev *rdev)
101 {
102         if (rdev->constraints && rdev->constraints->name)
103                 return rdev->constraints->name;
104         else if (rdev->desc->name)
105                 return rdev->desc->name;
106         else
107                 return "";
108 }
109 EXPORT_SYMBOL_GPL(rdev_get_name);
110
111 static bool have_full_constraints(void)
112 {
113         return has_full_constraints || of_have_populated_dt();
114 }
115
116 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117 {
118         if (!rdev->constraints) {
119                 rdev_err(rdev, "no constraints\n");
120                 return false;
121         }
122
123         if (rdev->constraints->valid_ops_mask & ops)
124                 return true;
125
126         return false;
127 }
128
129 /**
130  * regulator_lock_nested - lock a single regulator
131  * @rdev:               regulator source
132  * @ww_ctx:             w/w mutex acquire context
133  *
134  * This function can be called many times by one task on
135  * a single regulator and its mutex will be locked only
136  * once. If a task, which is calling this function is other
137  * than the one, which initially locked the mutex, it will
138  * wait on mutex.
139  */
140 static inline int regulator_lock_nested(struct regulator_dev *rdev,
141                                         struct ww_acquire_ctx *ww_ctx)
142 {
143         bool lock = false;
144         int ret = 0;
145
146         mutex_lock(&regulator_nesting_mutex);
147
148         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
149                 if (rdev->mutex_owner == current)
150                         rdev->ref_cnt++;
151                 else
152                         lock = true;
153
154                 if (lock) {
155                         mutex_unlock(&regulator_nesting_mutex);
156                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157                         mutex_lock(&regulator_nesting_mutex);
158                 }
159         } else {
160                 lock = true;
161         }
162
163         if (lock && ret != -EDEADLK) {
164                 rdev->ref_cnt++;
165                 rdev->mutex_owner = current;
166         }
167
168         mutex_unlock(&regulator_nesting_mutex);
169
170         return ret;
171 }
172
173 /**
174  * regulator_lock - lock a single regulator
175  * @rdev:               regulator source
176  *
177  * This function can be called many times by one task on
178  * a single regulator and its mutex will be locked only
179  * once. If a task, which is calling this function is other
180  * than the one, which initially locked the mutex, it will
181  * wait on mutex.
182  */
183 static void regulator_lock(struct regulator_dev *rdev)
184 {
185         regulator_lock_nested(rdev, NULL);
186 }
187
188 /**
189  * regulator_unlock - unlock a single regulator
190  * @rdev:               regulator_source
191  *
192  * This function unlocks the mutex when the
193  * reference counter reaches 0.
194  */
195 static void regulator_unlock(struct regulator_dev *rdev)
196 {
197         mutex_lock(&regulator_nesting_mutex);
198
199         if (--rdev->ref_cnt == 0) {
200                 rdev->mutex_owner = NULL;
201                 ww_mutex_unlock(&rdev->mutex);
202         }
203
204         WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206         mutex_unlock(&regulator_nesting_mutex);
207 }
208
209 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210 {
211         struct regulator_dev *c_rdev;
212         int i;
213
214         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217                 if (rdev->supply->rdev == c_rdev)
218                         return true;
219         }
220
221         return false;
222 }
223
224 static void regulator_unlock_recursive(struct regulator_dev *rdev,
225                                        unsigned int n_coupled)
226 {
227         struct regulator_dev *c_rdev, *supply_rdev;
228         int i, supply_n_coupled;
229
230         for (i = n_coupled; i > 0; i--) {
231                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233                 if (!c_rdev)
234                         continue;
235
236                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237                         supply_rdev = c_rdev->supply->rdev;
238                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240                         regulator_unlock_recursive(supply_rdev,
241                                                    supply_n_coupled);
242                 }
243
244                 regulator_unlock(c_rdev);
245         }
246 }
247
248 static int regulator_lock_recursive(struct regulator_dev *rdev,
249                                     struct regulator_dev **new_contended_rdev,
250                                     struct regulator_dev **old_contended_rdev,
251                                     struct ww_acquire_ctx *ww_ctx)
252 {
253         struct regulator_dev *c_rdev;
254         int i, err;
255
256         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259                 if (!c_rdev)
260                         continue;
261
262                 if (c_rdev != *old_contended_rdev) {
263                         err = regulator_lock_nested(c_rdev, ww_ctx);
264                         if (err) {
265                                 if (err == -EDEADLK) {
266                                         *new_contended_rdev = c_rdev;
267                                         goto err_unlock;
268                                 }
269
270                                 /* shouldn't happen */
271                                 WARN_ON_ONCE(err != -EALREADY);
272                         }
273                 } else {
274                         *old_contended_rdev = NULL;
275                 }
276
277                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278                         err = regulator_lock_recursive(c_rdev->supply->rdev,
279                                                        new_contended_rdev,
280                                                        old_contended_rdev,
281                                                        ww_ctx);
282                         if (err) {
283                                 regulator_unlock(c_rdev);
284                                 goto err_unlock;
285                         }
286                 }
287         }
288
289         return 0;
290
291 err_unlock:
292         regulator_unlock_recursive(rdev, i);
293
294         return err;
295 }
296
297 /**
298  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299  *                              regulators
300  * @rdev:                       regulator source
301  * @ww_ctx:                     w/w mutex acquire context
302  *
303  * Unlock all regulators related with rdev by coupling or supplying.
304  */
305 static void regulator_unlock_dependent(struct regulator_dev *rdev,
306                                        struct ww_acquire_ctx *ww_ctx)
307 {
308         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309         ww_acquire_fini(ww_ctx);
310 }
311
312 /**
313  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314  * @rdev:                       regulator source
315  * @ww_ctx:                     w/w mutex acquire context
316  *
317  * This function as a wrapper on regulator_lock_recursive(), which locks
318  * all regulators related with rdev by coupling or supplying.
319  */
320 static void regulator_lock_dependent(struct regulator_dev *rdev,
321                                      struct ww_acquire_ctx *ww_ctx)
322 {
323         struct regulator_dev *new_contended_rdev = NULL;
324         struct regulator_dev *old_contended_rdev = NULL;
325         int err;
326
327         mutex_lock(&regulator_list_mutex);
328
329         ww_acquire_init(ww_ctx, &regulator_ww_class);
330
331         do {
332                 if (new_contended_rdev) {
333                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334                         old_contended_rdev = new_contended_rdev;
335                         old_contended_rdev->ref_cnt++;
336                 }
337
338                 err = regulator_lock_recursive(rdev,
339                                                &new_contended_rdev,
340                                                &old_contended_rdev,
341                                                ww_ctx);
342
343                 if (old_contended_rdev)
344                         regulator_unlock(old_contended_rdev);
345
346         } while (err == -EDEADLK);
347
348         ww_acquire_done(ww_ctx);
349
350         mutex_unlock(&regulator_list_mutex);
351 }
352
353 /**
354  * of_get_child_regulator - get a child regulator device node
355  * based on supply name
356  * @parent: Parent device node
357  * @prop_name: Combination regulator supply name and "-supply"
358  *
359  * Traverse all child nodes.
360  * Extract the child regulator device node corresponding to the supply name.
361  * returns the device node corresponding to the regulator if found, else
362  * returns NULL.
363  */
364 static struct device_node *of_get_child_regulator(struct device_node *parent,
365                                                   const char *prop_name)
366 {
367         struct device_node *regnode = NULL;
368         struct device_node *child = NULL;
369
370         for_each_child_of_node(parent, child) {
371                 regnode = of_parse_phandle(child, prop_name, 0);
372
373                 if (!regnode) {
374                         regnode = of_get_child_regulator(child, prop_name);
375                         if (regnode)
376                                 goto err_node_put;
377                 } else {
378                         goto err_node_put;
379                 }
380         }
381         return NULL;
382
383 err_node_put:
384         of_node_put(child);
385         return regnode;
386 }
387
388 /**
389  * of_get_regulator - get a regulator device node based on supply name
390  * @dev: Device pointer for the consumer (of regulator) device
391  * @supply: regulator supply name
392  *
393  * Extract the regulator device node corresponding to the supply name.
394  * returns the device node corresponding to the regulator if found, else
395  * returns NULL.
396  */
397 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398 {
399         struct device_node *regnode = NULL;
400         char prop_name[64]; /* 64 is max size of property name */
401
402         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404         snprintf(prop_name, 64, "%s-supply", supply);
405         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407         if (!regnode) {
408                 regnode = of_get_child_regulator(dev->of_node, prop_name);
409                 if (regnode)
410                         return regnode;
411
412                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413                                 prop_name, dev->of_node);
414                 return NULL;
415         }
416         return regnode;
417 }
418
419 /* Platform voltage constraint check */
420 int regulator_check_voltage(struct regulator_dev *rdev,
421                             int *min_uV, int *max_uV)
422 {
423         BUG_ON(*min_uV > *max_uV);
424
425         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426                 rdev_err(rdev, "voltage operation not allowed\n");
427                 return -EPERM;
428         }
429
430         if (*max_uV > rdev->constraints->max_uV)
431                 *max_uV = rdev->constraints->max_uV;
432         if (*min_uV < rdev->constraints->min_uV)
433                 *min_uV = rdev->constraints->min_uV;
434
435         if (*min_uV > *max_uV) {
436                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437                          *min_uV, *max_uV);
438                 return -EINVAL;
439         }
440
441         return 0;
442 }
443
444 /* return 0 if the state is valid */
445 static int regulator_check_states(suspend_state_t state)
446 {
447         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448 }
449
450 /* Make sure we select a voltage that suits the needs of all
451  * regulator consumers
452  */
453 int regulator_check_consumers(struct regulator_dev *rdev,
454                               int *min_uV, int *max_uV,
455                               suspend_state_t state)
456 {
457         struct regulator *regulator;
458         struct regulator_voltage *voltage;
459
460         list_for_each_entry(regulator, &rdev->consumer_list, list) {
461                 voltage = &regulator->voltage[state];
462                 /*
463                  * Assume consumers that didn't say anything are OK
464                  * with anything in the constraint range.
465                  */
466                 if (!voltage->min_uV && !voltage->max_uV)
467                         continue;
468
469                 if (*max_uV > voltage->max_uV)
470                         *max_uV = voltage->max_uV;
471                 if (*min_uV < voltage->min_uV)
472                         *min_uV = voltage->min_uV;
473         }
474
475         if (*min_uV > *max_uV) {
476                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477                         *min_uV, *max_uV);
478                 return -EINVAL;
479         }
480
481         return 0;
482 }
483
484 /* current constraint check */
485 static int regulator_check_current_limit(struct regulator_dev *rdev,
486                                         int *min_uA, int *max_uA)
487 {
488         BUG_ON(*min_uA > *max_uA);
489
490         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491                 rdev_err(rdev, "current operation not allowed\n");
492                 return -EPERM;
493         }
494
495         if (*max_uA > rdev->constraints->max_uA)
496                 *max_uA = rdev->constraints->max_uA;
497         if (*min_uA < rdev->constraints->min_uA)
498                 *min_uA = rdev->constraints->min_uA;
499
500         if (*min_uA > *max_uA) {
501                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502                          *min_uA, *max_uA);
503                 return -EINVAL;
504         }
505
506         return 0;
507 }
508
509 /* operating mode constraint check */
510 static int regulator_mode_constrain(struct regulator_dev *rdev,
511                                     unsigned int *mode)
512 {
513         switch (*mode) {
514         case REGULATOR_MODE_FAST:
515         case REGULATOR_MODE_NORMAL:
516         case REGULATOR_MODE_IDLE:
517         case REGULATOR_MODE_STANDBY:
518                 break;
519         default:
520                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521                 return -EINVAL;
522         }
523
524         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525                 rdev_err(rdev, "mode operation not allowed\n");
526                 return -EPERM;
527         }
528
529         /* The modes are bitmasks, the most power hungry modes having
530          * the lowest values. If the requested mode isn't supported
531          * try higher modes.
532          */
533         while (*mode) {
534                 if (rdev->constraints->valid_modes_mask & *mode)
535                         return 0;
536                 *mode /= 2;
537         }
538
539         return -EINVAL;
540 }
541
542 static inline struct regulator_state *
543 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544 {
545         if (rdev->constraints == NULL)
546                 return NULL;
547
548         switch (state) {
549         case PM_SUSPEND_STANDBY:
550                 return &rdev->constraints->state_standby;
551         case PM_SUSPEND_MEM:
552                 return &rdev->constraints->state_mem;
553         case PM_SUSPEND_MAX:
554                 return &rdev->constraints->state_disk;
555         default:
556                 return NULL;
557         }
558 }
559
560 static const struct regulator_state *
561 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562 {
563         const struct regulator_state *rstate;
564
565         rstate = regulator_get_suspend_state(rdev, state);
566         if (rstate == NULL)
567                 return NULL;
568
569         /* If we have no suspend mode configuration don't set anything;
570          * only warn if the driver implements set_suspend_voltage or
571          * set_suspend_mode callback.
572          */
573         if (rstate->enabled != ENABLE_IN_SUSPEND &&
574             rstate->enabled != DISABLE_IN_SUSPEND) {
575                 if (rdev->desc->ops->set_suspend_voltage ||
576                     rdev->desc->ops->set_suspend_mode)
577                         rdev_warn(rdev, "No configuration\n");
578                 return NULL;
579         }
580
581         return rstate;
582 }
583
584 static ssize_t microvolts_show(struct device *dev,
585                                struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588         int uV;
589
590         regulator_lock(rdev);
591         uV = regulator_get_voltage_rdev(rdev);
592         regulator_unlock(rdev);
593
594         if (uV < 0)
595                 return uV;
596         return sprintf(buf, "%d\n", uV);
597 }
598 static DEVICE_ATTR_RO(microvolts);
599
600 static ssize_t microamps_show(struct device *dev,
601                               struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606 }
607 static DEVICE_ATTR_RO(microamps);
608
609 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610                          char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614         return sprintf(buf, "%s\n", rdev_get_name(rdev));
615 }
616 static DEVICE_ATTR_RO(name);
617
618 static const char *regulator_opmode_to_str(int mode)
619 {
620         switch (mode) {
621         case REGULATOR_MODE_FAST:
622                 return "fast";
623         case REGULATOR_MODE_NORMAL:
624                 return "normal";
625         case REGULATOR_MODE_IDLE:
626                 return "idle";
627         case REGULATOR_MODE_STANDBY:
628                 return "standby";
629         }
630         return "unknown";
631 }
632
633 static ssize_t regulator_print_opmode(char *buf, int mode)
634 {
635         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 }
637
638 static ssize_t opmode_show(struct device *dev,
639                            struct device_attribute *attr, char *buf)
640 {
641         struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644 }
645 static DEVICE_ATTR_RO(opmode);
646
647 static ssize_t regulator_print_state(char *buf, int state)
648 {
649         if (state > 0)
650                 return sprintf(buf, "enabled\n");
651         else if (state == 0)
652                 return sprintf(buf, "disabled\n");
653         else
654                 return sprintf(buf, "unknown\n");
655 }
656
657 static ssize_t state_show(struct device *dev,
658                           struct device_attribute *attr, char *buf)
659 {
660         struct regulator_dev *rdev = dev_get_drvdata(dev);
661         ssize_t ret;
662
663         regulator_lock(rdev);
664         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665         regulator_unlock(rdev);
666
667         return ret;
668 }
669 static DEVICE_ATTR_RO(state);
670
671 static ssize_t status_show(struct device *dev,
672                            struct device_attribute *attr, char *buf)
673 {
674         struct regulator_dev *rdev = dev_get_drvdata(dev);
675         int status;
676         char *label;
677
678         status = rdev->desc->ops->get_status(rdev);
679         if (status < 0)
680                 return status;
681
682         switch (status) {
683         case REGULATOR_STATUS_OFF:
684                 label = "off";
685                 break;
686         case REGULATOR_STATUS_ON:
687                 label = "on";
688                 break;
689         case REGULATOR_STATUS_ERROR:
690                 label = "error";
691                 break;
692         case REGULATOR_STATUS_FAST:
693                 label = "fast";
694                 break;
695         case REGULATOR_STATUS_NORMAL:
696                 label = "normal";
697                 break;
698         case REGULATOR_STATUS_IDLE:
699                 label = "idle";
700                 break;
701         case REGULATOR_STATUS_STANDBY:
702                 label = "standby";
703                 break;
704         case REGULATOR_STATUS_BYPASS:
705                 label = "bypass";
706                 break;
707         case REGULATOR_STATUS_UNDEFINED:
708                 label = "undefined";
709                 break;
710         default:
711                 return -ERANGE;
712         }
713
714         return sprintf(buf, "%s\n", label);
715 }
716 static DEVICE_ATTR_RO(status);
717
718 static ssize_t min_microamps_show(struct device *dev,
719                                   struct device_attribute *attr, char *buf)
720 {
721         struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723         if (!rdev->constraints)
724                 return sprintf(buf, "constraint not defined\n");
725
726         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727 }
728 static DEVICE_ATTR_RO(min_microamps);
729
730 static ssize_t max_microamps_show(struct device *dev,
731                                   struct device_attribute *attr, char *buf)
732 {
733         struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735         if (!rdev->constraints)
736                 return sprintf(buf, "constraint not defined\n");
737
738         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739 }
740 static DEVICE_ATTR_RO(max_microamps);
741
742 static ssize_t min_microvolts_show(struct device *dev,
743                                    struct device_attribute *attr, char *buf)
744 {
745         struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747         if (!rdev->constraints)
748                 return sprintf(buf, "constraint not defined\n");
749
750         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751 }
752 static DEVICE_ATTR_RO(min_microvolts);
753
754 static ssize_t max_microvolts_show(struct device *dev,
755                                    struct device_attribute *attr, char *buf)
756 {
757         struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759         if (!rdev->constraints)
760                 return sprintf(buf, "constraint not defined\n");
761
762         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763 }
764 static DEVICE_ATTR_RO(max_microvolts);
765
766 static ssize_t requested_microamps_show(struct device *dev,
767                                         struct device_attribute *attr, char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         struct regulator *regulator;
771         int uA = 0;
772
773         regulator_lock(rdev);
774         list_for_each_entry(regulator, &rdev->consumer_list, list) {
775                 if (regulator->enable_count)
776                         uA += regulator->uA_load;
777         }
778         regulator_unlock(rdev);
779         return sprintf(buf, "%d\n", uA);
780 }
781 static DEVICE_ATTR_RO(requested_microamps);
782
783 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784                               char *buf)
785 {
786         struct regulator_dev *rdev = dev_get_drvdata(dev);
787         return sprintf(buf, "%d\n", rdev->use_count);
788 }
789 static DEVICE_ATTR_RO(num_users);
790
791 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792                          char *buf)
793 {
794         struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796         switch (rdev->desc->type) {
797         case REGULATOR_VOLTAGE:
798                 return sprintf(buf, "voltage\n");
799         case REGULATOR_CURRENT:
800                 return sprintf(buf, "current\n");
801         }
802         return sprintf(buf, "unknown\n");
803 }
804 static DEVICE_ATTR_RO(type);
805
806 static ssize_t suspend_mem_microvolts_show(struct device *dev,
807                                            struct device_attribute *attr, char *buf)
808 {
809         struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812 }
813 static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815 static ssize_t suspend_disk_microvolts_show(struct device *dev,
816                                             struct device_attribute *attr, char *buf)
817 {
818         struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821 }
822 static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824 static ssize_t suspend_standby_microvolts_show(struct device *dev,
825                                                struct device_attribute *attr, char *buf)
826 {
827         struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830 }
831 static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833 static ssize_t suspend_mem_mode_show(struct device *dev,
834                                      struct device_attribute *attr, char *buf)
835 {
836         struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838         return regulator_print_opmode(buf,
839                 rdev->constraints->state_mem.mode);
840 }
841 static DEVICE_ATTR_RO(suspend_mem_mode);
842
843 static ssize_t suspend_disk_mode_show(struct device *dev,
844                                       struct device_attribute *attr, char *buf)
845 {
846         struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848         return regulator_print_opmode(buf,
849                 rdev->constraints->state_disk.mode);
850 }
851 static DEVICE_ATTR_RO(suspend_disk_mode);
852
853 static ssize_t suspend_standby_mode_show(struct device *dev,
854                                          struct device_attribute *attr, char *buf)
855 {
856         struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858         return regulator_print_opmode(buf,
859                 rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR_RO(suspend_standby_mode);
862
863 static ssize_t suspend_mem_state_show(struct device *dev,
864                                       struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_mem.enabled);
870 }
871 static DEVICE_ATTR_RO(suspend_mem_state);
872
873 static ssize_t suspend_disk_state_show(struct device *dev,
874                                        struct device_attribute *attr, char *buf)
875 {
876         struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878         return regulator_print_state(buf,
879                         rdev->constraints->state_disk.enabled);
880 }
881 static DEVICE_ATTR_RO(suspend_disk_state);
882
883 static ssize_t suspend_standby_state_show(struct device *dev,
884                                           struct device_attribute *attr, char *buf)
885 {
886         struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888         return regulator_print_state(buf,
889                         rdev->constraints->state_standby.enabled);
890 }
891 static DEVICE_ATTR_RO(suspend_standby_state);
892
893 static ssize_t bypass_show(struct device *dev,
894                            struct device_attribute *attr, char *buf)
895 {
896         struct regulator_dev *rdev = dev_get_drvdata(dev);
897         const char *report;
898         bool bypass;
899         int ret;
900
901         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903         if (ret != 0)
904                 report = "unknown";
905         else if (bypass)
906                 report = "enabled";
907         else
908                 report = "disabled";
909
910         return sprintf(buf, "%s\n", report);
911 }
912 static DEVICE_ATTR_RO(bypass);
913
914 /* Calculate the new optimum regulator operating mode based on the new total
915  * consumer load. All locks held by caller
916  */
917 static int drms_uA_update(struct regulator_dev *rdev)
918 {
919         struct regulator *sibling;
920         int current_uA = 0, output_uV, input_uV, err;
921         unsigned int mode;
922
923         /*
924          * first check to see if we can set modes at all, otherwise just
925          * tell the consumer everything is OK.
926          */
927         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928                 rdev_dbg(rdev, "DRMS operation not allowed\n");
929                 return 0;
930         }
931
932         if (!rdev->desc->ops->get_optimum_mode &&
933             !rdev->desc->ops->set_load)
934                 return 0;
935
936         if (!rdev->desc->ops->set_mode &&
937             !rdev->desc->ops->set_load)
938                 return -EINVAL;
939
940         /* calc total requested load */
941         list_for_each_entry(sibling, &rdev->consumer_list, list) {
942                 if (sibling->enable_count)
943                         current_uA += sibling->uA_load;
944         }
945
946         current_uA += rdev->constraints->system_load;
947
948         if (rdev->desc->ops->set_load) {
949                 /* set the optimum mode for our new total regulator load */
950                 err = rdev->desc->ops->set_load(rdev, current_uA);
951                 if (err < 0)
952                         rdev_err(rdev, "failed to set load %d: %pe\n",
953                                  current_uA, ERR_PTR(err));
954         } else {
955                 /* get output voltage */
956                 output_uV = regulator_get_voltage_rdev(rdev);
957                 if (output_uV <= 0) {
958                         rdev_err(rdev, "invalid output voltage found\n");
959                         return -EINVAL;
960                 }
961
962                 /* get input voltage */
963                 input_uV = 0;
964                 if (rdev->supply)
965                         input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
966                 if (input_uV <= 0)
967                         input_uV = rdev->constraints->input_uV;
968                 if (input_uV <= 0) {
969                         rdev_err(rdev, "invalid input voltage found\n");
970                         return -EINVAL;
971                 }
972
973                 /* now get the optimum mode for our new total regulator load */
974                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975                                                          output_uV, current_uA);
976
977                 /* check the new mode is allowed */
978                 err = regulator_mode_constrain(rdev, &mode);
979                 if (err < 0) {
980                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981                                  current_uA, input_uV, output_uV, ERR_PTR(err));
982                         return err;
983                 }
984
985                 err = rdev->desc->ops->set_mode(rdev, mode);
986                 if (err < 0)
987                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988                                  mode, ERR_PTR(err));
989         }
990
991         return err;
992 }
993
994 static int __suspend_set_state(struct regulator_dev *rdev,
995                                const struct regulator_state *rstate)
996 {
997         int ret = 0;
998
999         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000                 rdev->desc->ops->set_suspend_enable)
1001                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003                 rdev->desc->ops->set_suspend_disable)
1004                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006                 ret = 0;
1007
1008         if (ret < 0) {
1009                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010                 return ret;
1011         }
1012
1013         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015                 if (ret < 0) {
1016                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017                         return ret;
1018                 }
1019         }
1020
1021         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023                 if (ret < 0) {
1024                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025                         return ret;
1026                 }
1027         }
1028
1029         return ret;
1030 }
1031
1032 static int suspend_set_initial_state(struct regulator_dev *rdev)
1033 {
1034         const struct regulator_state *rstate;
1035
1036         rstate = regulator_get_suspend_state_check(rdev,
1037                         rdev->constraints->initial_state);
1038         if (!rstate)
1039                 return 0;
1040
1041         return __suspend_set_state(rdev, rstate);
1042 }
1043
1044 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045 static void print_constraints_debug(struct regulator_dev *rdev)
1046 {
1047         struct regulation_constraints *constraints = rdev->constraints;
1048         char buf[160] = "";
1049         size_t len = sizeof(buf) - 1;
1050         int count = 0;
1051         int ret;
1052
1053         if (constraints->min_uV && constraints->max_uV) {
1054                 if (constraints->min_uV == constraints->max_uV)
1055                         count += scnprintf(buf + count, len - count, "%d mV ",
1056                                            constraints->min_uV / 1000);
1057                 else
1058                         count += scnprintf(buf + count, len - count,
1059                                            "%d <--> %d mV ",
1060                                            constraints->min_uV / 1000,
1061                                            constraints->max_uV / 1000);
1062         }
1063
1064         if (!constraints->min_uV ||
1065             constraints->min_uV != constraints->max_uV) {
1066                 ret = regulator_get_voltage_rdev(rdev);
1067                 if (ret > 0)
1068                         count += scnprintf(buf + count, len - count,
1069                                            "at %d mV ", ret / 1000);
1070         }
1071
1072         if (constraints->uV_offset)
1073                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074                                    constraints->uV_offset / 1000);
1075
1076         if (constraints->min_uA && constraints->max_uA) {
1077                 if (constraints->min_uA == constraints->max_uA)
1078                         count += scnprintf(buf + count, len - count, "%d mA ",
1079                                            constraints->min_uA / 1000);
1080                 else
1081                         count += scnprintf(buf + count, len - count,
1082                                            "%d <--> %d mA ",
1083                                            constraints->min_uA / 1000,
1084                                            constraints->max_uA / 1000);
1085         }
1086
1087         if (!constraints->min_uA ||
1088             constraints->min_uA != constraints->max_uA) {
1089                 ret = _regulator_get_current_limit(rdev);
1090                 if (ret > 0)
1091                         count += scnprintf(buf + count, len - count,
1092                                            "at %d mA ", ret / 1000);
1093         }
1094
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096                 count += scnprintf(buf + count, len - count, "fast ");
1097         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098                 count += scnprintf(buf + count, len - count, "normal ");
1099         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100                 count += scnprintf(buf + count, len - count, "idle ");
1101         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102                 count += scnprintf(buf + count, len - count, "standby ");
1103
1104         if (!count)
1105                 count = scnprintf(buf, len, "no parameters");
1106         else
1107                 --count;
1108
1109         count += scnprintf(buf + count, len - count, ", %s",
1110                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112         rdev_dbg(rdev, "%s\n", buf);
1113 }
1114 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118 static void print_constraints(struct regulator_dev *rdev)
1119 {
1120         struct regulation_constraints *constraints = rdev->constraints;
1121
1122         print_constraints_debug(rdev);
1123
1124         if ((constraints->min_uV != constraints->max_uV) &&
1125             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126                 rdev_warn(rdev,
1127                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128 }
1129
1130 static int machine_constraints_voltage(struct regulator_dev *rdev,
1131         struct regulation_constraints *constraints)
1132 {
1133         const struct regulator_ops *ops = rdev->desc->ops;
1134         int ret;
1135
1136         /* do we need to apply the constraint voltage */
1137         if (rdev->constraints->apply_uV &&
1138             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139                 int target_min, target_max;
1140                 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142                 if (current_uV == -ENOTRECOVERABLE) {
1143                         /* This regulator can't be read and must be initialized */
1144                         rdev_info(rdev, "Setting %d-%duV\n",
1145                                   rdev->constraints->min_uV,
1146                                   rdev->constraints->max_uV);
1147                         _regulator_do_set_voltage(rdev,
1148                                                   rdev->constraints->min_uV,
1149                                                   rdev->constraints->max_uV);
1150                         current_uV = regulator_get_voltage_rdev(rdev);
1151                 }
1152
1153                 if (current_uV < 0) {
1154                         rdev_err(rdev,
1155                                  "failed to get the current voltage: %pe\n",
1156                                  ERR_PTR(current_uV));
1157                         return current_uV;
1158                 }
1159
1160                 /*
1161                  * If we're below the minimum voltage move up to the
1162                  * minimum voltage, if we're above the maximum voltage
1163                  * then move down to the maximum.
1164                  */
1165                 target_min = current_uV;
1166                 target_max = current_uV;
1167
1168                 if (current_uV < rdev->constraints->min_uV) {
1169                         target_min = rdev->constraints->min_uV;
1170                         target_max = rdev->constraints->min_uV;
1171                 }
1172
1173                 if (current_uV > rdev->constraints->max_uV) {
1174                         target_min = rdev->constraints->max_uV;
1175                         target_max = rdev->constraints->max_uV;
1176                 }
1177
1178                 if (target_min != current_uV || target_max != current_uV) {
1179                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180                                   current_uV, target_min, target_max);
1181                         ret = _regulator_do_set_voltage(
1182                                 rdev, target_min, target_max);
1183                         if (ret < 0) {
1184                                 rdev_err(rdev,
1185                                         "failed to apply %d-%duV constraint: %pe\n",
1186                                         target_min, target_max, ERR_PTR(ret));
1187                                 return ret;
1188                         }
1189                 }
1190         }
1191
1192         /* constrain machine-level voltage specs to fit
1193          * the actual range supported by this regulator.
1194          */
1195         if (ops->list_voltage && rdev->desc->n_voltages) {
1196                 int     count = rdev->desc->n_voltages;
1197                 int     i;
1198                 int     min_uV = INT_MAX;
1199                 int     max_uV = INT_MIN;
1200                 int     cmin = constraints->min_uV;
1201                 int     cmax = constraints->max_uV;
1202
1203                 /* it's safe to autoconfigure fixed-voltage supplies
1204                  * and the constraints are used by list_voltage.
1205                  */
1206                 if (count == 1 && !cmin) {
1207                         cmin = 1;
1208                         cmax = INT_MAX;
1209                         constraints->min_uV = cmin;
1210                         constraints->max_uV = cmax;
1211                 }
1212
1213                 /* voltage constraints are optional */
1214                 if ((cmin == 0) && (cmax == 0))
1215                         return 0;
1216
1217                 /* else require explicit machine-level constraints */
1218                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219                         rdev_err(rdev, "invalid voltage constraints\n");
1220                         return -EINVAL;
1221                 }
1222
1223                 /* no need to loop voltages if range is continuous */
1224                 if (rdev->desc->continuous_voltage_range)
1225                         return 0;
1226
1227                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228                 for (i = 0; i < count; i++) {
1229                         int     value;
1230
1231                         value = ops->list_voltage(rdev, i);
1232                         if (value <= 0)
1233                                 continue;
1234
1235                         /* maybe adjust [min_uV..max_uV] */
1236                         if (value >= cmin && value < min_uV)
1237                                 min_uV = value;
1238                         if (value <= cmax && value > max_uV)
1239                                 max_uV = value;
1240                 }
1241
1242                 /* final: [min_uV..max_uV] valid iff constraints valid */
1243                 if (max_uV < min_uV) {
1244                         rdev_err(rdev,
1245                                  "unsupportable voltage constraints %u-%uuV\n",
1246                                  min_uV, max_uV);
1247                         return -EINVAL;
1248                 }
1249
1250                 /* use regulator's subset of machine constraints */
1251                 if (constraints->min_uV < min_uV) {
1252                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253                                  constraints->min_uV, min_uV);
1254                         constraints->min_uV = min_uV;
1255                 }
1256                 if (constraints->max_uV > max_uV) {
1257                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258                                  constraints->max_uV, max_uV);
1259                         constraints->max_uV = max_uV;
1260                 }
1261         }
1262
1263         return 0;
1264 }
1265
1266 static int machine_constraints_current(struct regulator_dev *rdev,
1267         struct regulation_constraints *constraints)
1268 {
1269         const struct regulator_ops *ops = rdev->desc->ops;
1270         int ret;
1271
1272         if (!constraints->min_uA && !constraints->max_uA)
1273                 return 0;
1274
1275         if (constraints->min_uA > constraints->max_uA) {
1276                 rdev_err(rdev, "Invalid current constraints\n");
1277                 return -EINVAL;
1278         }
1279
1280         if (!ops->set_current_limit || !ops->get_current_limit) {
1281                 rdev_warn(rdev, "Operation of current configuration missing\n");
1282                 return 0;
1283         }
1284
1285         /* Set regulator current in constraints range */
1286         ret = ops->set_current_limit(rdev, constraints->min_uA,
1287                         constraints->max_uA);
1288         if (ret < 0) {
1289                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290                 return ret;
1291         }
1292
1293         return 0;
1294 }
1295
1296 static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298 static int notif_set_limit(struct regulator_dev *rdev,
1299                            int (*set)(struct regulator_dev *, int, int, bool),
1300                            int limit, int severity)
1301 {
1302         bool enable;
1303
1304         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305                 enable = false;
1306                 limit = 0;
1307         } else {
1308                 enable = true;
1309         }
1310
1311         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312                 limit = 0;
1313
1314         return set(rdev, limit, severity, enable);
1315 }
1316
1317 static int handle_notify_limits(struct regulator_dev *rdev,
1318                         int (*set)(struct regulator_dev *, int, int, bool),
1319                         struct notification_limit *limits)
1320 {
1321         int ret = 0;
1322
1323         if (!set)
1324                 return -EOPNOTSUPP;
1325
1326         if (limits->prot)
1327                 ret = notif_set_limit(rdev, set, limits->prot,
1328                                       REGULATOR_SEVERITY_PROT);
1329         if (ret)
1330                 return ret;
1331
1332         if (limits->err)
1333                 ret = notif_set_limit(rdev, set, limits->err,
1334                                       REGULATOR_SEVERITY_ERR);
1335         if (ret)
1336                 return ret;
1337
1338         if (limits->warn)
1339                 ret = notif_set_limit(rdev, set, limits->warn,
1340                                       REGULATOR_SEVERITY_WARN);
1341
1342         return ret;
1343 }
1344 /**
1345  * set_machine_constraints - sets regulator constraints
1346  * @rdev: regulator source
1347  *
1348  * Allows platform initialisation code to define and constrain
1349  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1350  * Constraints *must* be set by platform code in order for some
1351  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352  * set_mode.
1353  */
1354 static int set_machine_constraints(struct regulator_dev *rdev)
1355 {
1356         int ret = 0;
1357         const struct regulator_ops *ops = rdev->desc->ops;
1358
1359         ret = machine_constraints_voltage(rdev, rdev->constraints);
1360         if (ret != 0)
1361                 return ret;
1362
1363         ret = machine_constraints_current(rdev, rdev->constraints);
1364         if (ret != 0)
1365                 return ret;
1366
1367         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368                 ret = ops->set_input_current_limit(rdev,
1369                                                    rdev->constraints->ilim_uA);
1370                 if (ret < 0) {
1371                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372                         return ret;
1373                 }
1374         }
1375
1376         /* do we need to setup our suspend state */
1377         if (rdev->constraints->initial_state) {
1378                 ret = suspend_set_initial_state(rdev);
1379                 if (ret < 0) {
1380                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381                         return ret;
1382                 }
1383         }
1384
1385         if (rdev->constraints->initial_mode) {
1386                 if (!ops->set_mode) {
1387                         rdev_err(rdev, "no set_mode operation\n");
1388                         return -EINVAL;
1389                 }
1390
1391                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392                 if (ret < 0) {
1393                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394                         return ret;
1395                 }
1396         } else if (rdev->constraints->system_load) {
1397                 /*
1398                  * We'll only apply the initial system load if an
1399                  * initial mode wasn't specified.
1400                  */
1401                 drms_uA_update(rdev);
1402         }
1403
1404         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405                 && ops->set_ramp_delay) {
1406                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407                 if (ret < 0) {
1408                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409                         return ret;
1410                 }
1411         }
1412
1413         if (rdev->constraints->pull_down && ops->set_pull_down) {
1414                 ret = ops->set_pull_down(rdev);
1415                 if (ret < 0) {
1416                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417                         return ret;
1418                 }
1419         }
1420
1421         if (rdev->constraints->soft_start && ops->set_soft_start) {
1422                 ret = ops->set_soft_start(rdev);
1423                 if (ret < 0) {
1424                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425                         return ret;
1426                 }
1427         }
1428
1429         /*
1430          * Existing logic does not warn if over_current_protection is given as
1431          * a constraint but driver does not support that. I think we should
1432          * warn about this type of issues as it is possible someone changes
1433          * PMIC on board to another type - and the another PMIC's driver does
1434          * not support setting protection. Board composer may happily believe
1435          * the DT limits are respected - especially if the new PMIC HW also
1436          * supports protection but the driver does not. I won't change the logic
1437          * without hearing more experienced opinion on this though.
1438          *
1439          * If warning is seen as a good idea then we can merge handling the
1440          * over-curret protection and detection and get rid of this special
1441          * handling.
1442          */
1443         if (rdev->constraints->over_current_protection
1444                 && ops->set_over_current_protection) {
1445                 int lim = rdev->constraints->over_curr_limits.prot;
1446
1447                 ret = ops->set_over_current_protection(rdev, lim,
1448                                                        REGULATOR_SEVERITY_PROT,
1449                                                        true);
1450                 if (ret < 0) {
1451                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1452                                  ERR_PTR(ret));
1453                         return ret;
1454                 }
1455         }
1456
1457         if (rdev->constraints->over_current_detection)
1458                 ret = handle_notify_limits(rdev,
1459                                            ops->set_over_current_protection,
1460                                            &rdev->constraints->over_curr_limits);
1461         if (ret) {
1462                 if (ret != -EOPNOTSUPP) {
1463                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1464                                  ERR_PTR(ret));
1465                         return ret;
1466                 }
1467                 rdev_warn(rdev,
1468                           "IC does not support requested over-current limits\n");
1469         }
1470
1471         if (rdev->constraints->over_voltage_detection)
1472                 ret = handle_notify_limits(rdev,
1473                                            ops->set_over_voltage_protection,
1474                                            &rdev->constraints->over_voltage_limits);
1475         if (ret) {
1476                 if (ret != -EOPNOTSUPP) {
1477                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478                                  ERR_PTR(ret));
1479                         return ret;
1480                 }
1481                 rdev_warn(rdev,
1482                           "IC does not support requested over voltage limits\n");
1483         }
1484
1485         if (rdev->constraints->under_voltage_detection)
1486                 ret = handle_notify_limits(rdev,
1487                                            ops->set_under_voltage_protection,
1488                                            &rdev->constraints->under_voltage_limits);
1489         if (ret) {
1490                 if (ret != -EOPNOTSUPP) {
1491                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492                                  ERR_PTR(ret));
1493                         return ret;
1494                 }
1495                 rdev_warn(rdev,
1496                           "IC does not support requested under voltage limits\n");
1497         }
1498
1499         if (rdev->constraints->over_temp_detection)
1500                 ret = handle_notify_limits(rdev,
1501                                            ops->set_thermal_protection,
1502                                            &rdev->constraints->temp_limits);
1503         if (ret) {
1504                 if (ret != -EOPNOTSUPP) {
1505                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1506                                  ERR_PTR(ret));
1507                         return ret;
1508                 }
1509                 rdev_warn(rdev,
1510                           "IC does not support requested temperature limits\n");
1511         }
1512
1513         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514                 bool ad_state = (rdev->constraints->active_discharge ==
1515                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517                 ret = ops->set_active_discharge(rdev, ad_state);
1518                 if (ret < 0) {
1519                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520                         return ret;
1521                 }
1522         }
1523
1524         /* If the constraints say the regulator should be on at this point
1525          * and we have control then make sure it is enabled.
1526          */
1527         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528                 /* If we want to enable this regulator, make sure that we know
1529                  * the supplying regulator.
1530                  */
1531                 if (rdev->supply_name && !rdev->supply)
1532                         return -EPROBE_DEFER;
1533
1534                 /* If supplying regulator has already been enabled,
1535                  * it's not intended to have use_count increment
1536                  * when rdev is only boot-on.
1537                  */
1538                 if (rdev->supply &&
1539                     (rdev->constraints->always_on ||
1540                      !regulator_is_enabled(rdev->supply))) {
1541                         ret = regulator_enable(rdev->supply);
1542                         if (ret < 0) {
1543                                 _regulator_put(rdev->supply);
1544                                 rdev->supply = NULL;
1545                                 return ret;
1546                         }
1547                 }
1548
1549                 ret = _regulator_do_enable(rdev);
1550                 if (ret < 0 && ret != -EINVAL) {
1551                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1552                         return ret;
1553                 }
1554
1555                 if (rdev->constraints->always_on)
1556                         rdev->use_count++;
1557         } else if (rdev->desc->off_on_delay) {
1558                 rdev->last_off = ktime_get();
1559         }
1560
1561         print_constraints(rdev);
1562         return 0;
1563 }
1564
1565 /**
1566  * set_supply - set regulator supply regulator
1567  * @rdev: regulator name
1568  * @supply_rdev: supply regulator name
1569  *
1570  * Called by platform initialisation code to set the supply regulator for this
1571  * regulator. This ensures that a regulators supply will also be enabled by the
1572  * core if it's child is enabled.
1573  */
1574 static int set_supply(struct regulator_dev *rdev,
1575                       struct regulator_dev *supply_rdev)
1576 {
1577         int err;
1578
1579         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1580
1581         if (!try_module_get(supply_rdev->owner))
1582                 return -ENODEV;
1583
1584         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1585         if (rdev->supply == NULL) {
1586                 module_put(supply_rdev->owner);
1587                 err = -ENOMEM;
1588                 return err;
1589         }
1590         supply_rdev->open_count++;
1591
1592         return 0;
1593 }
1594
1595 /**
1596  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1597  * @rdev:         regulator source
1598  * @consumer_dev_name: dev_name() string for device supply applies to
1599  * @supply:       symbolic name for supply
1600  *
1601  * Allows platform initialisation code to map physical regulator
1602  * sources to symbolic names for supplies for use by devices.  Devices
1603  * should use these symbolic names to request regulators, avoiding the
1604  * need to provide board-specific regulator names as platform data.
1605  */
1606 static int set_consumer_device_supply(struct regulator_dev *rdev,
1607                                       const char *consumer_dev_name,
1608                                       const char *supply)
1609 {
1610         struct regulator_map *node, *new_node;
1611         int has_dev;
1612
1613         if (supply == NULL)
1614                 return -EINVAL;
1615
1616         if (consumer_dev_name != NULL)
1617                 has_dev = 1;
1618         else
1619                 has_dev = 0;
1620
1621         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1622         if (new_node == NULL)
1623                 return -ENOMEM;
1624
1625         new_node->regulator = rdev;
1626         new_node->supply = supply;
1627
1628         if (has_dev) {
1629                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1630                 if (new_node->dev_name == NULL) {
1631                         kfree(new_node);
1632                         return -ENOMEM;
1633                 }
1634         }
1635
1636         mutex_lock(&regulator_list_mutex);
1637         list_for_each_entry(node, &regulator_map_list, list) {
1638                 if (node->dev_name && consumer_dev_name) {
1639                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1640                                 continue;
1641                 } else if (node->dev_name || consumer_dev_name) {
1642                         continue;
1643                 }
1644
1645                 if (strcmp(node->supply, supply) != 0)
1646                         continue;
1647
1648                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1649                          consumer_dev_name,
1650                          dev_name(&node->regulator->dev),
1651                          node->regulator->desc->name,
1652                          supply,
1653                          dev_name(&rdev->dev), rdev_get_name(rdev));
1654                 goto fail;
1655         }
1656
1657         list_add(&new_node->list, &regulator_map_list);
1658         mutex_unlock(&regulator_list_mutex);
1659
1660         return 0;
1661
1662 fail:
1663         mutex_unlock(&regulator_list_mutex);
1664         kfree(new_node->dev_name);
1665         kfree(new_node);
1666         return -EBUSY;
1667 }
1668
1669 static void unset_regulator_supplies(struct regulator_dev *rdev)
1670 {
1671         struct regulator_map *node, *n;
1672
1673         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1674                 if (rdev == node->regulator) {
1675                         list_del(&node->list);
1676                         kfree(node->dev_name);
1677                         kfree(node);
1678                 }
1679         }
1680 }
1681
1682 #ifdef CONFIG_DEBUG_FS
1683 static ssize_t constraint_flags_read_file(struct file *file,
1684                                           char __user *user_buf,
1685                                           size_t count, loff_t *ppos)
1686 {
1687         const struct regulator *regulator = file->private_data;
1688         const struct regulation_constraints *c = regulator->rdev->constraints;
1689         char *buf;
1690         ssize_t ret;
1691
1692         if (!c)
1693                 return 0;
1694
1695         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1696         if (!buf)
1697                 return -ENOMEM;
1698
1699         ret = snprintf(buf, PAGE_SIZE,
1700                         "always_on: %u\n"
1701                         "boot_on: %u\n"
1702                         "apply_uV: %u\n"
1703                         "ramp_disable: %u\n"
1704                         "soft_start: %u\n"
1705                         "pull_down: %u\n"
1706                         "over_current_protection: %u\n",
1707                         c->always_on,
1708                         c->boot_on,
1709                         c->apply_uV,
1710                         c->ramp_disable,
1711                         c->soft_start,
1712                         c->pull_down,
1713                         c->over_current_protection);
1714
1715         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1716         kfree(buf);
1717
1718         return ret;
1719 }
1720
1721 #endif
1722
1723 static const struct file_operations constraint_flags_fops = {
1724 #ifdef CONFIG_DEBUG_FS
1725         .open = simple_open,
1726         .read = constraint_flags_read_file,
1727         .llseek = default_llseek,
1728 #endif
1729 };
1730
1731 #define REG_STR_SIZE    64
1732
1733 static struct regulator *create_regulator(struct regulator_dev *rdev,
1734                                           struct device *dev,
1735                                           const char *supply_name)
1736 {
1737         struct regulator *regulator;
1738         int err = 0;
1739
1740         if (dev) {
1741                 char buf[REG_STR_SIZE];
1742                 int size;
1743
1744                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1745                                 dev->kobj.name, supply_name);
1746                 if (size >= REG_STR_SIZE)
1747                         return NULL;
1748
1749                 supply_name = kstrdup(buf, GFP_KERNEL);
1750                 if (supply_name == NULL)
1751                         return NULL;
1752         } else {
1753                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1754                 if (supply_name == NULL)
1755                         return NULL;
1756         }
1757
1758         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1759         if (regulator == NULL) {
1760                 kfree_const(supply_name);
1761                 return NULL;
1762         }
1763
1764         regulator->rdev = rdev;
1765         regulator->supply_name = supply_name;
1766
1767         regulator_lock(rdev);
1768         list_add(&regulator->list, &rdev->consumer_list);
1769         regulator_unlock(rdev);
1770
1771         if (dev) {
1772                 regulator->dev = dev;
1773
1774                 /* Add a link to the device sysfs entry */
1775                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1776                                                supply_name);
1777                 if (err) {
1778                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1779                                   dev->kobj.name, ERR_PTR(err));
1780                         /* non-fatal */
1781                 }
1782         }
1783
1784         if (err != -EEXIST)
1785                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1786         if (!regulator->debugfs) {
1787                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1788         } else {
1789                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1790                                    &regulator->uA_load);
1791                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1792                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1793                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1794                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1795                 debugfs_create_file("constraint_flags", 0444,
1796                                     regulator->debugfs, regulator,
1797                                     &constraint_flags_fops);
1798         }
1799
1800         /*
1801          * Check now if the regulator is an always on regulator - if
1802          * it is then we don't need to do nearly so much work for
1803          * enable/disable calls.
1804          */
1805         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1806             _regulator_is_enabled(rdev))
1807                 regulator->always_on = true;
1808
1809         return regulator;
1810 }
1811
1812 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1813 {
1814         if (rdev->constraints && rdev->constraints->enable_time)
1815                 return rdev->constraints->enable_time;
1816         if (rdev->desc->ops->enable_time)
1817                 return rdev->desc->ops->enable_time(rdev);
1818         return rdev->desc->enable_time;
1819 }
1820
1821 static struct regulator_supply_alias *regulator_find_supply_alias(
1822                 struct device *dev, const char *supply)
1823 {
1824         struct regulator_supply_alias *map;
1825
1826         list_for_each_entry(map, &regulator_supply_alias_list, list)
1827                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1828                         return map;
1829
1830         return NULL;
1831 }
1832
1833 static void regulator_supply_alias(struct device **dev, const char **supply)
1834 {
1835         struct regulator_supply_alias *map;
1836
1837         map = regulator_find_supply_alias(*dev, *supply);
1838         if (map) {
1839                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1840                                 *supply, map->alias_supply,
1841                                 dev_name(map->alias_dev));
1842                 *dev = map->alias_dev;
1843                 *supply = map->alias_supply;
1844         }
1845 }
1846
1847 static int regulator_match(struct device *dev, const void *data)
1848 {
1849         struct regulator_dev *r = dev_to_rdev(dev);
1850
1851         return strcmp(rdev_get_name(r), data) == 0;
1852 }
1853
1854 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1855 {
1856         struct device *dev;
1857
1858         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1859
1860         return dev ? dev_to_rdev(dev) : NULL;
1861 }
1862
1863 /**
1864  * regulator_dev_lookup - lookup a regulator device.
1865  * @dev: device for regulator "consumer".
1866  * @supply: Supply name or regulator ID.
1867  *
1868  * If successful, returns a struct regulator_dev that corresponds to the name
1869  * @supply and with the embedded struct device refcount incremented by one.
1870  * The refcount must be dropped by calling put_device().
1871  * On failure one of the following ERR-PTR-encoded values is returned:
1872  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1873  * in the future.
1874  */
1875 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1876                                                   const char *supply)
1877 {
1878         struct regulator_dev *r = NULL;
1879         struct device_node *node;
1880         struct regulator_map *map;
1881         const char *devname = NULL;
1882
1883         regulator_supply_alias(&dev, &supply);
1884
1885         /* first do a dt based lookup */
1886         if (dev && dev->of_node) {
1887                 node = of_get_regulator(dev, supply);
1888                 if (node) {
1889                         r = of_find_regulator_by_node(node);
1890                         of_node_put(node);
1891                         if (r)
1892                                 return r;
1893
1894                         /*
1895                          * We have a node, but there is no device.
1896                          * assume it has not registered yet.
1897                          */
1898                         return ERR_PTR(-EPROBE_DEFER);
1899                 }
1900         }
1901
1902         /* if not found, try doing it non-dt way */
1903         if (dev)
1904                 devname = dev_name(dev);
1905
1906         mutex_lock(&regulator_list_mutex);
1907         list_for_each_entry(map, &regulator_map_list, list) {
1908                 /* If the mapping has a device set up it must match */
1909                 if (map->dev_name &&
1910                     (!devname || strcmp(map->dev_name, devname)))
1911                         continue;
1912
1913                 if (strcmp(map->supply, supply) == 0 &&
1914                     get_device(&map->regulator->dev)) {
1915                         r = map->regulator;
1916                         break;
1917                 }
1918         }
1919         mutex_unlock(&regulator_list_mutex);
1920
1921         if (r)
1922                 return r;
1923
1924         r = regulator_lookup_by_name(supply);
1925         if (r)
1926                 return r;
1927
1928         return ERR_PTR(-ENODEV);
1929 }
1930
1931 static int regulator_resolve_supply(struct regulator_dev *rdev)
1932 {
1933         struct regulator_dev *r;
1934         struct device *dev = rdev->dev.parent;
1935         int ret = 0;
1936
1937         /* No supply to resolve? */
1938         if (!rdev->supply_name)
1939                 return 0;
1940
1941         /* Supply already resolved? (fast-path without locking contention) */
1942         if (rdev->supply)
1943                 return 0;
1944
1945         r = regulator_dev_lookup(dev, rdev->supply_name);
1946         if (IS_ERR(r)) {
1947                 ret = PTR_ERR(r);
1948
1949                 /* Did the lookup explicitly defer for us? */
1950                 if (ret == -EPROBE_DEFER)
1951                         goto out;
1952
1953                 if (have_full_constraints()) {
1954                         r = dummy_regulator_rdev;
1955                         get_device(&r->dev);
1956                 } else {
1957                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1958                                 rdev->supply_name, rdev->desc->name);
1959                         ret = -EPROBE_DEFER;
1960                         goto out;
1961                 }
1962         }
1963
1964         if (r == rdev) {
1965                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1966                         rdev->desc->name, rdev->supply_name);
1967                 if (!have_full_constraints()) {
1968                         ret = -EINVAL;
1969                         goto out;
1970                 }
1971                 r = dummy_regulator_rdev;
1972                 get_device(&r->dev);
1973         }
1974
1975         /*
1976          * If the supply's parent device is not the same as the
1977          * regulator's parent device, then ensure the parent device
1978          * is bound before we resolve the supply, in case the parent
1979          * device get probe deferred and unregisters the supply.
1980          */
1981         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1982                 if (!device_is_bound(r->dev.parent)) {
1983                         put_device(&r->dev);
1984                         ret = -EPROBE_DEFER;
1985                         goto out;
1986                 }
1987         }
1988
1989         /* Recursively resolve the supply of the supply */
1990         ret = regulator_resolve_supply(r);
1991         if (ret < 0) {
1992                 put_device(&r->dev);
1993                 goto out;
1994         }
1995
1996         /*
1997          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1998          * between rdev->supply null check and setting rdev->supply in
1999          * set_supply() from concurrent tasks.
2000          */
2001         regulator_lock(rdev);
2002
2003         /* Supply just resolved by a concurrent task? */
2004         if (rdev->supply) {
2005                 regulator_unlock(rdev);
2006                 put_device(&r->dev);
2007                 goto out;
2008         }
2009
2010         ret = set_supply(rdev, r);
2011         if (ret < 0) {
2012                 regulator_unlock(rdev);
2013                 put_device(&r->dev);
2014                 goto out;
2015         }
2016
2017         regulator_unlock(rdev);
2018
2019         /*
2020          * In set_machine_constraints() we may have turned this regulator on
2021          * but we couldn't propagate to the supply if it hadn't been resolved
2022          * yet.  Do it now.
2023          */
2024         if (rdev->use_count) {
2025                 ret = regulator_enable(rdev->supply);
2026                 if (ret < 0) {
2027                         _regulator_put(rdev->supply);
2028                         rdev->supply = NULL;
2029                         goto out;
2030                 }
2031         }
2032
2033 out:
2034         return ret;
2035 }
2036
2037 /* Internal regulator request function */
2038 struct regulator *_regulator_get(struct device *dev, const char *id,
2039                                  enum regulator_get_type get_type)
2040 {
2041         struct regulator_dev *rdev;
2042         struct regulator *regulator;
2043         struct device_link *link;
2044         int ret;
2045
2046         if (get_type >= MAX_GET_TYPE) {
2047                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2048                 return ERR_PTR(-EINVAL);
2049         }
2050
2051         if (id == NULL) {
2052                 pr_err("get() with no identifier\n");
2053                 return ERR_PTR(-EINVAL);
2054         }
2055
2056         rdev = regulator_dev_lookup(dev, id);
2057         if (IS_ERR(rdev)) {
2058                 ret = PTR_ERR(rdev);
2059
2060                 /*
2061                  * If regulator_dev_lookup() fails with error other
2062                  * than -ENODEV our job here is done, we simply return it.
2063                  */
2064                 if (ret != -ENODEV)
2065                         return ERR_PTR(ret);
2066
2067                 if (!have_full_constraints()) {
2068                         dev_warn(dev,
2069                                  "incomplete constraints, dummy supplies not allowed\n");
2070                         return ERR_PTR(-ENODEV);
2071                 }
2072
2073                 switch (get_type) {
2074                 case NORMAL_GET:
2075                         /*
2076                          * Assume that a regulator is physically present and
2077                          * enabled, even if it isn't hooked up, and just
2078                          * provide a dummy.
2079                          */
2080                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2081                         rdev = dummy_regulator_rdev;
2082                         get_device(&rdev->dev);
2083                         break;
2084
2085                 case EXCLUSIVE_GET:
2086                         dev_warn(dev,
2087                                  "dummy supplies not allowed for exclusive requests\n");
2088                         fallthrough;
2089
2090                 default:
2091                         return ERR_PTR(-ENODEV);
2092                 }
2093         }
2094
2095         if (rdev->exclusive) {
2096                 regulator = ERR_PTR(-EPERM);
2097                 put_device(&rdev->dev);
2098                 return regulator;
2099         }
2100
2101         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2102                 regulator = ERR_PTR(-EBUSY);
2103                 put_device(&rdev->dev);
2104                 return regulator;
2105         }
2106
2107         mutex_lock(&regulator_list_mutex);
2108         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2109         mutex_unlock(&regulator_list_mutex);
2110
2111         if (ret != 0) {
2112                 regulator = ERR_PTR(-EPROBE_DEFER);
2113                 put_device(&rdev->dev);
2114                 return regulator;
2115         }
2116
2117         ret = regulator_resolve_supply(rdev);
2118         if (ret < 0) {
2119                 regulator = ERR_PTR(ret);
2120                 put_device(&rdev->dev);
2121                 return regulator;
2122         }
2123
2124         if (!try_module_get(rdev->owner)) {
2125                 regulator = ERR_PTR(-EPROBE_DEFER);
2126                 put_device(&rdev->dev);
2127                 return regulator;
2128         }
2129
2130         regulator = create_regulator(rdev, dev, id);
2131         if (regulator == NULL) {
2132                 regulator = ERR_PTR(-ENOMEM);
2133                 module_put(rdev->owner);
2134                 put_device(&rdev->dev);
2135                 return regulator;
2136         }
2137
2138         rdev->open_count++;
2139         if (get_type == EXCLUSIVE_GET) {
2140                 rdev->exclusive = 1;
2141
2142                 ret = _regulator_is_enabled(rdev);
2143                 if (ret > 0) {
2144                         rdev->use_count = 1;
2145                         regulator->enable_count = 1;
2146                 } else {
2147                         rdev->use_count = 0;
2148                         regulator->enable_count = 0;
2149                 }
2150         }
2151
2152         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2153         if (!IS_ERR_OR_NULL(link))
2154                 regulator->device_link = true;
2155
2156         return regulator;
2157 }
2158
2159 /**
2160  * regulator_get - lookup and obtain a reference to a regulator.
2161  * @dev: device for regulator "consumer"
2162  * @id: Supply name or regulator ID.
2163  *
2164  * Returns a struct regulator corresponding to the regulator producer,
2165  * or IS_ERR() condition containing errno.
2166  *
2167  * Use of supply names configured via set_consumer_device_supply() is
2168  * strongly encouraged.  It is recommended that the supply name used
2169  * should match the name used for the supply and/or the relevant
2170  * device pins in the datasheet.
2171  */
2172 struct regulator *regulator_get(struct device *dev, const char *id)
2173 {
2174         return _regulator_get(dev, id, NORMAL_GET);
2175 }
2176 EXPORT_SYMBOL_GPL(regulator_get);
2177
2178 /**
2179  * regulator_get_exclusive - obtain exclusive access to a regulator.
2180  * @dev: device for regulator "consumer"
2181  * @id: Supply name or regulator ID.
2182  *
2183  * Returns a struct regulator corresponding to the regulator producer,
2184  * or IS_ERR() condition containing errno.  Other consumers will be
2185  * unable to obtain this regulator while this reference is held and the
2186  * use count for the regulator will be initialised to reflect the current
2187  * state of the regulator.
2188  *
2189  * This is intended for use by consumers which cannot tolerate shared
2190  * use of the regulator such as those which need to force the
2191  * regulator off for correct operation of the hardware they are
2192  * controlling.
2193  *
2194  * Use of supply names configured via set_consumer_device_supply() is
2195  * strongly encouraged.  It is recommended that the supply name used
2196  * should match the name used for the supply and/or the relevant
2197  * device pins in the datasheet.
2198  */
2199 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2200 {
2201         return _regulator_get(dev, id, EXCLUSIVE_GET);
2202 }
2203 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2204
2205 /**
2206  * regulator_get_optional - obtain optional access to a regulator.
2207  * @dev: device for regulator "consumer"
2208  * @id: Supply name or regulator ID.
2209  *
2210  * Returns a struct regulator corresponding to the regulator producer,
2211  * or IS_ERR() condition containing errno.
2212  *
2213  * This is intended for use by consumers for devices which can have
2214  * some supplies unconnected in normal use, such as some MMC devices.
2215  * It can allow the regulator core to provide stub supplies for other
2216  * supplies requested using normal regulator_get() calls without
2217  * disrupting the operation of drivers that can handle absent
2218  * supplies.
2219  *
2220  * Use of supply names configured via set_consumer_device_supply() is
2221  * strongly encouraged.  It is recommended that the supply name used
2222  * should match the name used for the supply and/or the relevant
2223  * device pins in the datasheet.
2224  */
2225 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2226 {
2227         return _regulator_get(dev, id, OPTIONAL_GET);
2228 }
2229 EXPORT_SYMBOL_GPL(regulator_get_optional);
2230
2231 static void destroy_regulator(struct regulator *regulator)
2232 {
2233         struct regulator_dev *rdev = regulator->rdev;
2234
2235         debugfs_remove_recursive(regulator->debugfs);
2236
2237         if (regulator->dev) {
2238                 if (regulator->device_link)
2239                         device_link_remove(regulator->dev, &rdev->dev);
2240
2241                 /* remove any sysfs entries */
2242                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2243         }
2244
2245         regulator_lock(rdev);
2246         list_del(&regulator->list);
2247
2248         rdev->open_count--;
2249         rdev->exclusive = 0;
2250         regulator_unlock(rdev);
2251
2252         kfree_const(regulator->supply_name);
2253         kfree(regulator);
2254 }
2255
2256 /* regulator_list_mutex lock held by regulator_put() */
2257 static void _regulator_put(struct regulator *regulator)
2258 {
2259         struct regulator_dev *rdev;
2260
2261         if (IS_ERR_OR_NULL(regulator))
2262                 return;
2263
2264         lockdep_assert_held_once(&regulator_list_mutex);
2265
2266         /* Docs say you must disable before calling regulator_put() */
2267         WARN_ON(regulator->enable_count);
2268
2269         rdev = regulator->rdev;
2270
2271         destroy_regulator(regulator);
2272
2273         module_put(rdev->owner);
2274         put_device(&rdev->dev);
2275 }
2276
2277 /**
2278  * regulator_put - "free" the regulator source
2279  * @regulator: regulator source
2280  *
2281  * Note: drivers must ensure that all regulator_enable calls made on this
2282  * regulator source are balanced by regulator_disable calls prior to calling
2283  * this function.
2284  */
2285 void regulator_put(struct regulator *regulator)
2286 {
2287         mutex_lock(&regulator_list_mutex);
2288         _regulator_put(regulator);
2289         mutex_unlock(&regulator_list_mutex);
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_put);
2292
2293 /**
2294  * regulator_register_supply_alias - Provide device alias for supply lookup
2295  *
2296  * @dev: device that will be given as the regulator "consumer"
2297  * @id: Supply name or regulator ID
2298  * @alias_dev: device that should be used to lookup the supply
2299  * @alias_id: Supply name or regulator ID that should be used to lookup the
2300  * supply
2301  *
2302  * All lookups for id on dev will instead be conducted for alias_id on
2303  * alias_dev.
2304  */
2305 int regulator_register_supply_alias(struct device *dev, const char *id,
2306                                     struct device *alias_dev,
2307                                     const char *alias_id)
2308 {
2309         struct regulator_supply_alias *map;
2310
2311         map = regulator_find_supply_alias(dev, id);
2312         if (map)
2313                 return -EEXIST;
2314
2315         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2316         if (!map)
2317                 return -ENOMEM;
2318
2319         map->src_dev = dev;
2320         map->src_supply = id;
2321         map->alias_dev = alias_dev;
2322         map->alias_supply = alias_id;
2323
2324         list_add(&map->list, &regulator_supply_alias_list);
2325
2326         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2327                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2328
2329         return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2332
2333 /**
2334  * regulator_unregister_supply_alias - Remove device alias
2335  *
2336  * @dev: device that will be given as the regulator "consumer"
2337  * @id: Supply name or regulator ID
2338  *
2339  * Remove a lookup alias if one exists for id on dev.
2340  */
2341 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2342 {
2343         struct regulator_supply_alias *map;
2344
2345         map = regulator_find_supply_alias(dev, id);
2346         if (map) {
2347                 list_del(&map->list);
2348                 kfree(map);
2349         }
2350 }
2351 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2352
2353 /**
2354  * regulator_bulk_register_supply_alias - register multiple aliases
2355  *
2356  * @dev: device that will be given as the regulator "consumer"
2357  * @id: List of supply names or regulator IDs
2358  * @alias_dev: device that should be used to lookup the supply
2359  * @alias_id: List of supply names or regulator IDs that should be used to
2360  * lookup the supply
2361  * @num_id: Number of aliases to register
2362  *
2363  * @return 0 on success, an errno on failure.
2364  *
2365  * This helper function allows drivers to register several supply
2366  * aliases in one operation.  If any of the aliases cannot be
2367  * registered any aliases that were registered will be removed
2368  * before returning to the caller.
2369  */
2370 int regulator_bulk_register_supply_alias(struct device *dev,
2371                                          const char *const *id,
2372                                          struct device *alias_dev,
2373                                          const char *const *alias_id,
2374                                          int num_id)
2375 {
2376         int i;
2377         int ret;
2378
2379         for (i = 0; i < num_id; ++i) {
2380                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2381                                                       alias_id[i]);
2382                 if (ret < 0)
2383                         goto err;
2384         }
2385
2386         return 0;
2387
2388 err:
2389         dev_err(dev,
2390                 "Failed to create supply alias %s,%s -> %s,%s\n",
2391                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2392
2393         while (--i >= 0)
2394                 regulator_unregister_supply_alias(dev, id[i]);
2395
2396         return ret;
2397 }
2398 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2399
2400 /**
2401  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2402  *
2403  * @dev: device that will be given as the regulator "consumer"
2404  * @id: List of supply names or regulator IDs
2405  * @num_id: Number of aliases to unregister
2406  *
2407  * This helper function allows drivers to unregister several supply
2408  * aliases in one operation.
2409  */
2410 void regulator_bulk_unregister_supply_alias(struct device *dev,
2411                                             const char *const *id,
2412                                             int num_id)
2413 {
2414         int i;
2415
2416         for (i = 0; i < num_id; ++i)
2417                 regulator_unregister_supply_alias(dev, id[i]);
2418 }
2419 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2420
2421
2422 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2423 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2424                                 const struct regulator_config *config)
2425 {
2426         struct regulator_enable_gpio *pin, *new_pin;
2427         struct gpio_desc *gpiod;
2428
2429         gpiod = config->ena_gpiod;
2430         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2431
2432         mutex_lock(&regulator_list_mutex);
2433
2434         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2435                 if (pin->gpiod == gpiod) {
2436                         rdev_dbg(rdev, "GPIO is already used\n");
2437                         goto update_ena_gpio_to_rdev;
2438                 }
2439         }
2440
2441         if (new_pin == NULL) {
2442                 mutex_unlock(&regulator_list_mutex);
2443                 return -ENOMEM;
2444         }
2445
2446         pin = new_pin;
2447         new_pin = NULL;
2448
2449         pin->gpiod = gpiod;
2450         list_add(&pin->list, &regulator_ena_gpio_list);
2451
2452 update_ena_gpio_to_rdev:
2453         pin->request_count++;
2454         rdev->ena_pin = pin;
2455
2456         mutex_unlock(&regulator_list_mutex);
2457         kfree(new_pin);
2458
2459         return 0;
2460 }
2461
2462 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2463 {
2464         struct regulator_enable_gpio *pin, *n;
2465
2466         if (!rdev->ena_pin)
2467                 return;
2468
2469         /* Free the GPIO only in case of no use */
2470         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2471                 if (pin != rdev->ena_pin)
2472                         continue;
2473
2474                 if (--pin->request_count)
2475                         break;
2476
2477                 gpiod_put(pin->gpiod);
2478                 list_del(&pin->list);
2479                 kfree(pin);
2480                 break;
2481         }
2482
2483         rdev->ena_pin = NULL;
2484 }
2485
2486 /**
2487  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2488  * @rdev: regulator_dev structure
2489  * @enable: enable GPIO at initial use?
2490  *
2491  * GPIO is enabled in case of initial use. (enable_count is 0)
2492  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2493  */
2494 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2495 {
2496         struct regulator_enable_gpio *pin = rdev->ena_pin;
2497
2498         if (!pin)
2499                 return -EINVAL;
2500
2501         if (enable) {
2502                 /* Enable GPIO at initial use */
2503                 if (pin->enable_count == 0)
2504                         gpiod_set_value_cansleep(pin->gpiod, 1);
2505
2506                 pin->enable_count++;
2507         } else {
2508                 if (pin->enable_count > 1) {
2509                         pin->enable_count--;
2510                         return 0;
2511                 }
2512
2513                 /* Disable GPIO if not used */
2514                 if (pin->enable_count <= 1) {
2515                         gpiod_set_value_cansleep(pin->gpiod, 0);
2516                         pin->enable_count = 0;
2517                 }
2518         }
2519
2520         return 0;
2521 }
2522
2523 /**
2524  * _regulator_enable_delay - a delay helper function
2525  * @delay: time to delay in microseconds
2526  *
2527  * Delay for the requested amount of time as per the guidelines in:
2528  *
2529  *     Documentation/timers/timers-howto.rst
2530  *
2531  * The assumption here is that regulators will never be enabled in
2532  * atomic context and therefore sleeping functions can be used.
2533  */
2534 static void _regulator_enable_delay(unsigned int delay)
2535 {
2536         unsigned int ms = delay / 1000;
2537         unsigned int us = delay % 1000;
2538
2539         if (ms > 0) {
2540                 /*
2541                  * For small enough values, handle super-millisecond
2542                  * delays in the usleep_range() call below.
2543                  */
2544                 if (ms < 20)
2545                         us += ms * 1000;
2546                 else
2547                         msleep(ms);
2548         }
2549
2550         /*
2551          * Give the scheduler some room to coalesce with any other
2552          * wakeup sources. For delays shorter than 10 us, don't even
2553          * bother setting up high-resolution timers and just busy-
2554          * loop.
2555          */
2556         if (us >= 10)
2557                 usleep_range(us, us + 100);
2558         else
2559                 udelay(us);
2560 }
2561
2562 /**
2563  * _regulator_check_status_enabled
2564  *
2565  * A helper function to check if the regulator status can be interpreted
2566  * as 'regulator is enabled'.
2567  * @rdev: the regulator device to check
2568  *
2569  * Return:
2570  * * 1                  - if status shows regulator is in enabled state
2571  * * 0                  - if not enabled state
2572  * * Error Value        - as received from ops->get_status()
2573  */
2574 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2575 {
2576         int ret = rdev->desc->ops->get_status(rdev);
2577
2578         if (ret < 0) {
2579                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2580                 return ret;
2581         }
2582
2583         switch (ret) {
2584         case REGULATOR_STATUS_OFF:
2585         case REGULATOR_STATUS_ERROR:
2586         case REGULATOR_STATUS_UNDEFINED:
2587                 return 0;
2588         default:
2589                 return 1;
2590         }
2591 }
2592
2593 static int _regulator_do_enable(struct regulator_dev *rdev)
2594 {
2595         int ret, delay;
2596
2597         /* Query before enabling in case configuration dependent.  */
2598         ret = _regulator_get_enable_time(rdev);
2599         if (ret >= 0) {
2600                 delay = ret;
2601         } else {
2602                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2603                 delay = 0;
2604         }
2605
2606         trace_regulator_enable(rdev_get_name(rdev));
2607
2608         if (rdev->desc->off_on_delay && rdev->last_off) {
2609                 /* if needed, keep a distance of off_on_delay from last time
2610                  * this regulator was disabled.
2611                  */
2612                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2613                 s64 remaining = ktime_us_delta(end, ktime_get());
2614
2615                 if (remaining > 0)
2616                         _regulator_enable_delay(remaining);
2617         }
2618
2619         if (rdev->ena_pin) {
2620                 if (!rdev->ena_gpio_state) {
2621                         ret = regulator_ena_gpio_ctrl(rdev, true);
2622                         if (ret < 0)
2623                                 return ret;
2624                         rdev->ena_gpio_state = 1;
2625                 }
2626         } else if (rdev->desc->ops->enable) {
2627                 ret = rdev->desc->ops->enable(rdev);
2628                 if (ret < 0)
2629                         return ret;
2630         } else {
2631                 return -EINVAL;
2632         }
2633
2634         /* Allow the regulator to ramp; it would be useful to extend
2635          * this for bulk operations so that the regulators can ramp
2636          * together.
2637          */
2638         trace_regulator_enable_delay(rdev_get_name(rdev));
2639
2640         /* If poll_enabled_time is set, poll upto the delay calculated
2641          * above, delaying poll_enabled_time uS to check if the regulator
2642          * actually got enabled.
2643          * If the regulator isn't enabled after enable_delay has
2644          * expired, return -ETIMEDOUT.
2645          */
2646         if (rdev->desc->poll_enabled_time) {
2647                 int time_remaining = delay;
2648
2649                 while (time_remaining > 0) {
2650                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2651
2652                         if (rdev->desc->ops->get_status) {
2653                                 ret = _regulator_check_status_enabled(rdev);
2654                                 if (ret < 0)
2655                                         return ret;
2656                                 else if (ret)
2657                                         break;
2658                         } else if (rdev->desc->ops->is_enabled(rdev))
2659                                 break;
2660
2661                         time_remaining -= rdev->desc->poll_enabled_time;
2662                 }
2663
2664                 if (time_remaining <= 0) {
2665                         rdev_err(rdev, "Enabled check timed out\n");
2666                         return -ETIMEDOUT;
2667                 }
2668         } else {
2669                 _regulator_enable_delay(delay);
2670         }
2671
2672         trace_regulator_enable_complete(rdev_get_name(rdev));
2673
2674         return 0;
2675 }
2676
2677 /**
2678  * _regulator_handle_consumer_enable - handle that a consumer enabled
2679  * @regulator: regulator source
2680  *
2681  * Some things on a regulator consumer (like the contribution towards total
2682  * load on the regulator) only have an effect when the consumer wants the
2683  * regulator enabled.  Explained in example with two consumers of the same
2684  * regulator:
2685  *   consumer A: set_load(100);       => total load = 0
2686  *   consumer A: regulator_enable();  => total load = 100
2687  *   consumer B: set_load(1000);      => total load = 100
2688  *   consumer B: regulator_enable();  => total load = 1100
2689  *   consumer A: regulator_disable(); => total_load = 1000
2690  *
2691  * This function (together with _regulator_handle_consumer_disable) is
2692  * responsible for keeping track of the refcount for a given regulator consumer
2693  * and applying / unapplying these things.
2694  *
2695  * Returns 0 upon no error; -error upon error.
2696  */
2697 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2698 {
2699         int ret;
2700         struct regulator_dev *rdev = regulator->rdev;
2701
2702         lockdep_assert_held_once(&rdev->mutex.base);
2703
2704         regulator->enable_count++;
2705         if (regulator->uA_load && regulator->enable_count == 1) {
2706                 ret = drms_uA_update(rdev);
2707                 if (ret)
2708                         regulator->enable_count--;
2709                 return ret;
2710         }
2711
2712         return 0;
2713 }
2714
2715 /**
2716  * _regulator_handle_consumer_disable - handle that a consumer disabled
2717  * @regulator: regulator source
2718  *
2719  * The opposite of _regulator_handle_consumer_enable().
2720  *
2721  * Returns 0 upon no error; -error upon error.
2722  */
2723 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2724 {
2725         struct regulator_dev *rdev = regulator->rdev;
2726
2727         lockdep_assert_held_once(&rdev->mutex.base);
2728
2729         if (!regulator->enable_count) {
2730                 rdev_err(rdev, "Underflow of regulator enable count\n");
2731                 return -EINVAL;
2732         }
2733
2734         regulator->enable_count--;
2735         if (regulator->uA_load && regulator->enable_count == 0)
2736                 return drms_uA_update(rdev);
2737
2738         return 0;
2739 }
2740
2741 /* locks held by regulator_enable() */
2742 static int _regulator_enable(struct regulator *regulator)
2743 {
2744         struct regulator_dev *rdev = regulator->rdev;
2745         int ret;
2746
2747         lockdep_assert_held_once(&rdev->mutex.base);
2748
2749         if (rdev->use_count == 0 && rdev->supply) {
2750                 ret = _regulator_enable(rdev->supply);
2751                 if (ret < 0)
2752                         return ret;
2753         }
2754
2755         /* balance only if there are regulators coupled */
2756         if (rdev->coupling_desc.n_coupled > 1) {
2757                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2758                 if (ret < 0)
2759                         goto err_disable_supply;
2760         }
2761
2762         ret = _regulator_handle_consumer_enable(regulator);
2763         if (ret < 0)
2764                 goto err_disable_supply;
2765
2766         if (rdev->use_count == 0) {
2767                 /*
2768                  * The regulator may already be enabled if it's not switchable
2769                  * or was left on
2770                  */
2771                 ret = _regulator_is_enabled(rdev);
2772                 if (ret == -EINVAL || ret == 0) {
2773                         if (!regulator_ops_is_valid(rdev,
2774                                         REGULATOR_CHANGE_STATUS)) {
2775                                 ret = -EPERM;
2776                                 goto err_consumer_disable;
2777                         }
2778
2779                         ret = _regulator_do_enable(rdev);
2780                         if (ret < 0)
2781                                 goto err_consumer_disable;
2782
2783                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2784                                              NULL);
2785                 } else if (ret < 0) {
2786                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2787                         goto err_consumer_disable;
2788                 }
2789                 /* Fallthrough on positive return values - already enabled */
2790         }
2791
2792         rdev->use_count++;
2793
2794         return 0;
2795
2796 err_consumer_disable:
2797         _regulator_handle_consumer_disable(regulator);
2798
2799 err_disable_supply:
2800         if (rdev->use_count == 0 && rdev->supply)
2801                 _regulator_disable(rdev->supply);
2802
2803         return ret;
2804 }
2805
2806 /**
2807  * regulator_enable - enable regulator output
2808  * @regulator: regulator source
2809  *
2810  * Request that the regulator be enabled with the regulator output at
2811  * the predefined voltage or current value.  Calls to regulator_enable()
2812  * must be balanced with calls to regulator_disable().
2813  *
2814  * NOTE: the output value can be set by other drivers, boot loader or may be
2815  * hardwired in the regulator.
2816  */
2817 int regulator_enable(struct regulator *regulator)
2818 {
2819         struct regulator_dev *rdev = regulator->rdev;
2820         struct ww_acquire_ctx ww_ctx;
2821         int ret;
2822
2823         regulator_lock_dependent(rdev, &ww_ctx);
2824         ret = _regulator_enable(regulator);
2825         regulator_unlock_dependent(rdev, &ww_ctx);
2826
2827         return ret;
2828 }
2829 EXPORT_SYMBOL_GPL(regulator_enable);
2830
2831 static int _regulator_do_disable(struct regulator_dev *rdev)
2832 {
2833         int ret;
2834
2835         trace_regulator_disable(rdev_get_name(rdev));
2836
2837         if (rdev->ena_pin) {
2838                 if (rdev->ena_gpio_state) {
2839                         ret = regulator_ena_gpio_ctrl(rdev, false);
2840                         if (ret < 0)
2841                                 return ret;
2842                         rdev->ena_gpio_state = 0;
2843                 }
2844
2845         } else if (rdev->desc->ops->disable) {
2846                 ret = rdev->desc->ops->disable(rdev);
2847                 if (ret != 0)
2848                         return ret;
2849         }
2850
2851         if (rdev->desc->off_on_delay)
2852                 rdev->last_off = ktime_get();
2853
2854         trace_regulator_disable_complete(rdev_get_name(rdev));
2855
2856         return 0;
2857 }
2858
2859 /* locks held by regulator_disable() */
2860 static int _regulator_disable(struct regulator *regulator)
2861 {
2862         struct regulator_dev *rdev = regulator->rdev;
2863         int ret = 0;
2864
2865         lockdep_assert_held_once(&rdev->mutex.base);
2866
2867         if (WARN(rdev->use_count <= 0,
2868                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2869                 return -EIO;
2870
2871         /* are we the last user and permitted to disable ? */
2872         if (rdev->use_count == 1 &&
2873             (rdev->constraints && !rdev->constraints->always_on)) {
2874
2875                 /* we are last user */
2876                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2877                         ret = _notifier_call_chain(rdev,
2878                                                    REGULATOR_EVENT_PRE_DISABLE,
2879                                                    NULL);
2880                         if (ret & NOTIFY_STOP_MASK)
2881                                 return -EINVAL;
2882
2883                         ret = _regulator_do_disable(rdev);
2884                         if (ret < 0) {
2885                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2886                                 _notifier_call_chain(rdev,
2887                                                 REGULATOR_EVENT_ABORT_DISABLE,
2888                                                 NULL);
2889                                 return ret;
2890                         }
2891                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2892                                         NULL);
2893                 }
2894
2895                 rdev->use_count = 0;
2896         } else if (rdev->use_count > 1) {
2897                 rdev->use_count--;
2898         }
2899
2900         if (ret == 0)
2901                 ret = _regulator_handle_consumer_disable(regulator);
2902
2903         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2904                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905
2906         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2907                 ret = _regulator_disable(rdev->supply);
2908
2909         return ret;
2910 }
2911
2912 /**
2913  * regulator_disable - disable regulator output
2914  * @regulator: regulator source
2915  *
2916  * Disable the regulator output voltage or current.  Calls to
2917  * regulator_enable() must be balanced with calls to
2918  * regulator_disable().
2919  *
2920  * NOTE: this will only disable the regulator output if no other consumer
2921  * devices have it enabled, the regulator device supports disabling and
2922  * machine constraints permit this operation.
2923  */
2924 int regulator_disable(struct regulator *regulator)
2925 {
2926         struct regulator_dev *rdev = regulator->rdev;
2927         struct ww_acquire_ctx ww_ctx;
2928         int ret;
2929
2930         regulator_lock_dependent(rdev, &ww_ctx);
2931         ret = _regulator_disable(regulator);
2932         regulator_unlock_dependent(rdev, &ww_ctx);
2933
2934         return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_disable);
2937
2938 /* locks held by regulator_force_disable() */
2939 static int _regulator_force_disable(struct regulator_dev *rdev)
2940 {
2941         int ret = 0;
2942
2943         lockdep_assert_held_once(&rdev->mutex.base);
2944
2945         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2946                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2947         if (ret & NOTIFY_STOP_MASK)
2948                 return -EINVAL;
2949
2950         ret = _regulator_do_disable(rdev);
2951         if (ret < 0) {
2952                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2953                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2954                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2955                 return ret;
2956         }
2957
2958         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2959                         REGULATOR_EVENT_DISABLE, NULL);
2960
2961         return 0;
2962 }
2963
2964 /**
2965  * regulator_force_disable - force disable regulator output
2966  * @regulator: regulator source
2967  *
2968  * Forcibly disable the regulator output voltage or current.
2969  * NOTE: this *will* disable the regulator output even if other consumer
2970  * devices have it enabled. This should be used for situations when device
2971  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2972  */
2973 int regulator_force_disable(struct regulator *regulator)
2974 {
2975         struct regulator_dev *rdev = regulator->rdev;
2976         struct ww_acquire_ctx ww_ctx;
2977         int ret;
2978
2979         regulator_lock_dependent(rdev, &ww_ctx);
2980
2981         ret = _regulator_force_disable(regulator->rdev);
2982
2983         if (rdev->coupling_desc.n_coupled > 1)
2984                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2985
2986         if (regulator->uA_load) {
2987                 regulator->uA_load = 0;
2988                 ret = drms_uA_update(rdev);
2989         }
2990
2991         if (rdev->use_count != 0 && rdev->supply)
2992                 _regulator_disable(rdev->supply);
2993
2994         regulator_unlock_dependent(rdev, &ww_ctx);
2995
2996         return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(regulator_force_disable);
2999
3000 static void regulator_disable_work(struct work_struct *work)
3001 {
3002         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3003                                                   disable_work.work);
3004         struct ww_acquire_ctx ww_ctx;
3005         int count, i, ret;
3006         struct regulator *regulator;
3007         int total_count = 0;
3008
3009         regulator_lock_dependent(rdev, &ww_ctx);
3010
3011         /*
3012          * Workqueue functions queue the new work instance while the previous
3013          * work instance is being processed. Cancel the queued work instance
3014          * as the work instance under processing does the job of the queued
3015          * work instance.
3016          */
3017         cancel_delayed_work(&rdev->disable_work);
3018
3019         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3020                 count = regulator->deferred_disables;
3021
3022                 if (!count)
3023                         continue;
3024
3025                 total_count += count;
3026                 regulator->deferred_disables = 0;
3027
3028                 for (i = 0; i < count; i++) {
3029                         ret = _regulator_disable(regulator);
3030                         if (ret != 0)
3031                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3032                                          ERR_PTR(ret));
3033                 }
3034         }
3035         WARN_ON(!total_count);
3036
3037         if (rdev->coupling_desc.n_coupled > 1)
3038                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3039
3040         regulator_unlock_dependent(rdev, &ww_ctx);
3041 }
3042
3043 /**
3044  * regulator_disable_deferred - disable regulator output with delay
3045  * @regulator: regulator source
3046  * @ms: milliseconds until the regulator is disabled
3047  *
3048  * Execute regulator_disable() on the regulator after a delay.  This
3049  * is intended for use with devices that require some time to quiesce.
3050  *
3051  * NOTE: this will only disable the regulator output if no other consumer
3052  * devices have it enabled, the regulator device supports disabling and
3053  * machine constraints permit this operation.
3054  */
3055 int regulator_disable_deferred(struct regulator *regulator, int ms)
3056 {
3057         struct regulator_dev *rdev = regulator->rdev;
3058
3059         if (!ms)
3060                 return regulator_disable(regulator);
3061
3062         regulator_lock(rdev);
3063         regulator->deferred_disables++;
3064         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3065                          msecs_to_jiffies(ms));
3066         regulator_unlock(rdev);
3067
3068         return 0;
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3071
3072 static int _regulator_is_enabled(struct regulator_dev *rdev)
3073 {
3074         /* A GPIO control always takes precedence */
3075         if (rdev->ena_pin)
3076                 return rdev->ena_gpio_state;
3077
3078         /* If we don't know then assume that the regulator is always on */
3079         if (!rdev->desc->ops->is_enabled)
3080                 return 1;
3081
3082         return rdev->desc->ops->is_enabled(rdev);
3083 }
3084
3085 static int _regulator_list_voltage(struct regulator_dev *rdev,
3086                                    unsigned selector, int lock)
3087 {
3088         const struct regulator_ops *ops = rdev->desc->ops;
3089         int ret;
3090
3091         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3092                 return rdev->desc->fixed_uV;
3093
3094         if (ops->list_voltage) {
3095                 if (selector >= rdev->desc->n_voltages)
3096                         return -EINVAL;
3097                 if (selector < rdev->desc->linear_min_sel)
3098                         return 0;
3099                 if (lock)
3100                         regulator_lock(rdev);
3101                 ret = ops->list_voltage(rdev, selector);
3102                 if (lock)
3103                         regulator_unlock(rdev);
3104         } else if (rdev->is_switch && rdev->supply) {
3105                 ret = _regulator_list_voltage(rdev->supply->rdev,
3106                                               selector, lock);
3107         } else {
3108                 return -EINVAL;
3109         }
3110
3111         if (ret > 0) {
3112                 if (ret < rdev->constraints->min_uV)
3113                         ret = 0;
3114                 else if (ret > rdev->constraints->max_uV)
3115                         ret = 0;
3116         }
3117
3118         return ret;
3119 }
3120
3121 /**
3122  * regulator_is_enabled - is the regulator output enabled
3123  * @regulator: regulator source
3124  *
3125  * Returns positive if the regulator driver backing the source/client
3126  * has requested that the device be enabled, zero if it hasn't, else a
3127  * negative errno code.
3128  *
3129  * Note that the device backing this regulator handle can have multiple
3130  * users, so it might be enabled even if regulator_enable() was never
3131  * called for this particular source.
3132  */
3133 int regulator_is_enabled(struct regulator *regulator)
3134 {
3135         int ret;
3136
3137         if (regulator->always_on)
3138                 return 1;
3139
3140         regulator_lock(regulator->rdev);
3141         ret = _regulator_is_enabled(regulator->rdev);
3142         regulator_unlock(regulator->rdev);
3143
3144         return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3147
3148 /**
3149  * regulator_count_voltages - count regulator_list_voltage() selectors
3150  * @regulator: regulator source
3151  *
3152  * Returns number of selectors, or negative errno.  Selectors are
3153  * numbered starting at zero, and typically correspond to bitfields
3154  * in hardware registers.
3155  */
3156 int regulator_count_voltages(struct regulator *regulator)
3157 {
3158         struct regulator_dev    *rdev = regulator->rdev;
3159
3160         if (rdev->desc->n_voltages)
3161                 return rdev->desc->n_voltages;
3162
3163         if (!rdev->is_switch || !rdev->supply)
3164                 return -EINVAL;
3165
3166         return regulator_count_voltages(rdev->supply);
3167 }
3168 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3169
3170 /**
3171  * regulator_list_voltage - enumerate supported voltages
3172  * @regulator: regulator source
3173  * @selector: identify voltage to list
3174  * Context: can sleep
3175  *
3176  * Returns a voltage that can be passed to @regulator_set_voltage(),
3177  * zero if this selector code can't be used on this system, or a
3178  * negative errno.
3179  */
3180 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3181 {
3182         return _regulator_list_voltage(regulator->rdev, selector, 1);
3183 }
3184 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3185
3186 /**
3187  * regulator_get_regmap - get the regulator's register map
3188  * @regulator: regulator source
3189  *
3190  * Returns the register map for the given regulator, or an ERR_PTR value
3191  * if the regulator doesn't use regmap.
3192  */
3193 struct regmap *regulator_get_regmap(struct regulator *regulator)
3194 {
3195         struct regmap *map = regulator->rdev->regmap;
3196
3197         return map ? map : ERR_PTR(-EOPNOTSUPP);
3198 }
3199
3200 /**
3201  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3202  * @regulator: regulator source
3203  * @vsel_reg: voltage selector register, output parameter
3204  * @vsel_mask: mask for voltage selector bitfield, output parameter
3205  *
3206  * Returns the hardware register offset and bitmask used for setting the
3207  * regulator voltage. This might be useful when configuring voltage-scaling
3208  * hardware or firmware that can make I2C requests behind the kernel's back,
3209  * for example.
3210  *
3211  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3212  * and 0 is returned, otherwise a negative errno is returned.
3213  */
3214 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3215                                          unsigned *vsel_reg,
3216                                          unsigned *vsel_mask)
3217 {
3218         struct regulator_dev *rdev = regulator->rdev;
3219         const struct regulator_ops *ops = rdev->desc->ops;
3220
3221         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3222                 return -EOPNOTSUPP;
3223
3224         *vsel_reg = rdev->desc->vsel_reg;
3225         *vsel_mask = rdev->desc->vsel_mask;
3226
3227         return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3230
3231 /**
3232  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3233  * @regulator: regulator source
3234  * @selector: identify voltage to list
3235  *
3236  * Converts the selector to a hardware-specific voltage selector that can be
3237  * directly written to the regulator registers. The address of the voltage
3238  * register can be determined by calling @regulator_get_hardware_vsel_register.
3239  *
3240  * On error a negative errno is returned.
3241  */
3242 int regulator_list_hardware_vsel(struct regulator *regulator,
3243                                  unsigned selector)
3244 {
3245         struct regulator_dev *rdev = regulator->rdev;
3246         const struct regulator_ops *ops = rdev->desc->ops;
3247
3248         if (selector >= rdev->desc->n_voltages)
3249                 return -EINVAL;
3250         if (selector < rdev->desc->linear_min_sel)
3251                 return 0;
3252         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3253                 return -EOPNOTSUPP;
3254
3255         return selector;
3256 }
3257 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3258
3259 /**
3260  * regulator_get_linear_step - return the voltage step size between VSEL values
3261  * @regulator: regulator source
3262  *
3263  * Returns the voltage step size between VSEL values for linear
3264  * regulators, or return 0 if the regulator isn't a linear regulator.
3265  */
3266 unsigned int regulator_get_linear_step(struct regulator *regulator)
3267 {
3268         struct regulator_dev *rdev = regulator->rdev;
3269
3270         return rdev->desc->uV_step;
3271 }
3272 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3273
3274 /**
3275  * regulator_is_supported_voltage - check if a voltage range can be supported
3276  *
3277  * @regulator: Regulator to check.
3278  * @min_uV: Minimum required voltage in uV.
3279  * @max_uV: Maximum required voltage in uV.
3280  *
3281  * Returns a boolean.
3282  */
3283 int regulator_is_supported_voltage(struct regulator *regulator,
3284                                    int min_uV, int max_uV)
3285 {
3286         struct regulator_dev *rdev = regulator->rdev;
3287         int i, voltages, ret;
3288
3289         /* If we can't change voltage check the current voltage */
3290         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3291                 ret = regulator_get_voltage(regulator);
3292                 if (ret >= 0)
3293                         return min_uV <= ret && ret <= max_uV;
3294                 else
3295                         return ret;
3296         }
3297
3298         /* Any voltage within constrains range is fine? */
3299         if (rdev->desc->continuous_voltage_range)
3300                 return min_uV >= rdev->constraints->min_uV &&
3301                                 max_uV <= rdev->constraints->max_uV;
3302
3303         ret = regulator_count_voltages(regulator);
3304         if (ret < 0)
3305                 return 0;
3306         voltages = ret;
3307
3308         for (i = 0; i < voltages; i++) {
3309                 ret = regulator_list_voltage(regulator, i);
3310
3311                 if (ret >= min_uV && ret <= max_uV)
3312                         return 1;
3313         }
3314
3315         return 0;
3316 }
3317 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3318
3319 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3320                                  int max_uV)
3321 {
3322         const struct regulator_desc *desc = rdev->desc;
3323
3324         if (desc->ops->map_voltage)
3325                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3326
3327         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3328                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3329
3330         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3331                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3332
3333         if (desc->ops->list_voltage ==
3334                 regulator_list_voltage_pickable_linear_range)
3335                 return regulator_map_voltage_pickable_linear_range(rdev,
3336                                                         min_uV, max_uV);
3337
3338         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3339 }
3340
3341 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3342                                        int min_uV, int max_uV,
3343                                        unsigned *selector)
3344 {
3345         struct pre_voltage_change_data data;
3346         int ret;
3347
3348         data.old_uV = regulator_get_voltage_rdev(rdev);
3349         data.min_uV = min_uV;
3350         data.max_uV = max_uV;
3351         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3352                                    &data);
3353         if (ret & NOTIFY_STOP_MASK)
3354                 return -EINVAL;
3355
3356         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3357         if (ret >= 0)
3358                 return ret;
3359
3360         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3361                              (void *)data.old_uV);
3362
3363         return ret;
3364 }
3365
3366 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3367                                            int uV, unsigned selector)
3368 {
3369         struct pre_voltage_change_data data;
3370         int ret;
3371
3372         data.old_uV = regulator_get_voltage_rdev(rdev);
3373         data.min_uV = uV;
3374         data.max_uV = uV;
3375         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3376                                    &data);
3377         if (ret & NOTIFY_STOP_MASK)
3378                 return -EINVAL;
3379
3380         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3381         if (ret >= 0)
3382                 return ret;
3383
3384         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3385                              (void *)data.old_uV);
3386
3387         return ret;
3388 }
3389
3390 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3391                                            int uV, int new_selector)
3392 {
3393         const struct regulator_ops *ops = rdev->desc->ops;
3394         int diff, old_sel, curr_sel, ret;
3395
3396         /* Stepping is only needed if the regulator is enabled. */
3397         if (!_regulator_is_enabled(rdev))
3398                 goto final_set;
3399
3400         if (!ops->get_voltage_sel)
3401                 return -EINVAL;
3402
3403         old_sel = ops->get_voltage_sel(rdev);
3404         if (old_sel < 0)
3405                 return old_sel;
3406
3407         diff = new_selector - old_sel;
3408         if (diff == 0)
3409                 return 0; /* No change needed. */
3410
3411         if (diff > 0) {
3412                 /* Stepping up. */
3413                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3414                      curr_sel < new_selector;
3415                      curr_sel += rdev->desc->vsel_step) {
3416                         /*
3417                          * Call the callback directly instead of using
3418                          * _regulator_call_set_voltage_sel() as we don't
3419                          * want to notify anyone yet. Same in the branch
3420                          * below.
3421                          */
3422                         ret = ops->set_voltage_sel(rdev, curr_sel);
3423                         if (ret)
3424                                 goto try_revert;
3425                 }
3426         } else {
3427                 /* Stepping down. */
3428                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3429                      curr_sel > new_selector;
3430                      curr_sel -= rdev->desc->vsel_step) {
3431                         ret = ops->set_voltage_sel(rdev, curr_sel);
3432                         if (ret)
3433                                 goto try_revert;
3434                 }
3435         }
3436
3437 final_set:
3438         /* The final selector will trigger the notifiers. */
3439         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3440
3441 try_revert:
3442         /*
3443          * At least try to return to the previous voltage if setting a new
3444          * one failed.
3445          */
3446         (void)ops->set_voltage_sel(rdev, old_sel);
3447         return ret;
3448 }
3449
3450 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3451                                        int old_uV, int new_uV)
3452 {
3453         unsigned int ramp_delay = 0;
3454
3455         if (rdev->constraints->ramp_delay)
3456                 ramp_delay = rdev->constraints->ramp_delay;
3457         else if (rdev->desc->ramp_delay)
3458                 ramp_delay = rdev->desc->ramp_delay;
3459         else if (rdev->constraints->settling_time)
3460                 return rdev->constraints->settling_time;
3461         else if (rdev->constraints->settling_time_up &&
3462                  (new_uV > old_uV))
3463                 return rdev->constraints->settling_time_up;
3464         else if (rdev->constraints->settling_time_down &&
3465                  (new_uV < old_uV))
3466                 return rdev->constraints->settling_time_down;
3467
3468         if (ramp_delay == 0) {
3469                 rdev_dbg(rdev, "ramp_delay not set\n");
3470                 return 0;
3471         }
3472
3473         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3474 }
3475
3476 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3477                                      int min_uV, int max_uV)
3478 {
3479         int ret;
3480         int delay = 0;
3481         int best_val = 0;
3482         unsigned int selector;
3483         int old_selector = -1;
3484         const struct regulator_ops *ops = rdev->desc->ops;
3485         int old_uV = regulator_get_voltage_rdev(rdev);
3486
3487         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3488
3489         min_uV += rdev->constraints->uV_offset;
3490         max_uV += rdev->constraints->uV_offset;
3491
3492         /*
3493          * If we can't obtain the old selector there is not enough
3494          * info to call set_voltage_time_sel().
3495          */
3496         if (_regulator_is_enabled(rdev) &&
3497             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3498                 old_selector = ops->get_voltage_sel(rdev);
3499                 if (old_selector < 0)
3500                         return old_selector;
3501         }
3502
3503         if (ops->set_voltage) {
3504                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3505                                                   &selector);
3506
3507                 if (ret >= 0) {
3508                         if (ops->list_voltage)
3509                                 best_val = ops->list_voltage(rdev,
3510                                                              selector);
3511                         else
3512                                 best_val = regulator_get_voltage_rdev(rdev);
3513                 }
3514
3515         } else if (ops->set_voltage_sel) {
3516                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3517                 if (ret >= 0) {
3518                         best_val = ops->list_voltage(rdev, ret);
3519                         if (min_uV <= best_val && max_uV >= best_val) {
3520                                 selector = ret;
3521                                 if (old_selector == selector)
3522                                         ret = 0;
3523                                 else if (rdev->desc->vsel_step)
3524                                         ret = _regulator_set_voltage_sel_step(
3525                                                 rdev, best_val, selector);
3526                                 else
3527                                         ret = _regulator_call_set_voltage_sel(
3528                                                 rdev, best_val, selector);
3529                         } else {
3530                                 ret = -EINVAL;
3531                         }
3532                 }
3533         } else {
3534                 ret = -EINVAL;
3535         }
3536
3537         if (ret)
3538                 goto out;
3539
3540         if (ops->set_voltage_time_sel) {
3541                 /*
3542                  * Call set_voltage_time_sel if successfully obtained
3543                  * old_selector
3544                  */
3545                 if (old_selector >= 0 && old_selector != selector)
3546                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3547                                                           selector);
3548         } else {
3549                 if (old_uV != best_val) {
3550                         if (ops->set_voltage_time)
3551                                 delay = ops->set_voltage_time(rdev, old_uV,
3552                                                               best_val);
3553                         else
3554                                 delay = _regulator_set_voltage_time(rdev,
3555                                                                     old_uV,
3556                                                                     best_val);
3557                 }
3558         }
3559
3560         if (delay < 0) {
3561                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3562                 delay = 0;
3563         }
3564
3565         /* Insert any necessary delays */
3566         if (delay >= 1000) {
3567                 mdelay(delay / 1000);
3568                 udelay(delay % 1000);
3569         } else if (delay) {
3570                 udelay(delay);
3571         }
3572
3573         if (best_val >= 0) {
3574                 unsigned long data = best_val;
3575
3576                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3577                                      (void *)data);
3578         }
3579
3580 out:
3581         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3582
3583         return ret;
3584 }
3585
3586 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3587                                   int min_uV, int max_uV, suspend_state_t state)
3588 {
3589         struct regulator_state *rstate;
3590         int uV, sel;
3591
3592         rstate = regulator_get_suspend_state(rdev, state);
3593         if (rstate == NULL)
3594                 return -EINVAL;
3595
3596         if (min_uV < rstate->min_uV)
3597                 min_uV = rstate->min_uV;
3598         if (max_uV > rstate->max_uV)
3599                 max_uV = rstate->max_uV;
3600
3601         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3602         if (sel < 0)
3603                 return sel;
3604
3605         uV = rdev->desc->ops->list_voltage(rdev, sel);
3606         if (uV >= min_uV && uV <= max_uV)
3607                 rstate->uV = uV;
3608
3609         return 0;
3610 }
3611
3612 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3613                                           int min_uV, int max_uV,
3614                                           suspend_state_t state)
3615 {
3616         struct regulator_dev *rdev = regulator->rdev;
3617         struct regulator_voltage *voltage = &regulator->voltage[state];
3618         int ret = 0;
3619         int old_min_uV, old_max_uV;
3620         int current_uV;
3621
3622         /* If we're setting the same range as last time the change
3623          * should be a noop (some cpufreq implementations use the same
3624          * voltage for multiple frequencies, for example).
3625          */
3626         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3627                 goto out;
3628
3629         /* If we're trying to set a range that overlaps the current voltage,
3630          * return successfully even though the regulator does not support
3631          * changing the voltage.
3632          */
3633         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3634                 current_uV = regulator_get_voltage_rdev(rdev);
3635                 if (min_uV <= current_uV && current_uV <= max_uV) {
3636                         voltage->min_uV = min_uV;
3637                         voltage->max_uV = max_uV;
3638                         goto out;
3639                 }
3640         }
3641
3642         /* sanity check */
3643         if (!rdev->desc->ops->set_voltage &&
3644             !rdev->desc->ops->set_voltage_sel) {
3645                 ret = -EINVAL;
3646                 goto out;
3647         }
3648
3649         /* constraints check */
3650         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3651         if (ret < 0)
3652                 goto out;
3653
3654         /* restore original values in case of error */
3655         old_min_uV = voltage->min_uV;
3656         old_max_uV = voltage->max_uV;
3657         voltage->min_uV = min_uV;
3658         voltage->max_uV = max_uV;
3659
3660         /* for not coupled regulators this will just set the voltage */
3661         ret = regulator_balance_voltage(rdev, state);
3662         if (ret < 0) {
3663                 voltage->min_uV = old_min_uV;
3664                 voltage->max_uV = old_max_uV;
3665         }
3666
3667 out:
3668         return ret;
3669 }
3670
3671 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3672                                int max_uV, suspend_state_t state)
3673 {
3674         int best_supply_uV = 0;
3675         int supply_change_uV = 0;
3676         int ret;
3677
3678         if (rdev->supply &&
3679             regulator_ops_is_valid(rdev->supply->rdev,
3680                                    REGULATOR_CHANGE_VOLTAGE) &&
3681             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3682                                            rdev->desc->ops->get_voltage_sel))) {
3683                 int current_supply_uV;
3684                 int selector;
3685
3686                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3687                 if (selector < 0) {
3688                         ret = selector;
3689                         goto out;
3690                 }
3691
3692                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3693                 if (best_supply_uV < 0) {
3694                         ret = best_supply_uV;
3695                         goto out;
3696                 }
3697
3698                 best_supply_uV += rdev->desc->min_dropout_uV;
3699
3700                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3701                 if (current_supply_uV < 0) {
3702                         ret = current_supply_uV;
3703                         goto out;
3704                 }
3705
3706                 supply_change_uV = best_supply_uV - current_supply_uV;
3707         }
3708
3709         if (supply_change_uV > 0) {
3710                 ret = regulator_set_voltage_unlocked(rdev->supply,
3711                                 best_supply_uV, INT_MAX, state);
3712                 if (ret) {
3713                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3714                                 ERR_PTR(ret));
3715                         goto out;
3716                 }
3717         }
3718
3719         if (state == PM_SUSPEND_ON)
3720                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3721         else
3722                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3723                                                         max_uV, state);
3724         if (ret < 0)
3725                 goto out;
3726
3727         if (supply_change_uV < 0) {
3728                 ret = regulator_set_voltage_unlocked(rdev->supply,
3729                                 best_supply_uV, INT_MAX, state);
3730                 if (ret)
3731                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3732                                  ERR_PTR(ret));
3733                 /* No need to fail here */
3734                 ret = 0;
3735         }
3736
3737 out:
3738         return ret;
3739 }
3740 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3741
3742 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3743                                         int *current_uV, int *min_uV)
3744 {
3745         struct regulation_constraints *constraints = rdev->constraints;
3746
3747         /* Limit voltage change only if necessary */
3748         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3749                 return 1;
3750
3751         if (*current_uV < 0) {
3752                 *current_uV = regulator_get_voltage_rdev(rdev);
3753
3754                 if (*current_uV < 0)
3755                         return *current_uV;
3756         }
3757
3758         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3759                 return 1;
3760
3761         /* Clamp target voltage within the given step */
3762         if (*current_uV < *min_uV)
3763                 *min_uV = min(*current_uV + constraints->max_uV_step,
3764                               *min_uV);
3765         else
3766                 *min_uV = max(*current_uV - constraints->max_uV_step,
3767                               *min_uV);
3768
3769         return 0;
3770 }
3771
3772 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3773                                          int *current_uV,
3774                                          int *min_uV, int *max_uV,
3775                                          suspend_state_t state,
3776                                          int n_coupled)
3777 {
3778         struct coupling_desc *c_desc = &rdev->coupling_desc;
3779         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3780         struct regulation_constraints *constraints = rdev->constraints;
3781         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3782         int max_current_uV = 0, min_current_uV = INT_MAX;
3783         int highest_min_uV = 0, target_uV, possible_uV;
3784         int i, ret, max_spread;
3785         bool done;
3786
3787         *current_uV = -1;
3788
3789         /*
3790          * If there are no coupled regulators, simply set the voltage
3791          * demanded by consumers.
3792          */
3793         if (n_coupled == 1) {
3794                 /*
3795                  * If consumers don't provide any demands, set voltage
3796                  * to min_uV
3797                  */
3798                 desired_min_uV = constraints->min_uV;
3799                 desired_max_uV = constraints->max_uV;
3800
3801                 ret = regulator_check_consumers(rdev,
3802                                                 &desired_min_uV,
3803                                                 &desired_max_uV, state);
3804                 if (ret < 0)
3805                         return ret;
3806
3807                 possible_uV = desired_min_uV;
3808                 done = true;
3809
3810                 goto finish;
3811         }
3812
3813         /* Find highest min desired voltage */
3814         for (i = 0; i < n_coupled; i++) {
3815                 int tmp_min = 0;
3816                 int tmp_max = INT_MAX;
3817
3818                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3819
3820                 ret = regulator_check_consumers(c_rdevs[i],
3821                                                 &tmp_min,
3822                                                 &tmp_max, state);
3823                 if (ret < 0)
3824                         return ret;
3825
3826                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3827                 if (ret < 0)
3828                         return ret;
3829
3830                 highest_min_uV = max(highest_min_uV, tmp_min);
3831
3832                 if (i == 0) {
3833                         desired_min_uV = tmp_min;
3834                         desired_max_uV = tmp_max;
3835                 }
3836         }
3837
3838         max_spread = constraints->max_spread[0];
3839
3840         /*
3841          * Let target_uV be equal to the desired one if possible.
3842          * If not, set it to minimum voltage, allowed by other coupled
3843          * regulators.
3844          */
3845         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3846
3847         /*
3848          * Find min and max voltages, which currently aren't violating
3849          * max_spread.
3850          */
3851         for (i = 1; i < n_coupled; i++) {
3852                 int tmp_act;
3853
3854                 if (!_regulator_is_enabled(c_rdevs[i]))
3855                         continue;
3856
3857                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3858                 if (tmp_act < 0)
3859                         return tmp_act;
3860
3861                 min_current_uV = min(tmp_act, min_current_uV);
3862                 max_current_uV = max(tmp_act, max_current_uV);
3863         }
3864
3865         /* There aren't any other regulators enabled */
3866         if (max_current_uV == 0) {
3867                 possible_uV = target_uV;
3868         } else {
3869                 /*
3870                  * Correct target voltage, so as it currently isn't
3871                  * violating max_spread
3872                  */
3873                 possible_uV = max(target_uV, max_current_uV - max_spread);
3874                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3875         }
3876
3877         if (possible_uV > desired_max_uV)
3878                 return -EINVAL;
3879
3880         done = (possible_uV == target_uV);
3881         desired_min_uV = possible_uV;
3882
3883 finish:
3884         /* Apply max_uV_step constraint if necessary */
3885         if (state == PM_SUSPEND_ON) {
3886                 ret = regulator_limit_voltage_step(rdev, current_uV,
3887                                                    &desired_min_uV);
3888                 if (ret < 0)
3889                         return ret;
3890
3891                 if (ret == 0)
3892                         done = false;
3893         }
3894
3895         /* Set current_uV if wasn't done earlier in the code and if necessary */
3896         if (n_coupled > 1 && *current_uV == -1) {
3897
3898                 if (_regulator_is_enabled(rdev)) {
3899                         ret = regulator_get_voltage_rdev(rdev);
3900                         if (ret < 0)
3901                                 return ret;
3902
3903                         *current_uV = ret;
3904                 } else {
3905                         *current_uV = desired_min_uV;
3906                 }
3907         }
3908
3909         *min_uV = desired_min_uV;
3910         *max_uV = desired_max_uV;
3911
3912         return done;
3913 }
3914
3915 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3916                                  suspend_state_t state, bool skip_coupled)
3917 {
3918         struct regulator_dev **c_rdevs;
3919         struct regulator_dev *best_rdev;
3920         struct coupling_desc *c_desc = &rdev->coupling_desc;
3921         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3922         unsigned int delta, best_delta;
3923         unsigned long c_rdev_done = 0;
3924         bool best_c_rdev_done;
3925
3926         c_rdevs = c_desc->coupled_rdevs;
3927         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3928
3929         /*
3930          * Find the best possible voltage change on each loop. Leave the loop
3931          * if there isn't any possible change.
3932          */
3933         do {
3934                 best_c_rdev_done = false;
3935                 best_delta = 0;
3936                 best_min_uV = 0;
3937                 best_max_uV = 0;
3938                 best_c_rdev = 0;
3939                 best_rdev = NULL;
3940
3941                 /*
3942                  * Find highest difference between optimal voltage
3943                  * and current voltage.
3944                  */
3945                 for (i = 0; i < n_coupled; i++) {
3946                         /*
3947                          * optimal_uV is the best voltage that can be set for
3948                          * i-th regulator at the moment without violating
3949                          * max_spread constraint in order to balance
3950                          * the coupled voltages.
3951                          */
3952                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3953
3954                         if (test_bit(i, &c_rdev_done))
3955                                 continue;
3956
3957                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3958                                                             &current_uV,
3959                                                             &optimal_uV,
3960                                                             &optimal_max_uV,
3961                                                             state, n_coupled);
3962                         if (ret < 0)
3963                                 goto out;
3964
3965                         delta = abs(optimal_uV - current_uV);
3966
3967                         if (delta && best_delta <= delta) {
3968                                 best_c_rdev_done = ret;
3969                                 best_delta = delta;
3970                                 best_rdev = c_rdevs[i];
3971                                 best_min_uV = optimal_uV;
3972                                 best_max_uV = optimal_max_uV;
3973                                 best_c_rdev = i;
3974                         }
3975                 }
3976
3977                 /* Nothing to change, return successfully */
3978                 if (!best_rdev) {
3979                         ret = 0;
3980                         goto out;
3981                 }
3982
3983                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3984                                                  best_max_uV, state);
3985
3986                 if (ret < 0)
3987                         goto out;
3988
3989                 if (best_c_rdev_done)
3990                         set_bit(best_c_rdev, &c_rdev_done);
3991
3992         } while (n_coupled > 1);
3993
3994 out:
3995         return ret;
3996 }
3997
3998 static int regulator_balance_voltage(struct regulator_dev *rdev,
3999                                      suspend_state_t state)
4000 {
4001         struct coupling_desc *c_desc = &rdev->coupling_desc;
4002         struct regulator_coupler *coupler = c_desc->coupler;
4003         bool skip_coupled = false;
4004
4005         /*
4006          * If system is in a state other than PM_SUSPEND_ON, don't check
4007          * other coupled regulators.
4008          */
4009         if (state != PM_SUSPEND_ON)
4010                 skip_coupled = true;
4011
4012         if (c_desc->n_resolved < c_desc->n_coupled) {
4013                 rdev_err(rdev, "Not all coupled regulators registered\n");
4014                 return -EPERM;
4015         }
4016
4017         /* Invoke custom balancer for customized couplers */
4018         if (coupler && coupler->balance_voltage)
4019                 return coupler->balance_voltage(coupler, rdev, state);
4020
4021         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4022 }
4023
4024 /**
4025  * regulator_set_voltage - set regulator output voltage
4026  * @regulator: regulator source
4027  * @min_uV: Minimum required voltage in uV
4028  * @max_uV: Maximum acceptable voltage in uV
4029  *
4030  * Sets a voltage regulator to the desired output voltage. This can be set
4031  * during any regulator state. IOW, regulator can be disabled or enabled.
4032  *
4033  * If the regulator is enabled then the voltage will change to the new value
4034  * immediately otherwise if the regulator is disabled the regulator will
4035  * output at the new voltage when enabled.
4036  *
4037  * NOTE: If the regulator is shared between several devices then the lowest
4038  * request voltage that meets the system constraints will be used.
4039  * Regulator system constraints must be set for this regulator before
4040  * calling this function otherwise this call will fail.
4041  */
4042 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4043 {
4044         struct ww_acquire_ctx ww_ctx;
4045         int ret;
4046
4047         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4048
4049         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4050                                              PM_SUSPEND_ON);
4051
4052         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4053
4054         return ret;
4055 }
4056 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4057
4058 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4059                                            suspend_state_t state, bool en)
4060 {
4061         struct regulator_state *rstate;
4062
4063         rstate = regulator_get_suspend_state(rdev, state);
4064         if (rstate == NULL)
4065                 return -EINVAL;
4066
4067         if (!rstate->changeable)
4068                 return -EPERM;
4069
4070         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4071
4072         return 0;
4073 }
4074
4075 int regulator_suspend_enable(struct regulator_dev *rdev,
4076                                     suspend_state_t state)
4077 {
4078         return regulator_suspend_toggle(rdev, state, true);
4079 }
4080 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4081
4082 int regulator_suspend_disable(struct regulator_dev *rdev,
4083                                      suspend_state_t state)
4084 {
4085         struct regulator *regulator;
4086         struct regulator_voltage *voltage;
4087
4088         /*
4089          * if any consumer wants this regulator device keeping on in
4090          * suspend states, don't set it as disabled.
4091          */
4092         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4093                 voltage = &regulator->voltage[state];
4094                 if (voltage->min_uV || voltage->max_uV)
4095                         return 0;
4096         }
4097
4098         return regulator_suspend_toggle(rdev, state, false);
4099 }
4100 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4101
4102 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4103                                           int min_uV, int max_uV,
4104                                           suspend_state_t state)
4105 {
4106         struct regulator_dev *rdev = regulator->rdev;
4107         struct regulator_state *rstate;
4108
4109         rstate = regulator_get_suspend_state(rdev, state);
4110         if (rstate == NULL)
4111                 return -EINVAL;
4112
4113         if (rstate->min_uV == rstate->max_uV) {
4114                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4115                 return -EPERM;
4116         }
4117
4118         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4119 }
4120
4121 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4122                                   int max_uV, suspend_state_t state)
4123 {
4124         struct ww_acquire_ctx ww_ctx;
4125         int ret;
4126
4127         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4128         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4129                 return -EINVAL;
4130
4131         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4132
4133         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4134                                              max_uV, state);
4135
4136         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4137
4138         return ret;
4139 }
4140 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4141
4142 /**
4143  * regulator_set_voltage_time - get raise/fall time
4144  * @regulator: regulator source
4145  * @old_uV: starting voltage in microvolts
4146  * @new_uV: target voltage in microvolts
4147  *
4148  * Provided with the starting and ending voltage, this function attempts to
4149  * calculate the time in microseconds required to rise or fall to this new
4150  * voltage.
4151  */
4152 int regulator_set_voltage_time(struct regulator *regulator,
4153                                int old_uV, int new_uV)
4154 {
4155         struct regulator_dev *rdev = regulator->rdev;
4156         const struct regulator_ops *ops = rdev->desc->ops;
4157         int old_sel = -1;
4158         int new_sel = -1;
4159         int voltage;
4160         int i;
4161
4162         if (ops->set_voltage_time)
4163                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4164         else if (!ops->set_voltage_time_sel)
4165                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4166
4167         /* Currently requires operations to do this */
4168         if (!ops->list_voltage || !rdev->desc->n_voltages)
4169                 return -EINVAL;
4170
4171         for (i = 0; i < rdev->desc->n_voltages; i++) {
4172                 /* We only look for exact voltage matches here */
4173                 if (i < rdev->desc->linear_min_sel)
4174                         continue;
4175
4176                 if (old_sel >= 0 && new_sel >= 0)
4177                         break;
4178
4179                 voltage = regulator_list_voltage(regulator, i);
4180                 if (voltage < 0)
4181                         return -EINVAL;
4182                 if (voltage == 0)
4183                         continue;
4184                 if (voltage == old_uV)
4185                         old_sel = i;
4186                 if (voltage == new_uV)
4187                         new_sel = i;
4188         }
4189
4190         if (old_sel < 0 || new_sel < 0)
4191                 return -EINVAL;
4192
4193         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4194 }
4195 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4196
4197 /**
4198  * regulator_set_voltage_time_sel - get raise/fall time
4199  * @rdev: regulator source device
4200  * @old_selector: selector for starting voltage
4201  * @new_selector: selector for target voltage
4202  *
4203  * Provided with the starting and target voltage selectors, this function
4204  * returns time in microseconds required to rise or fall to this new voltage
4205  *
4206  * Drivers providing ramp_delay in regulation_constraints can use this as their
4207  * set_voltage_time_sel() operation.
4208  */
4209 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4210                                    unsigned int old_selector,
4211                                    unsigned int new_selector)
4212 {
4213         int old_volt, new_volt;
4214
4215         /* sanity check */
4216         if (!rdev->desc->ops->list_voltage)
4217                 return -EINVAL;
4218
4219         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4220         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4221
4222         if (rdev->desc->ops->set_voltage_time)
4223                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4224                                                          new_volt);
4225         else
4226                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4227 }
4228 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4229
4230 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4231 {
4232         int ret;
4233
4234         regulator_lock(rdev);
4235
4236         if (!rdev->desc->ops->set_voltage &&
4237             !rdev->desc->ops->set_voltage_sel) {
4238                 ret = -EINVAL;
4239                 goto out;
4240         }
4241
4242         /* balance only, if regulator is coupled */
4243         if (rdev->coupling_desc.n_coupled > 1)
4244                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4245         else
4246                 ret = -EOPNOTSUPP;
4247
4248 out:
4249         regulator_unlock(rdev);
4250         return ret;
4251 }
4252
4253 /**
4254  * regulator_sync_voltage - re-apply last regulator output voltage
4255  * @regulator: regulator source
4256  *
4257  * Re-apply the last configured voltage.  This is intended to be used
4258  * where some external control source the consumer is cooperating with
4259  * has caused the configured voltage to change.
4260  */
4261 int regulator_sync_voltage(struct regulator *regulator)
4262 {
4263         struct regulator_dev *rdev = regulator->rdev;
4264         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4265         int ret, min_uV, max_uV;
4266
4267         regulator_lock(rdev);
4268
4269         if (!rdev->desc->ops->set_voltage &&
4270             !rdev->desc->ops->set_voltage_sel) {
4271                 ret = -EINVAL;
4272                 goto out;
4273         }
4274
4275         /* This is only going to work if we've had a voltage configured. */
4276         if (!voltage->min_uV && !voltage->max_uV) {
4277                 ret = -EINVAL;
4278                 goto out;
4279         }
4280
4281         min_uV = voltage->min_uV;
4282         max_uV = voltage->max_uV;
4283
4284         /* This should be a paranoia check... */
4285         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4286         if (ret < 0)
4287                 goto out;
4288
4289         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4290         if (ret < 0)
4291                 goto out;
4292
4293         /* balance only, if regulator is coupled */
4294         if (rdev->coupling_desc.n_coupled > 1)
4295                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4296         else
4297                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4298
4299 out:
4300         regulator_unlock(rdev);
4301         return ret;
4302 }
4303 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4304
4305 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4306 {
4307         int sel, ret;
4308         bool bypassed;
4309
4310         if (rdev->desc->ops->get_bypass) {
4311                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4312                 if (ret < 0)
4313                         return ret;
4314                 if (bypassed) {
4315                         /* if bypassed the regulator must have a supply */
4316                         if (!rdev->supply) {
4317                                 rdev_err(rdev,
4318                                          "bypassed regulator has no supply!\n");
4319                                 return -EPROBE_DEFER;
4320                         }
4321
4322                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4323                 }
4324         }
4325
4326         if (rdev->desc->ops->get_voltage_sel) {
4327                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4328                 if (sel < 0)
4329                         return sel;
4330                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4331         } else if (rdev->desc->ops->get_voltage) {
4332                 ret = rdev->desc->ops->get_voltage(rdev);
4333         } else if (rdev->desc->ops->list_voltage) {
4334                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4335         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4336                 ret = rdev->desc->fixed_uV;
4337         } else if (rdev->supply) {
4338                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4339         } else if (rdev->supply_name) {
4340                 return -EPROBE_DEFER;
4341         } else {
4342                 return -EINVAL;
4343         }
4344
4345         if (ret < 0)
4346                 return ret;
4347         return ret - rdev->constraints->uV_offset;
4348 }
4349 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4350
4351 /**
4352  * regulator_get_voltage - get regulator output voltage
4353  * @regulator: regulator source
4354  *
4355  * This returns the current regulator voltage in uV.
4356  *
4357  * NOTE: If the regulator is disabled it will return the voltage value. This
4358  * function should not be used to determine regulator state.
4359  */
4360 int regulator_get_voltage(struct regulator *regulator)
4361 {
4362         struct ww_acquire_ctx ww_ctx;
4363         int ret;
4364
4365         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4366         ret = regulator_get_voltage_rdev(regulator->rdev);
4367         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4368
4369         return ret;
4370 }
4371 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4372
4373 /**
4374  * regulator_set_current_limit - set regulator output current limit
4375  * @regulator: regulator source
4376  * @min_uA: Minimum supported current in uA
4377  * @max_uA: Maximum supported current in uA
4378  *
4379  * Sets current sink to the desired output current. This can be set during
4380  * any regulator state. IOW, regulator can be disabled or enabled.
4381  *
4382  * If the regulator is enabled then the current will change to the new value
4383  * immediately otherwise if the regulator is disabled the regulator will
4384  * output at the new current when enabled.
4385  *
4386  * NOTE: Regulator system constraints must be set for this regulator before
4387  * calling this function otherwise this call will fail.
4388  */
4389 int regulator_set_current_limit(struct regulator *regulator,
4390                                int min_uA, int max_uA)
4391 {
4392         struct regulator_dev *rdev = regulator->rdev;
4393         int ret;
4394
4395         regulator_lock(rdev);
4396
4397         /* sanity check */
4398         if (!rdev->desc->ops->set_current_limit) {
4399                 ret = -EINVAL;
4400                 goto out;
4401         }
4402
4403         /* constraints check */
4404         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4405         if (ret < 0)
4406                 goto out;
4407
4408         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4409 out:
4410         regulator_unlock(rdev);
4411         return ret;
4412 }
4413 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4414
4415 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4416 {
4417         /* sanity check */
4418         if (!rdev->desc->ops->get_current_limit)
4419                 return -EINVAL;
4420
4421         return rdev->desc->ops->get_current_limit(rdev);
4422 }
4423
4424 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4425 {
4426         int ret;
4427
4428         regulator_lock(rdev);
4429         ret = _regulator_get_current_limit_unlocked(rdev);
4430         regulator_unlock(rdev);
4431
4432         return ret;
4433 }
4434
4435 /**
4436  * regulator_get_current_limit - get regulator output current
4437  * @regulator: regulator source
4438  *
4439  * This returns the current supplied by the specified current sink in uA.
4440  *
4441  * NOTE: If the regulator is disabled it will return the current value. This
4442  * function should not be used to determine regulator state.
4443  */
4444 int regulator_get_current_limit(struct regulator *regulator)
4445 {
4446         return _regulator_get_current_limit(regulator->rdev);
4447 }
4448 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4449
4450 /**
4451  * regulator_set_mode - set regulator operating mode
4452  * @regulator: regulator source
4453  * @mode: operating mode - one of the REGULATOR_MODE constants
4454  *
4455  * Set regulator operating mode to increase regulator efficiency or improve
4456  * regulation performance.
4457  *
4458  * NOTE: Regulator system constraints must be set for this regulator before
4459  * calling this function otherwise this call will fail.
4460  */
4461 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4462 {
4463         struct regulator_dev *rdev = regulator->rdev;
4464         int ret;
4465         int regulator_curr_mode;
4466
4467         regulator_lock(rdev);
4468
4469         /* sanity check */
4470         if (!rdev->desc->ops->set_mode) {
4471                 ret = -EINVAL;
4472                 goto out;
4473         }
4474
4475         /* return if the same mode is requested */
4476         if (rdev->desc->ops->get_mode) {
4477                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4478                 if (regulator_curr_mode == mode) {
4479                         ret = 0;
4480                         goto out;
4481                 }
4482         }
4483
4484         /* constraints check */
4485         ret = regulator_mode_constrain(rdev, &mode);
4486         if (ret < 0)
4487                 goto out;
4488
4489         ret = rdev->desc->ops->set_mode(rdev, mode);
4490 out:
4491         regulator_unlock(rdev);
4492         return ret;
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_set_mode);
4495
4496 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4497 {
4498         /* sanity check */
4499         if (!rdev->desc->ops->get_mode)
4500                 return -EINVAL;
4501
4502         return rdev->desc->ops->get_mode(rdev);
4503 }
4504
4505 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4506 {
4507         int ret;
4508
4509         regulator_lock(rdev);
4510         ret = _regulator_get_mode_unlocked(rdev);
4511         regulator_unlock(rdev);
4512
4513         return ret;
4514 }
4515
4516 /**
4517  * regulator_get_mode - get regulator operating mode
4518  * @regulator: regulator source
4519  *
4520  * Get the current regulator operating mode.
4521  */
4522 unsigned int regulator_get_mode(struct regulator *regulator)
4523 {
4524         return _regulator_get_mode(regulator->rdev);
4525 }
4526 EXPORT_SYMBOL_GPL(regulator_get_mode);
4527
4528 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4529 {
4530         int ret = 0;
4531
4532         if (rdev->use_cached_err) {
4533                 spin_lock(&rdev->err_lock);
4534                 ret = rdev->cached_err;
4535                 spin_unlock(&rdev->err_lock);
4536         }
4537         return ret;
4538 }
4539
4540 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4541                                         unsigned int *flags)
4542 {
4543         int cached_flags, ret = 0;
4544
4545         regulator_lock(rdev);
4546
4547         cached_flags = rdev_get_cached_err_flags(rdev);
4548
4549         if (rdev->desc->ops->get_error_flags)
4550                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4551         else if (!rdev->use_cached_err)
4552                 ret = -EINVAL;
4553
4554         *flags |= cached_flags;
4555
4556         regulator_unlock(rdev);
4557
4558         return ret;
4559 }
4560
4561 /**
4562  * regulator_get_error_flags - get regulator error information
4563  * @regulator: regulator source
4564  * @flags: pointer to store error flags
4565  *
4566  * Get the current regulator error information.
4567  */
4568 int regulator_get_error_flags(struct regulator *regulator,
4569                                 unsigned int *flags)
4570 {
4571         return _regulator_get_error_flags(regulator->rdev, flags);
4572 }
4573 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4574
4575 /**
4576  * regulator_set_load - set regulator load
4577  * @regulator: regulator source
4578  * @uA_load: load current
4579  *
4580  * Notifies the regulator core of a new device load. This is then used by
4581  * DRMS (if enabled by constraints) to set the most efficient regulator
4582  * operating mode for the new regulator loading.
4583  *
4584  * Consumer devices notify their supply regulator of the maximum power
4585  * they will require (can be taken from device datasheet in the power
4586  * consumption tables) when they change operational status and hence power
4587  * state. Examples of operational state changes that can affect power
4588  * consumption are :-
4589  *
4590  *    o Device is opened / closed.
4591  *    o Device I/O is about to begin or has just finished.
4592  *    o Device is idling in between work.
4593  *
4594  * This information is also exported via sysfs to userspace.
4595  *
4596  * DRMS will sum the total requested load on the regulator and change
4597  * to the most efficient operating mode if platform constraints allow.
4598  *
4599  * NOTE: when a regulator consumer requests to have a regulator
4600  * disabled then any load that consumer requested no longer counts
4601  * toward the total requested load.  If the regulator is re-enabled
4602  * then the previously requested load will start counting again.
4603  *
4604  * If a regulator is an always-on regulator then an individual consumer's
4605  * load will still be removed if that consumer is fully disabled.
4606  *
4607  * On error a negative errno is returned.
4608  */
4609 int regulator_set_load(struct regulator *regulator, int uA_load)
4610 {
4611         struct regulator_dev *rdev = regulator->rdev;
4612         int old_uA_load;
4613         int ret = 0;
4614
4615         regulator_lock(rdev);
4616         old_uA_load = regulator->uA_load;
4617         regulator->uA_load = uA_load;
4618         if (regulator->enable_count && old_uA_load != uA_load) {
4619                 ret = drms_uA_update(rdev);
4620                 if (ret < 0)
4621                         regulator->uA_load = old_uA_load;
4622         }
4623         regulator_unlock(rdev);
4624
4625         return ret;
4626 }
4627 EXPORT_SYMBOL_GPL(regulator_set_load);
4628
4629 /**
4630  * regulator_allow_bypass - allow the regulator to go into bypass mode
4631  *
4632  * @regulator: Regulator to configure
4633  * @enable: enable or disable bypass mode
4634  *
4635  * Allow the regulator to go into bypass mode if all other consumers
4636  * for the regulator also enable bypass mode and the machine
4637  * constraints allow this.  Bypass mode means that the regulator is
4638  * simply passing the input directly to the output with no regulation.
4639  */
4640 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4641 {
4642         struct regulator_dev *rdev = regulator->rdev;
4643         const char *name = rdev_get_name(rdev);
4644         int ret = 0;
4645
4646         if (!rdev->desc->ops->set_bypass)
4647                 return 0;
4648
4649         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4650                 return 0;
4651
4652         regulator_lock(rdev);
4653
4654         if (enable && !regulator->bypass) {
4655                 rdev->bypass_count++;
4656
4657                 if (rdev->bypass_count == rdev->open_count) {
4658                         trace_regulator_bypass_enable(name);
4659
4660                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4661                         if (ret != 0)
4662                                 rdev->bypass_count--;
4663                         else
4664                                 trace_regulator_bypass_enable_complete(name);
4665                 }
4666
4667         } else if (!enable && regulator->bypass) {
4668                 rdev->bypass_count--;
4669
4670                 if (rdev->bypass_count != rdev->open_count) {
4671                         trace_regulator_bypass_disable(name);
4672
4673                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4674                         if (ret != 0)
4675                                 rdev->bypass_count++;
4676                         else
4677                                 trace_regulator_bypass_disable_complete(name);
4678                 }
4679         }
4680
4681         if (ret == 0)
4682                 regulator->bypass = enable;
4683
4684         regulator_unlock(rdev);
4685
4686         return ret;
4687 }
4688 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4689
4690 /**
4691  * regulator_register_notifier - register regulator event notifier
4692  * @regulator: regulator source
4693  * @nb: notifier block
4694  *
4695  * Register notifier block to receive regulator events.
4696  */
4697 int regulator_register_notifier(struct regulator *regulator,
4698                               struct notifier_block *nb)
4699 {
4700         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4701                                                 nb);
4702 }
4703 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4704
4705 /**
4706  * regulator_unregister_notifier - unregister regulator event notifier
4707  * @regulator: regulator source
4708  * @nb: notifier block
4709  *
4710  * Unregister regulator event notifier block.
4711  */
4712 int regulator_unregister_notifier(struct regulator *regulator,
4713                                 struct notifier_block *nb)
4714 {
4715         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4716                                                   nb);
4717 }
4718 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4719
4720 /* notify regulator consumers and downstream regulator consumers.
4721  * Note mutex must be held by caller.
4722  */
4723 static int _notifier_call_chain(struct regulator_dev *rdev,
4724                                   unsigned long event, void *data)
4725 {
4726         /* call rdev chain first */
4727         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4728 }
4729
4730 /**
4731  * regulator_bulk_get - get multiple regulator consumers
4732  *
4733  * @dev:           Device to supply
4734  * @num_consumers: Number of consumers to register
4735  * @consumers:     Configuration of consumers; clients are stored here.
4736  *
4737  * @return 0 on success, an errno on failure.
4738  *
4739  * This helper function allows drivers to get several regulator
4740  * consumers in one operation.  If any of the regulators cannot be
4741  * acquired then any regulators that were allocated will be freed
4742  * before returning to the caller.
4743  */
4744 int regulator_bulk_get(struct device *dev, int num_consumers,
4745                        struct regulator_bulk_data *consumers)
4746 {
4747         int i;
4748         int ret;
4749
4750         for (i = 0; i < num_consumers; i++)
4751                 consumers[i].consumer = NULL;
4752
4753         for (i = 0; i < num_consumers; i++) {
4754                 consumers[i].consumer = regulator_get(dev,
4755                                                       consumers[i].supply);
4756                 if (IS_ERR(consumers[i].consumer)) {
4757                         ret = PTR_ERR(consumers[i].consumer);
4758                         consumers[i].consumer = NULL;
4759                         goto err;
4760                 }
4761         }
4762
4763         return 0;
4764
4765 err:
4766         if (ret != -EPROBE_DEFER)
4767                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4768                         consumers[i].supply, ERR_PTR(ret));
4769         else
4770                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4771                         consumers[i].supply);
4772
4773         while (--i >= 0)
4774                 regulator_put(consumers[i].consumer);
4775
4776         return ret;
4777 }
4778 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4779
4780 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4781 {
4782         struct regulator_bulk_data *bulk = data;
4783
4784         bulk->ret = regulator_enable(bulk->consumer);
4785 }
4786
4787 /**
4788  * regulator_bulk_enable - enable multiple regulator consumers
4789  *
4790  * @num_consumers: Number of consumers
4791  * @consumers:     Consumer data; clients are stored here.
4792  * @return         0 on success, an errno on failure
4793  *
4794  * This convenience API allows consumers to enable multiple regulator
4795  * clients in a single API call.  If any consumers cannot be enabled
4796  * then any others that were enabled will be disabled again prior to
4797  * return.
4798  */
4799 int regulator_bulk_enable(int num_consumers,
4800                           struct regulator_bulk_data *consumers)
4801 {
4802         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4803         int i;
4804         int ret = 0;
4805
4806         for (i = 0; i < num_consumers; i++) {
4807                 async_schedule_domain(regulator_bulk_enable_async,
4808                                       &consumers[i], &async_domain);
4809         }
4810
4811         async_synchronize_full_domain(&async_domain);
4812
4813         /* If any consumer failed we need to unwind any that succeeded */
4814         for (i = 0; i < num_consumers; i++) {
4815                 if (consumers[i].ret != 0) {
4816                         ret = consumers[i].ret;
4817                         goto err;
4818                 }
4819         }
4820
4821         return 0;
4822
4823 err:
4824         for (i = 0; i < num_consumers; i++) {
4825                 if (consumers[i].ret < 0)
4826                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4827                                ERR_PTR(consumers[i].ret));
4828                 else
4829                         regulator_disable(consumers[i].consumer);
4830         }
4831
4832         return ret;
4833 }
4834 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4835
4836 /**
4837  * regulator_bulk_disable - disable multiple regulator consumers
4838  *
4839  * @num_consumers: Number of consumers
4840  * @consumers:     Consumer data; clients are stored here.
4841  * @return         0 on success, an errno on failure
4842  *
4843  * This convenience API allows consumers to disable multiple regulator
4844  * clients in a single API call.  If any consumers cannot be disabled
4845  * then any others that were disabled will be enabled again prior to
4846  * return.
4847  */
4848 int regulator_bulk_disable(int num_consumers,
4849                            struct regulator_bulk_data *consumers)
4850 {
4851         int i;
4852         int ret, r;
4853
4854         for (i = num_consumers - 1; i >= 0; --i) {
4855                 ret = regulator_disable(consumers[i].consumer);
4856                 if (ret != 0)
4857                         goto err;
4858         }
4859
4860         return 0;
4861
4862 err:
4863         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4864         for (++i; i < num_consumers; ++i) {
4865                 r = regulator_enable(consumers[i].consumer);
4866                 if (r != 0)
4867                         pr_err("Failed to re-enable %s: %pe\n",
4868                                consumers[i].supply, ERR_PTR(r));
4869         }
4870
4871         return ret;
4872 }
4873 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4874
4875 /**
4876  * regulator_bulk_force_disable - force disable multiple regulator consumers
4877  *
4878  * @num_consumers: Number of consumers
4879  * @consumers:     Consumer data; clients are stored here.
4880  * @return         0 on success, an errno on failure
4881  *
4882  * This convenience API allows consumers to forcibly disable multiple regulator
4883  * clients in a single API call.
4884  * NOTE: This should be used for situations when device damage will
4885  * likely occur if the regulators are not disabled (e.g. over temp).
4886  * Although regulator_force_disable function call for some consumers can
4887  * return error numbers, the function is called for all consumers.
4888  */
4889 int regulator_bulk_force_disable(int num_consumers,
4890                            struct regulator_bulk_data *consumers)
4891 {
4892         int i;
4893         int ret = 0;
4894
4895         for (i = 0; i < num_consumers; i++) {
4896                 consumers[i].ret =
4897                             regulator_force_disable(consumers[i].consumer);
4898
4899                 /* Store first error for reporting */
4900                 if (consumers[i].ret && !ret)
4901                         ret = consumers[i].ret;
4902         }
4903
4904         return ret;
4905 }
4906 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4907
4908 /**
4909  * regulator_bulk_free - free multiple regulator consumers
4910  *
4911  * @num_consumers: Number of consumers
4912  * @consumers:     Consumer data; clients are stored here.
4913  *
4914  * This convenience API allows consumers to free multiple regulator
4915  * clients in a single API call.
4916  */
4917 void regulator_bulk_free(int num_consumers,
4918                          struct regulator_bulk_data *consumers)
4919 {
4920         int i;
4921
4922         for (i = 0; i < num_consumers; i++) {
4923                 regulator_put(consumers[i].consumer);
4924                 consumers[i].consumer = NULL;
4925         }
4926 }
4927 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4928
4929 /**
4930  * regulator_notifier_call_chain - call regulator event notifier
4931  * @rdev: regulator source
4932  * @event: notifier block
4933  * @data: callback-specific data.
4934  *
4935  * Called by regulator drivers to notify clients a regulator event has
4936  * occurred.
4937  */
4938 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4939                                   unsigned long event, void *data)
4940 {
4941         _notifier_call_chain(rdev, event, data);
4942         return NOTIFY_DONE;
4943
4944 }
4945 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4946
4947 /**
4948  * regulator_mode_to_status - convert a regulator mode into a status
4949  *
4950  * @mode: Mode to convert
4951  *
4952  * Convert a regulator mode into a status.
4953  */
4954 int regulator_mode_to_status(unsigned int mode)
4955 {
4956         switch (mode) {
4957         case REGULATOR_MODE_FAST:
4958                 return REGULATOR_STATUS_FAST;
4959         case REGULATOR_MODE_NORMAL:
4960                 return REGULATOR_STATUS_NORMAL;
4961         case REGULATOR_MODE_IDLE:
4962                 return REGULATOR_STATUS_IDLE;
4963         case REGULATOR_MODE_STANDBY:
4964                 return REGULATOR_STATUS_STANDBY;
4965         default:
4966                 return REGULATOR_STATUS_UNDEFINED;
4967         }
4968 }
4969 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4970
4971 static struct attribute *regulator_dev_attrs[] = {
4972         &dev_attr_name.attr,
4973         &dev_attr_num_users.attr,
4974         &dev_attr_type.attr,
4975         &dev_attr_microvolts.attr,
4976         &dev_attr_microamps.attr,
4977         &dev_attr_opmode.attr,
4978         &dev_attr_state.attr,
4979         &dev_attr_status.attr,
4980         &dev_attr_bypass.attr,
4981         &dev_attr_requested_microamps.attr,
4982         &dev_attr_min_microvolts.attr,
4983         &dev_attr_max_microvolts.attr,
4984         &dev_attr_min_microamps.attr,
4985         &dev_attr_max_microamps.attr,
4986         &dev_attr_suspend_standby_state.attr,
4987         &dev_attr_suspend_mem_state.attr,
4988         &dev_attr_suspend_disk_state.attr,
4989         &dev_attr_suspend_standby_microvolts.attr,
4990         &dev_attr_suspend_mem_microvolts.attr,
4991         &dev_attr_suspend_disk_microvolts.attr,
4992         &dev_attr_suspend_standby_mode.attr,
4993         &dev_attr_suspend_mem_mode.attr,
4994         &dev_attr_suspend_disk_mode.attr,
4995         NULL
4996 };
4997
4998 /*
4999  * To avoid cluttering sysfs (and memory) with useless state, only
5000  * create attributes that can be meaningfully displayed.
5001  */
5002 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5003                                          struct attribute *attr, int idx)
5004 {
5005         struct device *dev = kobj_to_dev(kobj);
5006         struct regulator_dev *rdev = dev_to_rdev(dev);
5007         const struct regulator_ops *ops = rdev->desc->ops;
5008         umode_t mode = attr->mode;
5009
5010         /* these three are always present */
5011         if (attr == &dev_attr_name.attr ||
5012             attr == &dev_attr_num_users.attr ||
5013             attr == &dev_attr_type.attr)
5014                 return mode;
5015
5016         /* some attributes need specific methods to be displayed */
5017         if (attr == &dev_attr_microvolts.attr) {
5018                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5019                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5020                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5021                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5022                         return mode;
5023                 return 0;
5024         }
5025
5026         if (attr == &dev_attr_microamps.attr)
5027                 return ops->get_current_limit ? mode : 0;
5028
5029         if (attr == &dev_attr_opmode.attr)
5030                 return ops->get_mode ? mode : 0;
5031
5032         if (attr == &dev_attr_state.attr)
5033                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5034
5035         if (attr == &dev_attr_status.attr)
5036                 return ops->get_status ? mode : 0;
5037
5038         if (attr == &dev_attr_bypass.attr)
5039                 return ops->get_bypass ? mode : 0;
5040
5041         /* constraints need specific supporting methods */
5042         if (attr == &dev_attr_min_microvolts.attr ||
5043             attr == &dev_attr_max_microvolts.attr)
5044                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5045
5046         if (attr == &dev_attr_min_microamps.attr ||
5047             attr == &dev_attr_max_microamps.attr)
5048                 return ops->set_current_limit ? mode : 0;
5049
5050         if (attr == &dev_attr_suspend_standby_state.attr ||
5051             attr == &dev_attr_suspend_mem_state.attr ||
5052             attr == &dev_attr_suspend_disk_state.attr)
5053                 return mode;
5054
5055         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5056             attr == &dev_attr_suspend_mem_microvolts.attr ||
5057             attr == &dev_attr_suspend_disk_microvolts.attr)
5058                 return ops->set_suspend_voltage ? mode : 0;
5059
5060         if (attr == &dev_attr_suspend_standby_mode.attr ||
5061             attr == &dev_attr_suspend_mem_mode.attr ||
5062             attr == &dev_attr_suspend_disk_mode.attr)
5063                 return ops->set_suspend_mode ? mode : 0;
5064
5065         return mode;
5066 }
5067
5068 static const struct attribute_group regulator_dev_group = {
5069         .attrs = regulator_dev_attrs,
5070         .is_visible = regulator_attr_is_visible,
5071 };
5072
5073 static const struct attribute_group *regulator_dev_groups[] = {
5074         &regulator_dev_group,
5075         NULL
5076 };
5077
5078 static void regulator_dev_release(struct device *dev)
5079 {
5080         struct regulator_dev *rdev = dev_get_drvdata(dev);
5081
5082         debugfs_remove_recursive(rdev->debugfs);
5083         kfree(rdev->constraints);
5084         of_node_put(rdev->dev.of_node);
5085         kfree(rdev);
5086 }
5087
5088 static void rdev_init_debugfs(struct regulator_dev *rdev)
5089 {
5090         struct device *parent = rdev->dev.parent;
5091         const char *rname = rdev_get_name(rdev);
5092         char name[NAME_MAX];
5093
5094         /* Avoid duplicate debugfs directory names */
5095         if (parent && rname == rdev->desc->name) {
5096                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5097                          rname);
5098                 rname = name;
5099         }
5100
5101         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5102         if (!rdev->debugfs) {
5103                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5104                 return;
5105         }
5106
5107         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5108                            &rdev->use_count);
5109         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5110                            &rdev->open_count);
5111         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5112                            &rdev->bypass_count);
5113 }
5114
5115 static int regulator_register_resolve_supply(struct device *dev, void *data)
5116 {
5117         struct regulator_dev *rdev = dev_to_rdev(dev);
5118
5119         if (regulator_resolve_supply(rdev))
5120                 rdev_dbg(rdev, "unable to resolve supply\n");
5121
5122         return 0;
5123 }
5124
5125 int regulator_coupler_register(struct regulator_coupler *coupler)
5126 {
5127         mutex_lock(&regulator_list_mutex);
5128         list_add_tail(&coupler->list, &regulator_coupler_list);
5129         mutex_unlock(&regulator_list_mutex);
5130
5131         return 0;
5132 }
5133
5134 static struct regulator_coupler *
5135 regulator_find_coupler(struct regulator_dev *rdev)
5136 {
5137         struct regulator_coupler *coupler;
5138         int err;
5139
5140         /*
5141          * Note that regulators are appended to the list and the generic
5142          * coupler is registered first, hence it will be attached at last
5143          * if nobody cared.
5144          */
5145         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5146                 err = coupler->attach_regulator(coupler, rdev);
5147                 if (!err) {
5148                         if (!coupler->balance_voltage &&
5149                             rdev->coupling_desc.n_coupled > 2)
5150                                 goto err_unsupported;
5151
5152                         return coupler;
5153                 }
5154
5155                 if (err < 0)
5156                         return ERR_PTR(err);
5157
5158                 if (err == 1)
5159                         continue;
5160
5161                 break;
5162         }
5163
5164         return ERR_PTR(-EINVAL);
5165
5166 err_unsupported:
5167         if (coupler->detach_regulator)
5168                 coupler->detach_regulator(coupler, rdev);
5169
5170         rdev_err(rdev,
5171                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5172
5173         return ERR_PTR(-EPERM);
5174 }
5175
5176 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5177 {
5178         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5179         struct coupling_desc *c_desc = &rdev->coupling_desc;
5180         int n_coupled = c_desc->n_coupled;
5181         struct regulator_dev *c_rdev;
5182         int i;
5183
5184         for (i = 1; i < n_coupled; i++) {
5185                 /* already resolved */
5186                 if (c_desc->coupled_rdevs[i])
5187                         continue;
5188
5189                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5190
5191                 if (!c_rdev)
5192                         continue;
5193
5194                 if (c_rdev->coupling_desc.coupler != coupler) {
5195                         rdev_err(rdev, "coupler mismatch with %s\n",
5196                                  rdev_get_name(c_rdev));
5197                         return;
5198                 }
5199
5200                 c_desc->coupled_rdevs[i] = c_rdev;
5201                 c_desc->n_resolved++;
5202
5203                 regulator_resolve_coupling(c_rdev);
5204         }
5205 }
5206
5207 static void regulator_remove_coupling(struct regulator_dev *rdev)
5208 {
5209         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5210         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5211         struct regulator_dev *__c_rdev, *c_rdev;
5212         unsigned int __n_coupled, n_coupled;
5213         int i, k;
5214         int err;
5215
5216         n_coupled = c_desc->n_coupled;
5217
5218         for (i = 1; i < n_coupled; i++) {
5219                 c_rdev = c_desc->coupled_rdevs[i];
5220
5221                 if (!c_rdev)
5222                         continue;
5223
5224                 regulator_lock(c_rdev);
5225
5226                 __c_desc = &c_rdev->coupling_desc;
5227                 __n_coupled = __c_desc->n_coupled;
5228
5229                 for (k = 1; k < __n_coupled; k++) {
5230                         __c_rdev = __c_desc->coupled_rdevs[k];
5231
5232                         if (__c_rdev == rdev) {
5233                                 __c_desc->coupled_rdevs[k] = NULL;
5234                                 __c_desc->n_resolved--;
5235                                 break;
5236                         }
5237                 }
5238
5239                 regulator_unlock(c_rdev);
5240
5241                 c_desc->coupled_rdevs[i] = NULL;
5242                 c_desc->n_resolved--;
5243         }
5244
5245         if (coupler && coupler->detach_regulator) {
5246                 err = coupler->detach_regulator(coupler, rdev);
5247                 if (err)
5248                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5249                                  ERR_PTR(err));
5250         }
5251
5252         kfree(rdev->coupling_desc.coupled_rdevs);
5253         rdev->coupling_desc.coupled_rdevs = NULL;
5254 }
5255
5256 static int regulator_init_coupling(struct regulator_dev *rdev)
5257 {
5258         struct regulator_dev **coupled;
5259         int err, n_phandles;
5260
5261         if (!IS_ENABLED(CONFIG_OF))
5262                 n_phandles = 0;
5263         else
5264                 n_phandles = of_get_n_coupled(rdev);
5265
5266         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5267         if (!coupled)
5268                 return -ENOMEM;
5269
5270         rdev->coupling_desc.coupled_rdevs = coupled;
5271
5272         /*
5273          * Every regulator should always have coupling descriptor filled with
5274          * at least pointer to itself.
5275          */
5276         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5277         rdev->coupling_desc.n_coupled = n_phandles + 1;
5278         rdev->coupling_desc.n_resolved++;
5279
5280         /* regulator isn't coupled */
5281         if (n_phandles == 0)
5282                 return 0;
5283
5284         if (!of_check_coupling_data(rdev))
5285                 return -EPERM;
5286
5287         mutex_lock(&regulator_list_mutex);
5288         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5289         mutex_unlock(&regulator_list_mutex);
5290
5291         if (IS_ERR(rdev->coupling_desc.coupler)) {
5292                 err = PTR_ERR(rdev->coupling_desc.coupler);
5293                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5294                 return err;
5295         }
5296
5297         return 0;
5298 }
5299
5300 static int generic_coupler_attach(struct regulator_coupler *coupler,
5301                                   struct regulator_dev *rdev)
5302 {
5303         if (rdev->coupling_desc.n_coupled > 2) {
5304                 rdev_err(rdev,
5305                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5306                 return -EPERM;
5307         }
5308
5309         if (!rdev->constraints->always_on) {
5310                 rdev_err(rdev,
5311                          "Coupling of a non always-on regulator is unimplemented\n");
5312                 return -ENOTSUPP;
5313         }
5314
5315         return 0;
5316 }
5317
5318 static struct regulator_coupler generic_regulator_coupler = {
5319         .attach_regulator = generic_coupler_attach,
5320 };
5321
5322 /**
5323  * regulator_register - register regulator
5324  * @regulator_desc: regulator to register
5325  * @cfg: runtime configuration for regulator
5326  *
5327  * Called by regulator drivers to register a regulator.
5328  * Returns a valid pointer to struct regulator_dev on success
5329  * or an ERR_PTR() on error.
5330  */
5331 struct regulator_dev *
5332 regulator_register(const struct regulator_desc *regulator_desc,
5333                    const struct regulator_config *cfg)
5334 {
5335         const struct regulator_init_data *init_data;
5336         struct regulator_config *config = NULL;
5337         static atomic_t regulator_no = ATOMIC_INIT(-1);
5338         struct regulator_dev *rdev;
5339         bool dangling_cfg_gpiod = false;
5340         bool dangling_of_gpiod = false;
5341         struct device *dev;
5342         int ret, i;
5343
5344         if (cfg == NULL)
5345                 return ERR_PTR(-EINVAL);
5346         if (cfg->ena_gpiod)
5347                 dangling_cfg_gpiod = true;
5348         if (regulator_desc == NULL) {
5349                 ret = -EINVAL;
5350                 goto rinse;
5351         }
5352
5353         dev = cfg->dev;
5354         WARN_ON(!dev);
5355
5356         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5357                 ret = -EINVAL;
5358                 goto rinse;
5359         }
5360
5361         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5362             regulator_desc->type != REGULATOR_CURRENT) {
5363                 ret = -EINVAL;
5364                 goto rinse;
5365         }
5366
5367         /* Only one of each should be implemented */
5368         WARN_ON(regulator_desc->ops->get_voltage &&
5369                 regulator_desc->ops->get_voltage_sel);
5370         WARN_ON(regulator_desc->ops->set_voltage &&
5371                 regulator_desc->ops->set_voltage_sel);
5372
5373         /* If we're using selectors we must implement list_voltage. */
5374         if (regulator_desc->ops->get_voltage_sel &&
5375             !regulator_desc->ops->list_voltage) {
5376                 ret = -EINVAL;
5377                 goto rinse;
5378         }
5379         if (regulator_desc->ops->set_voltage_sel &&
5380             !regulator_desc->ops->list_voltage) {
5381                 ret = -EINVAL;
5382                 goto rinse;
5383         }
5384
5385         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5386         if (rdev == NULL) {
5387                 ret = -ENOMEM;
5388                 goto rinse;
5389         }
5390         device_initialize(&rdev->dev);
5391         spin_lock_init(&rdev->err_lock);
5392
5393         /*
5394          * Duplicate the config so the driver could override it after
5395          * parsing init data.
5396          */
5397         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5398         if (config == NULL) {
5399                 ret = -ENOMEM;
5400                 goto clean;
5401         }
5402
5403         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5404                                                &rdev->dev.of_node);
5405
5406         /*
5407          * Sometimes not all resources are probed already so we need to take
5408          * that into account. This happens most the time if the ena_gpiod comes
5409          * from a gpio extender or something else.
5410          */
5411         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5412                 ret = -EPROBE_DEFER;
5413                 goto clean;
5414         }
5415
5416         /*
5417          * We need to keep track of any GPIO descriptor coming from the
5418          * device tree until we have handled it over to the core. If the
5419          * config that was passed in to this function DOES NOT contain
5420          * a descriptor, and the config after this call DOES contain
5421          * a descriptor, we definitely got one from parsing the device
5422          * tree.
5423          */
5424         if (!cfg->ena_gpiod && config->ena_gpiod)
5425                 dangling_of_gpiod = true;
5426         if (!init_data) {
5427                 init_data = config->init_data;
5428                 rdev->dev.of_node = of_node_get(config->of_node);
5429         }
5430
5431         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5432         rdev->reg_data = config->driver_data;
5433         rdev->owner = regulator_desc->owner;
5434         rdev->desc = regulator_desc;
5435         if (config->regmap)
5436                 rdev->regmap = config->regmap;
5437         else if (dev_get_regmap(dev, NULL))
5438                 rdev->regmap = dev_get_regmap(dev, NULL);
5439         else if (dev->parent)
5440                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5441         INIT_LIST_HEAD(&rdev->consumer_list);
5442         INIT_LIST_HEAD(&rdev->list);
5443         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5444         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5445
5446         /* preform any regulator specific init */
5447         if (init_data && init_data->regulator_init) {
5448                 ret = init_data->regulator_init(rdev->reg_data);
5449                 if (ret < 0)
5450                         goto clean;
5451         }
5452
5453         if (config->ena_gpiod) {
5454                 ret = regulator_ena_gpio_request(rdev, config);
5455                 if (ret != 0) {
5456                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5457                                  ERR_PTR(ret));
5458                         goto clean;
5459                 }
5460                 /* The regulator core took over the GPIO descriptor */
5461                 dangling_cfg_gpiod = false;
5462                 dangling_of_gpiod = false;
5463         }
5464
5465         /* register with sysfs */
5466         rdev->dev.class = &regulator_class;
5467         rdev->dev.parent = dev;
5468         dev_set_name(&rdev->dev, "regulator.%lu",
5469                     (unsigned long) atomic_inc_return(&regulator_no));
5470         dev_set_drvdata(&rdev->dev, rdev);
5471
5472         /* set regulator constraints */
5473         if (init_data)
5474                 rdev->constraints = kmemdup(&init_data->constraints,
5475                                             sizeof(*rdev->constraints),
5476                                             GFP_KERNEL);
5477         else
5478                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5479                                             GFP_KERNEL);
5480         if (!rdev->constraints) {
5481                 ret = -ENOMEM;
5482                 goto wash;
5483         }
5484
5485         if (init_data && init_data->supply_regulator)
5486                 rdev->supply_name = init_data->supply_regulator;
5487         else if (regulator_desc->supply_name)
5488                 rdev->supply_name = regulator_desc->supply_name;
5489
5490         ret = set_machine_constraints(rdev);
5491         if (ret == -EPROBE_DEFER) {
5492                 /* Regulator might be in bypass mode and so needs its supply
5493                  * to set the constraints
5494                  */
5495                 /* FIXME: this currently triggers a chicken-and-egg problem
5496                  * when creating -SUPPLY symlink in sysfs to a regulator
5497                  * that is just being created
5498                  */
5499                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5500                          rdev->supply_name);
5501                 ret = regulator_resolve_supply(rdev);
5502                 if (!ret)
5503                         ret = set_machine_constraints(rdev);
5504                 else
5505                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5506                                  ERR_PTR(ret));
5507         }
5508         if (ret < 0)
5509                 goto wash;
5510
5511         ret = regulator_init_coupling(rdev);
5512         if (ret < 0)
5513                 goto wash;
5514
5515         /* add consumers devices */
5516         if (init_data) {
5517                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5518                         ret = set_consumer_device_supply(rdev,
5519                                 init_data->consumer_supplies[i].dev_name,
5520                                 init_data->consumer_supplies[i].supply);
5521                         if (ret < 0) {
5522                                 dev_err(dev, "Failed to set supply %s\n",
5523                                         init_data->consumer_supplies[i].supply);
5524                                 goto unset_supplies;
5525                         }
5526                 }
5527         }
5528
5529         if (!rdev->desc->ops->get_voltage &&
5530             !rdev->desc->ops->list_voltage &&
5531             !rdev->desc->fixed_uV)
5532                 rdev->is_switch = true;
5533
5534         ret = device_add(&rdev->dev);
5535         if (ret != 0)
5536                 goto unset_supplies;
5537
5538         rdev_init_debugfs(rdev);
5539
5540         /* try to resolve regulators coupling since a new one was registered */
5541         mutex_lock(&regulator_list_mutex);
5542         regulator_resolve_coupling(rdev);
5543         mutex_unlock(&regulator_list_mutex);
5544
5545         /* try to resolve regulators supply since a new one was registered */
5546         class_for_each_device(&regulator_class, NULL, NULL,
5547                               regulator_register_resolve_supply);
5548         kfree(config);
5549         return rdev;
5550
5551 unset_supplies:
5552         mutex_lock(&regulator_list_mutex);
5553         unset_regulator_supplies(rdev);
5554         regulator_remove_coupling(rdev);
5555         mutex_unlock(&regulator_list_mutex);
5556 wash:
5557         regulator_put(rdev->supply);
5558         kfree(rdev->coupling_desc.coupled_rdevs);
5559         mutex_lock(&regulator_list_mutex);
5560         regulator_ena_gpio_free(rdev);
5561         mutex_unlock(&regulator_list_mutex);
5562         put_device(&rdev->dev);
5563         rdev = NULL;
5564 clean:
5565         if (dangling_of_gpiod)
5566                 gpiod_put(config->ena_gpiod);
5567         if (rdev && rdev->dev.of_node)
5568                 of_node_put(rdev->dev.of_node);
5569         kfree(rdev);
5570         kfree(config);
5571 rinse:
5572         if (dangling_cfg_gpiod)
5573                 gpiod_put(cfg->ena_gpiod);
5574         return ERR_PTR(ret);
5575 }
5576 EXPORT_SYMBOL_GPL(regulator_register);
5577
5578 /**
5579  * regulator_unregister - unregister regulator
5580  * @rdev: regulator to unregister
5581  *
5582  * Called by regulator drivers to unregister a regulator.
5583  */
5584 void regulator_unregister(struct regulator_dev *rdev)
5585 {
5586         if (rdev == NULL)
5587                 return;
5588
5589         if (rdev->supply) {
5590                 while (rdev->use_count--)
5591                         regulator_disable(rdev->supply);
5592                 regulator_put(rdev->supply);
5593         }
5594
5595         flush_work(&rdev->disable_work.work);
5596
5597         mutex_lock(&regulator_list_mutex);
5598
5599         WARN_ON(rdev->open_count);
5600         regulator_remove_coupling(rdev);
5601         unset_regulator_supplies(rdev);
5602         list_del(&rdev->list);
5603         regulator_ena_gpio_free(rdev);
5604         device_unregister(&rdev->dev);
5605
5606         mutex_unlock(&regulator_list_mutex);
5607 }
5608 EXPORT_SYMBOL_GPL(regulator_unregister);
5609
5610 #ifdef CONFIG_SUSPEND
5611 /**
5612  * regulator_suspend - prepare regulators for system wide suspend
5613  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5614  *
5615  * Configure each regulator with it's suspend operating parameters for state.
5616  */
5617 static int regulator_suspend(struct device *dev)
5618 {
5619         struct regulator_dev *rdev = dev_to_rdev(dev);
5620         suspend_state_t state = pm_suspend_target_state;
5621         int ret;
5622         const struct regulator_state *rstate;
5623
5624         rstate = regulator_get_suspend_state_check(rdev, state);
5625         if (!rstate)
5626                 return 0;
5627
5628         regulator_lock(rdev);
5629         ret = __suspend_set_state(rdev, rstate);
5630         regulator_unlock(rdev);
5631
5632         return ret;
5633 }
5634
5635 static int regulator_resume(struct device *dev)
5636 {
5637         suspend_state_t state = pm_suspend_target_state;
5638         struct regulator_dev *rdev = dev_to_rdev(dev);
5639         struct regulator_state *rstate;
5640         int ret = 0;
5641
5642         rstate = regulator_get_suspend_state(rdev, state);
5643         if (rstate == NULL)
5644                 return 0;
5645
5646         /* Avoid grabbing the lock if we don't need to */
5647         if (!rdev->desc->ops->resume)
5648                 return 0;
5649
5650         regulator_lock(rdev);
5651
5652         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5653             rstate->enabled == DISABLE_IN_SUSPEND)
5654                 ret = rdev->desc->ops->resume(rdev);
5655
5656         regulator_unlock(rdev);
5657
5658         return ret;
5659 }
5660 #else /* !CONFIG_SUSPEND */
5661
5662 #define regulator_suspend       NULL
5663 #define regulator_resume        NULL
5664
5665 #endif /* !CONFIG_SUSPEND */
5666
5667 #ifdef CONFIG_PM
5668 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5669         .suspend        = regulator_suspend,
5670         .resume         = regulator_resume,
5671 };
5672 #endif
5673
5674 struct class regulator_class = {
5675         .name = "regulator",
5676         .dev_release = regulator_dev_release,
5677         .dev_groups = regulator_dev_groups,
5678 #ifdef CONFIG_PM
5679         .pm = &regulator_pm_ops,
5680 #endif
5681 };
5682 /**
5683  * regulator_has_full_constraints - the system has fully specified constraints
5684  *
5685  * Calling this function will cause the regulator API to disable all
5686  * regulators which have a zero use count and don't have an always_on
5687  * constraint in a late_initcall.
5688  *
5689  * The intention is that this will become the default behaviour in a
5690  * future kernel release so users are encouraged to use this facility
5691  * now.
5692  */
5693 void regulator_has_full_constraints(void)
5694 {
5695         has_full_constraints = 1;
5696 }
5697 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5698
5699 /**
5700  * rdev_get_drvdata - get rdev regulator driver data
5701  * @rdev: regulator
5702  *
5703  * Get rdev regulator driver private data. This call can be used in the
5704  * regulator driver context.
5705  */
5706 void *rdev_get_drvdata(struct regulator_dev *rdev)
5707 {
5708         return rdev->reg_data;
5709 }
5710 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5711
5712 /**
5713  * regulator_get_drvdata - get regulator driver data
5714  * @regulator: regulator
5715  *
5716  * Get regulator driver private data. This call can be used in the consumer
5717  * driver context when non API regulator specific functions need to be called.
5718  */
5719 void *regulator_get_drvdata(struct regulator *regulator)
5720 {
5721         return regulator->rdev->reg_data;
5722 }
5723 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5724
5725 /**
5726  * regulator_set_drvdata - set regulator driver data
5727  * @regulator: regulator
5728  * @data: data
5729  */
5730 void regulator_set_drvdata(struct regulator *regulator, void *data)
5731 {
5732         regulator->rdev->reg_data = data;
5733 }
5734 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5735
5736 /**
5737  * rdev_get_id - get regulator ID
5738  * @rdev: regulator
5739  */
5740 int rdev_get_id(struct regulator_dev *rdev)
5741 {
5742         return rdev->desc->id;
5743 }
5744 EXPORT_SYMBOL_GPL(rdev_get_id);
5745
5746 struct device *rdev_get_dev(struct regulator_dev *rdev)
5747 {
5748         return &rdev->dev;
5749 }
5750 EXPORT_SYMBOL_GPL(rdev_get_dev);
5751
5752 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5753 {
5754         return rdev->regmap;
5755 }
5756 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5757
5758 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5759 {
5760         return reg_init_data->driver_data;
5761 }
5762 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5763
5764 #ifdef CONFIG_DEBUG_FS
5765 static int supply_map_show(struct seq_file *sf, void *data)
5766 {
5767         struct regulator_map *map;
5768
5769         list_for_each_entry(map, &regulator_map_list, list) {
5770                 seq_printf(sf, "%s -> %s.%s\n",
5771                                 rdev_get_name(map->regulator), map->dev_name,
5772                                 map->supply);
5773         }
5774
5775         return 0;
5776 }
5777 DEFINE_SHOW_ATTRIBUTE(supply_map);
5778
5779 struct summary_data {
5780         struct seq_file *s;
5781         struct regulator_dev *parent;
5782         int level;
5783 };
5784
5785 static void regulator_summary_show_subtree(struct seq_file *s,
5786                                            struct regulator_dev *rdev,
5787                                            int level);
5788
5789 static int regulator_summary_show_children(struct device *dev, void *data)
5790 {
5791         struct regulator_dev *rdev = dev_to_rdev(dev);
5792         struct summary_data *summary_data = data;
5793
5794         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5795                 regulator_summary_show_subtree(summary_data->s, rdev,
5796                                                summary_data->level + 1);
5797
5798         return 0;
5799 }
5800
5801 static void regulator_summary_show_subtree(struct seq_file *s,
5802                                            struct regulator_dev *rdev,
5803                                            int level)
5804 {
5805         struct regulation_constraints *c;
5806         struct regulator *consumer;
5807         struct summary_data summary_data;
5808         unsigned int opmode;
5809
5810         if (!rdev)
5811                 return;
5812
5813         opmode = _regulator_get_mode_unlocked(rdev);
5814         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5815                    level * 3 + 1, "",
5816                    30 - level * 3, rdev_get_name(rdev),
5817                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5818                    regulator_opmode_to_str(opmode));
5819
5820         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5821         seq_printf(s, "%5dmA ",
5822                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5823
5824         c = rdev->constraints;
5825         if (c) {
5826                 switch (rdev->desc->type) {
5827                 case REGULATOR_VOLTAGE:
5828                         seq_printf(s, "%5dmV %5dmV ",
5829                                    c->min_uV / 1000, c->max_uV / 1000);
5830                         break;
5831                 case REGULATOR_CURRENT:
5832                         seq_printf(s, "%5dmA %5dmA ",
5833                                    c->min_uA / 1000, c->max_uA / 1000);
5834                         break;
5835                 }
5836         }
5837
5838         seq_puts(s, "\n");
5839
5840         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5841                 if (consumer->dev && consumer->dev->class == &regulator_class)
5842                         continue;
5843
5844                 seq_printf(s, "%*s%-*s ",
5845                            (level + 1) * 3 + 1, "",
5846                            30 - (level + 1) * 3,
5847                            consumer->supply_name ? consumer->supply_name :
5848                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5849
5850                 switch (rdev->desc->type) {
5851                 case REGULATOR_VOLTAGE:
5852                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5853                                    consumer->enable_count,
5854                                    consumer->uA_load / 1000,
5855                                    consumer->uA_load && !consumer->enable_count ?
5856                                    '*' : ' ',
5857                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5858                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5859                         break;
5860                 case REGULATOR_CURRENT:
5861                         break;
5862                 }
5863
5864                 seq_puts(s, "\n");
5865         }
5866
5867         summary_data.s = s;
5868         summary_data.level = level;
5869         summary_data.parent = rdev;
5870
5871         class_for_each_device(&regulator_class, NULL, &summary_data,
5872                               regulator_summary_show_children);
5873 }
5874
5875 struct summary_lock_data {
5876         struct ww_acquire_ctx *ww_ctx;
5877         struct regulator_dev **new_contended_rdev;
5878         struct regulator_dev **old_contended_rdev;
5879 };
5880
5881 static int regulator_summary_lock_one(struct device *dev, void *data)
5882 {
5883         struct regulator_dev *rdev = dev_to_rdev(dev);
5884         struct summary_lock_data *lock_data = data;
5885         int ret = 0;
5886
5887         if (rdev != *lock_data->old_contended_rdev) {
5888                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5889
5890                 if (ret == -EDEADLK)
5891                         *lock_data->new_contended_rdev = rdev;
5892                 else
5893                         WARN_ON_ONCE(ret);
5894         } else {
5895                 *lock_data->old_contended_rdev = NULL;
5896         }
5897
5898         return ret;
5899 }
5900
5901 static int regulator_summary_unlock_one(struct device *dev, void *data)
5902 {
5903         struct regulator_dev *rdev = dev_to_rdev(dev);
5904         struct summary_lock_data *lock_data = data;
5905
5906         if (lock_data) {
5907                 if (rdev == *lock_data->new_contended_rdev)
5908                         return -EDEADLK;
5909         }
5910
5911         regulator_unlock(rdev);
5912
5913         return 0;
5914 }
5915
5916 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5917                                       struct regulator_dev **new_contended_rdev,
5918                                       struct regulator_dev **old_contended_rdev)
5919 {
5920         struct summary_lock_data lock_data;
5921         int ret;
5922
5923         lock_data.ww_ctx = ww_ctx;
5924         lock_data.new_contended_rdev = new_contended_rdev;
5925         lock_data.old_contended_rdev = old_contended_rdev;
5926
5927         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5928                                     regulator_summary_lock_one);
5929         if (ret)
5930                 class_for_each_device(&regulator_class, NULL, &lock_data,
5931                                       regulator_summary_unlock_one);
5932
5933         return ret;
5934 }
5935
5936 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5937 {
5938         struct regulator_dev *new_contended_rdev = NULL;
5939         struct regulator_dev *old_contended_rdev = NULL;
5940         int err;
5941
5942         mutex_lock(&regulator_list_mutex);
5943
5944         ww_acquire_init(ww_ctx, &regulator_ww_class);
5945
5946         do {
5947                 if (new_contended_rdev) {
5948                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5949                         old_contended_rdev = new_contended_rdev;
5950                         old_contended_rdev->ref_cnt++;
5951                 }
5952
5953                 err = regulator_summary_lock_all(ww_ctx,
5954                                                  &new_contended_rdev,
5955                                                  &old_contended_rdev);
5956
5957                 if (old_contended_rdev)
5958                         regulator_unlock(old_contended_rdev);
5959
5960         } while (err == -EDEADLK);
5961
5962         ww_acquire_done(ww_ctx);
5963 }
5964
5965 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5966 {
5967         class_for_each_device(&regulator_class, NULL, NULL,
5968                               regulator_summary_unlock_one);
5969         ww_acquire_fini(ww_ctx);
5970
5971         mutex_unlock(&regulator_list_mutex);
5972 }
5973
5974 static int regulator_summary_show_roots(struct device *dev, void *data)
5975 {
5976         struct regulator_dev *rdev = dev_to_rdev(dev);
5977         struct seq_file *s = data;
5978
5979         if (!rdev->supply)
5980                 regulator_summary_show_subtree(s, rdev, 0);
5981
5982         return 0;
5983 }
5984
5985 static int regulator_summary_show(struct seq_file *s, void *data)
5986 {
5987         struct ww_acquire_ctx ww_ctx;
5988
5989         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5990         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5991
5992         regulator_summary_lock(&ww_ctx);
5993
5994         class_for_each_device(&regulator_class, NULL, s,
5995                               regulator_summary_show_roots);
5996
5997         regulator_summary_unlock(&ww_ctx);
5998
5999         return 0;
6000 }
6001 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6002 #endif /* CONFIG_DEBUG_FS */
6003
6004 static int __init regulator_init(void)
6005 {
6006         int ret;
6007
6008         ret = class_register(&regulator_class);
6009
6010         debugfs_root = debugfs_create_dir("regulator", NULL);
6011         if (!debugfs_root)
6012                 pr_warn("regulator: Failed to create debugfs directory\n");
6013
6014 #ifdef CONFIG_DEBUG_FS
6015         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6016                             &supply_map_fops);
6017
6018         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6019                             NULL, &regulator_summary_fops);
6020 #endif
6021         regulator_dummy_init();
6022
6023         regulator_coupler_register(&generic_regulator_coupler);
6024
6025         return ret;
6026 }
6027
6028 /* init early to allow our consumers to complete system booting */
6029 core_initcall(regulator_init);
6030
6031 static int regulator_late_cleanup(struct device *dev, void *data)
6032 {
6033         struct regulator_dev *rdev = dev_to_rdev(dev);
6034         struct regulation_constraints *c = rdev->constraints;
6035         int ret;
6036
6037         if (c && c->always_on)
6038                 return 0;
6039
6040         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6041                 return 0;
6042
6043         regulator_lock(rdev);
6044
6045         if (rdev->use_count)
6046                 goto unlock;
6047
6048         /* If reading the status failed, assume that it's off. */
6049         if (_regulator_is_enabled(rdev) <= 0)
6050                 goto unlock;
6051
6052         if (have_full_constraints()) {
6053                 /* We log since this may kill the system if it goes
6054                  * wrong.
6055                  */
6056                 rdev_info(rdev, "disabling\n");
6057                 ret = _regulator_do_disable(rdev);
6058                 if (ret != 0)
6059                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6060         } else {
6061                 /* The intention is that in future we will
6062                  * assume that full constraints are provided
6063                  * so warn even if we aren't going to do
6064                  * anything here.
6065                  */
6066                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6067         }
6068
6069 unlock:
6070         regulator_unlock(rdev);
6071
6072         return 0;
6073 }
6074
6075 static void regulator_init_complete_work_function(struct work_struct *work)
6076 {
6077         /*
6078          * Regulators may had failed to resolve their input supplies
6079          * when were registered, either because the input supply was
6080          * not registered yet or because its parent device was not
6081          * bound yet. So attempt to resolve the input supplies for
6082          * pending regulators before trying to disable unused ones.
6083          */
6084         class_for_each_device(&regulator_class, NULL, NULL,
6085                               regulator_register_resolve_supply);
6086
6087         /* If we have a full configuration then disable any regulators
6088          * we have permission to change the status for and which are
6089          * not in use or always_on.  This is effectively the default
6090          * for DT and ACPI as they have full constraints.
6091          */
6092         class_for_each_device(&regulator_class, NULL, NULL,
6093                               regulator_late_cleanup);
6094 }
6095
6096 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6097                             regulator_init_complete_work_function);
6098
6099 static int __init regulator_init_complete(void)
6100 {
6101         /*
6102          * Since DT doesn't provide an idiomatic mechanism for
6103          * enabling full constraints and since it's much more natural
6104          * with DT to provide them just assume that a DT enabled
6105          * system has full constraints.
6106          */
6107         if (of_have_populated_dt())
6108                 has_full_constraints = true;
6109
6110         /*
6111          * We punt completion for an arbitrary amount of time since
6112          * systems like distros will load many drivers from userspace
6113          * so consumers might not always be ready yet, this is
6114          * particularly an issue with laptops where this might bounce
6115          * the display off then on.  Ideally we'd get a notification
6116          * from userspace when this happens but we don't so just wait
6117          * a bit and hope we waited long enough.  It'd be better if
6118          * we'd only do this on systems that need it, and a kernel
6119          * command line option might be useful.
6120          */
6121         schedule_delayed_work(&regulator_init_complete_work,
6122                               msecs_to_jiffies(30000));
6123
6124         return 0;
6125 }
6126 late_initcall_sync(regulator_init_complete);