01d9675b0e8381cfe35130caa9600f728d64048c
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 /**
927  * set_machine_constraints - sets regulator constraints
928  * @rdev: regulator source
929  * @constraints: constraints to apply
930  *
931  * Allows platform initialisation code to define and constrain
932  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933  * Constraints *must* be set by platform code in order for some
934  * regulator operations to proceed i.e. set_voltage, set_current_limit,
935  * set_mode.
936  */
937 static int set_machine_constraints(struct regulator_dev *rdev,
938         const struct regulation_constraints *constraints)
939 {
940         int ret = 0;
941         struct regulator_ops *ops = rdev->desc->ops;
942
943         if (constraints)
944                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945                                             GFP_KERNEL);
946         else
947                 rdev->constraints = kzalloc(sizeof(*constraints),
948                                             GFP_KERNEL);
949         if (!rdev->constraints)
950                 return -ENOMEM;
951
952         ret = machine_constraints_voltage(rdev, rdev->constraints);
953         if (ret != 0)
954                 goto out;
955
956         /* do we need to setup our suspend state */
957         if (rdev->constraints->initial_state) {
958                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959                 if (ret < 0) {
960                         rdev_err(rdev, "failed to set suspend state\n");
961                         goto out;
962                 }
963         }
964
965         if (rdev->constraints->initial_mode) {
966                 if (!ops->set_mode) {
967                         rdev_err(rdev, "no set_mode operation\n");
968                         ret = -EINVAL;
969                         goto out;
970                 }
971
972                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973                 if (ret < 0) {
974                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975                         goto out;
976                 }
977         }
978
979         /* If the constraints say the regulator should be on at this point
980          * and we have control then make sure it is enabled.
981          */
982         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983             ops->enable) {
984                 ret = ops->enable(rdev);
985                 if (ret < 0) {
986                         rdev_err(rdev, "failed to enable\n");
987                         goto out;
988                 }
989         }
990
991         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
992                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
993                 if (ret < 0) {
994                         rdev_err(rdev, "failed to set ramp_delay\n");
995                         goto out;
996                 }
997         }
998
999         print_constraints(rdev);
1000         return 0;
1001 out:
1002         kfree(rdev->constraints);
1003         rdev->constraints = NULL;
1004         return ret;
1005 }
1006
1007 /**
1008  * set_supply - set regulator supply regulator
1009  * @rdev: regulator name
1010  * @supply_rdev: supply regulator name
1011  *
1012  * Called by platform initialisation code to set the supply regulator for this
1013  * regulator. This ensures that a regulators supply will also be enabled by the
1014  * core if it's child is enabled.
1015  */
1016 static int set_supply(struct regulator_dev *rdev,
1017                       struct regulator_dev *supply_rdev)
1018 {
1019         int err;
1020
1021         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1022
1023         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024         if (rdev->supply == NULL) {
1025                 err = -ENOMEM;
1026                 return err;
1027         }
1028         supply_rdev->open_count++;
1029
1030         return 0;
1031 }
1032
1033 /**
1034  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035  * @rdev:         regulator source
1036  * @consumer_dev_name: dev_name() string for device supply applies to
1037  * @supply:       symbolic name for supply
1038  *
1039  * Allows platform initialisation code to map physical regulator
1040  * sources to symbolic names for supplies for use by devices.  Devices
1041  * should use these symbolic names to request regulators, avoiding the
1042  * need to provide board-specific regulator names as platform data.
1043  */
1044 static int set_consumer_device_supply(struct regulator_dev *rdev,
1045                                       const char *consumer_dev_name,
1046                                       const char *supply)
1047 {
1048         struct regulator_map *node;
1049         int has_dev;
1050
1051         if (supply == NULL)
1052                 return -EINVAL;
1053
1054         if (consumer_dev_name != NULL)
1055                 has_dev = 1;
1056         else
1057                 has_dev = 0;
1058
1059         list_for_each_entry(node, &regulator_map_list, list) {
1060                 if (node->dev_name && consumer_dev_name) {
1061                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1062                                 continue;
1063                 } else if (node->dev_name || consumer_dev_name) {
1064                         continue;
1065                 }
1066
1067                 if (strcmp(node->supply, supply) != 0)
1068                         continue;
1069
1070                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1071                          consumer_dev_name,
1072                          dev_name(&node->regulator->dev),
1073                          node->regulator->desc->name,
1074                          supply,
1075                          dev_name(&rdev->dev), rdev_get_name(rdev));
1076                 return -EBUSY;
1077         }
1078
1079         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080         if (node == NULL)
1081                 return -ENOMEM;
1082
1083         node->regulator = rdev;
1084         node->supply = supply;
1085
1086         if (has_dev) {
1087                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088                 if (node->dev_name == NULL) {
1089                         kfree(node);
1090                         return -ENOMEM;
1091                 }
1092         }
1093
1094         list_add(&node->list, &regulator_map_list);
1095         return 0;
1096 }
1097
1098 static void unset_regulator_supplies(struct regulator_dev *rdev)
1099 {
1100         struct regulator_map *node, *n;
1101
1102         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1103                 if (rdev == node->regulator) {
1104                         list_del(&node->list);
1105                         kfree(node->dev_name);
1106                         kfree(node);
1107                 }
1108         }
1109 }
1110
1111 #define REG_STR_SIZE    64
1112
1113 static struct regulator *create_regulator(struct regulator_dev *rdev,
1114                                           struct device *dev,
1115                                           const char *supply_name)
1116 {
1117         struct regulator *regulator;
1118         char buf[REG_STR_SIZE];
1119         int err, size;
1120
1121         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122         if (regulator == NULL)
1123                 return NULL;
1124
1125         mutex_lock(&rdev->mutex);
1126         regulator->rdev = rdev;
1127         list_add(&regulator->list, &rdev->consumer_list);
1128
1129         if (dev) {
1130                 regulator->dev = dev;
1131
1132                 /* Add a link to the device sysfs entry */
1133                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134                                  dev->kobj.name, supply_name);
1135                 if (size >= REG_STR_SIZE)
1136                         goto overflow_err;
1137
1138                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139                 if (regulator->supply_name == NULL)
1140                         goto overflow_err;
1141
1142                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1143                                         buf);
1144                 if (err) {
1145                         rdev_warn(rdev, "could not add device link %s err %d\n",
1146                                   dev->kobj.name, err);
1147                         /* non-fatal */
1148                 }
1149         } else {
1150                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151                 if (regulator->supply_name == NULL)
1152                         goto overflow_err;
1153         }
1154
1155         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1156                                                 rdev->debugfs);
1157         if (!regulator->debugfs) {
1158                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1159         } else {
1160                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161                                    &regulator->uA_load);
1162                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163                                    &regulator->min_uV);
1164                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165                                    &regulator->max_uV);
1166         }
1167
1168         /*
1169          * Check now if the regulator is an always on regulator - if
1170          * it is then we don't need to do nearly so much work for
1171          * enable/disable calls.
1172          */
1173         if (!_regulator_can_change_status(rdev) &&
1174             _regulator_is_enabled(rdev))
1175                 regulator->always_on = true;
1176
1177         mutex_unlock(&rdev->mutex);
1178         return regulator;
1179 overflow_err:
1180         list_del(&regulator->list);
1181         kfree(regulator);
1182         mutex_unlock(&rdev->mutex);
1183         return NULL;
1184 }
1185
1186 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1187 {
1188         if (!rdev->desc->ops->enable_time)
1189                 return rdev->desc->enable_time;
1190         return rdev->desc->ops->enable_time(rdev);
1191 }
1192
1193 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194                                                   const char *supply,
1195                                                   int *ret)
1196 {
1197         struct regulator_dev *r;
1198         struct device_node *node;
1199         struct regulator_map *map;
1200         const char *devname = NULL;
1201
1202         /* first do a dt based lookup */
1203         if (dev && dev->of_node) {
1204                 node = of_get_regulator(dev, supply);
1205                 if (node) {
1206                         list_for_each_entry(r, &regulator_list, list)
1207                                 if (r->dev.parent &&
1208                                         node == r->dev.of_node)
1209                                         return r;
1210                 } else {
1211                         /*
1212                          * If we couldn't even get the node then it's
1213                          * not just that the device didn't register
1214                          * yet, there's no node and we'll never
1215                          * succeed.
1216                          */
1217                         *ret = -ENODEV;
1218                 }
1219         }
1220
1221         /* if not found, try doing it non-dt way */
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         list_for_each_entry(r, &regulator_list, list)
1226                 if (strcmp(rdev_get_name(r), supply) == 0)
1227                         return r;
1228
1229         list_for_each_entry(map, &regulator_map_list, list) {
1230                 /* If the mapping has a device set up it must match */
1231                 if (map->dev_name &&
1232                     (!devname || strcmp(map->dev_name, devname)))
1233                         continue;
1234
1235                 if (strcmp(map->supply, supply) == 0)
1236                         return map->regulator;
1237         }
1238
1239
1240         return NULL;
1241 }
1242
1243 /* Internal regulator request function */
1244 static struct regulator *_regulator_get(struct device *dev, const char *id,
1245                                         int exclusive)
1246 {
1247         struct regulator_dev *rdev;
1248         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249         const char *devname = NULL;
1250         int ret = 0;
1251
1252         if (id == NULL) {
1253                 pr_err("get() with no identifier\n");
1254                 return regulator;
1255         }
1256
1257         if (dev)
1258                 devname = dev_name(dev);
1259
1260         mutex_lock(&regulator_list_mutex);
1261
1262         rdev = regulator_dev_lookup(dev, id, &ret);
1263         if (rdev)
1264                 goto found;
1265
1266         /*
1267          * If we have return value from dev_lookup fail, we do not expect to
1268          * succeed, so, quit with appropriate error value
1269          */
1270         if (ret) {
1271                 regulator = ERR_PTR(ret);
1272                 goto out;
1273         }
1274
1275         if (board_wants_dummy_regulator) {
1276                 rdev = dummy_regulator_rdev;
1277                 goto found;
1278         }
1279
1280 #ifdef CONFIG_REGULATOR_DUMMY
1281         if (!devname)
1282                 devname = "deviceless";
1283
1284         /* If the board didn't flag that it was fully constrained then
1285          * substitute in a dummy regulator so consumers can continue.
1286          */
1287         if (!has_full_constraints) {
1288                 pr_warn("%s supply %s not found, using dummy regulator\n",
1289                         devname, id);
1290                 rdev = dummy_regulator_rdev;
1291                 goto found;
1292         }
1293 #endif
1294
1295         mutex_unlock(&regulator_list_mutex);
1296         return regulator;
1297
1298 found:
1299         if (rdev->exclusive) {
1300                 regulator = ERR_PTR(-EPERM);
1301                 goto out;
1302         }
1303
1304         if (exclusive && rdev->open_count) {
1305                 regulator = ERR_PTR(-EBUSY);
1306                 goto out;
1307         }
1308
1309         if (!try_module_get(rdev->owner))
1310                 goto out;
1311
1312         regulator = create_regulator(rdev, dev, id);
1313         if (regulator == NULL) {
1314                 regulator = ERR_PTR(-ENOMEM);
1315                 module_put(rdev->owner);
1316                 goto out;
1317         }
1318
1319         rdev->open_count++;
1320         if (exclusive) {
1321                 rdev->exclusive = 1;
1322
1323                 ret = _regulator_is_enabled(rdev);
1324                 if (ret > 0)
1325                         rdev->use_count = 1;
1326                 else
1327                         rdev->use_count = 0;
1328         }
1329
1330 out:
1331         mutex_unlock(&regulator_list_mutex);
1332
1333         return regulator;
1334 }
1335
1336 /**
1337  * regulator_get - lookup and obtain a reference to a regulator.
1338  * @dev: device for regulator "consumer"
1339  * @id: Supply name or regulator ID.
1340  *
1341  * Returns a struct regulator corresponding to the regulator producer,
1342  * or IS_ERR() condition containing errno.
1343  *
1344  * Use of supply names configured via regulator_set_device_supply() is
1345  * strongly encouraged.  It is recommended that the supply name used
1346  * should match the name used for the supply and/or the relevant
1347  * device pins in the datasheet.
1348  */
1349 struct regulator *regulator_get(struct device *dev, const char *id)
1350 {
1351         return _regulator_get(dev, id, 0);
1352 }
1353 EXPORT_SYMBOL_GPL(regulator_get);
1354
1355 static void devm_regulator_release(struct device *dev, void *res)
1356 {
1357         regulator_put(*(struct regulator **)res);
1358 }
1359
1360 /**
1361  * devm_regulator_get - Resource managed regulator_get()
1362  * @dev: device for regulator "consumer"
1363  * @id: Supply name or regulator ID.
1364  *
1365  * Managed regulator_get(). Regulators returned from this function are
1366  * automatically regulator_put() on driver detach. See regulator_get() for more
1367  * information.
1368  */
1369 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1370 {
1371         struct regulator **ptr, *regulator;
1372
1373         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1374         if (!ptr)
1375                 return ERR_PTR(-ENOMEM);
1376
1377         regulator = regulator_get(dev, id);
1378         if (!IS_ERR(regulator)) {
1379                 *ptr = regulator;
1380                 devres_add(dev, ptr);
1381         } else {
1382                 devres_free(ptr);
1383         }
1384
1385         return regulator;
1386 }
1387 EXPORT_SYMBOL_GPL(devm_regulator_get);
1388
1389 /**
1390  * regulator_get_exclusive - obtain exclusive access to a regulator.
1391  * @dev: device for regulator "consumer"
1392  * @id: Supply name or regulator ID.
1393  *
1394  * Returns a struct regulator corresponding to the regulator producer,
1395  * or IS_ERR() condition containing errno.  Other consumers will be
1396  * unable to obtain this reference is held and the use count for the
1397  * regulator will be initialised to reflect the current state of the
1398  * regulator.
1399  *
1400  * This is intended for use by consumers which cannot tolerate shared
1401  * use of the regulator such as those which need to force the
1402  * regulator off for correct operation of the hardware they are
1403  * controlling.
1404  *
1405  * Use of supply names configured via regulator_set_device_supply() is
1406  * strongly encouraged.  It is recommended that the supply name used
1407  * should match the name used for the supply and/or the relevant
1408  * device pins in the datasheet.
1409  */
1410 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1411 {
1412         return _regulator_get(dev, id, 1);
1413 }
1414 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1415
1416 /* Locks held by regulator_put() */
1417 static void _regulator_put(struct regulator *regulator)
1418 {
1419         struct regulator_dev *rdev;
1420
1421         if (regulator == NULL || IS_ERR(regulator))
1422                 return;
1423
1424         rdev = regulator->rdev;
1425
1426         debugfs_remove_recursive(regulator->debugfs);
1427
1428         /* remove any sysfs entries */
1429         if (regulator->dev)
1430                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1431         kfree(regulator->supply_name);
1432         list_del(&regulator->list);
1433         kfree(regulator);
1434
1435         rdev->open_count--;
1436         rdev->exclusive = 0;
1437
1438         module_put(rdev->owner);
1439 }
1440
1441 /**
1442  * regulator_put - "free" the regulator source
1443  * @regulator: regulator source
1444  *
1445  * Note: drivers must ensure that all regulator_enable calls made on this
1446  * regulator source are balanced by regulator_disable calls prior to calling
1447  * this function.
1448  */
1449 void regulator_put(struct regulator *regulator)
1450 {
1451         mutex_lock(&regulator_list_mutex);
1452         _regulator_put(regulator);
1453         mutex_unlock(&regulator_list_mutex);
1454 }
1455 EXPORT_SYMBOL_GPL(regulator_put);
1456
1457 static int devm_regulator_match(struct device *dev, void *res, void *data)
1458 {
1459         struct regulator **r = res;
1460         if (!r || !*r) {
1461                 WARN_ON(!r || !*r);
1462                 return 0;
1463         }
1464         return *r == data;
1465 }
1466
1467 /**
1468  * devm_regulator_put - Resource managed regulator_put()
1469  * @regulator: regulator to free
1470  *
1471  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1472  * this function will not need to be called and the resource management
1473  * code will ensure that the resource is freed.
1474  */
1475 void devm_regulator_put(struct regulator *regulator)
1476 {
1477         int rc;
1478
1479         rc = devres_release(regulator->dev, devm_regulator_release,
1480                             devm_regulator_match, regulator);
1481         if (rc != 0)
1482                 WARN_ON(rc);
1483 }
1484 EXPORT_SYMBOL_GPL(devm_regulator_put);
1485
1486 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1487 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1488                                 const struct regulator_config *config)
1489 {
1490         struct regulator_enable_gpio *pin;
1491         int ret;
1492
1493         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1494                 if (pin->gpio == config->ena_gpio) {
1495                         rdev_dbg(rdev, "GPIO %d is already used\n",
1496                                 config->ena_gpio);
1497                         goto update_ena_gpio_to_rdev;
1498                 }
1499         }
1500
1501         ret = gpio_request_one(config->ena_gpio,
1502                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1503                                 rdev_get_name(rdev));
1504         if (ret)
1505                 return ret;
1506
1507         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1508         if (pin == NULL) {
1509                 gpio_free(config->ena_gpio);
1510                 return -ENOMEM;
1511         }
1512
1513         pin->gpio = config->ena_gpio;
1514         pin->ena_gpio_invert = config->ena_gpio_invert;
1515         list_add(&pin->list, &regulator_ena_gpio_list);
1516
1517 update_ena_gpio_to_rdev:
1518         pin->request_count++;
1519         rdev->ena_pin = pin;
1520         return 0;
1521 }
1522
1523 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1524 {
1525         struct regulator_enable_gpio *pin, *n;
1526
1527         if (!rdev->ena_pin)
1528                 return;
1529
1530         /* Free the GPIO only in case of no use */
1531         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1532                 if (pin->gpio == rdev->ena_pin->gpio) {
1533                         if (pin->request_count <= 1) {
1534                                 pin->request_count = 0;
1535                                 gpio_free(pin->gpio);
1536                                 list_del(&pin->list);
1537                                 kfree(pin);
1538                         } else {
1539                                 pin->request_count--;
1540                         }
1541                 }
1542         }
1543 }
1544
1545 /**
1546  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1547  * @rdev: regulator_dev structure
1548  * @enable: enable GPIO at initial use?
1549  *
1550  * GPIO is enabled in case of initial use. (enable_count is 0)
1551  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1552  */
1553 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1554 {
1555         struct regulator_enable_gpio *pin = rdev->ena_pin;
1556
1557         if (!pin)
1558                 return -EINVAL;
1559
1560         if (enable) {
1561                 /* Enable GPIO at initial use */
1562                 if (pin->enable_count == 0)
1563                         gpio_set_value_cansleep(pin->gpio,
1564                                                 !pin->ena_gpio_invert);
1565
1566                 pin->enable_count++;
1567         } else {
1568                 if (pin->enable_count > 1) {
1569                         pin->enable_count--;
1570                         return 0;
1571                 }
1572
1573                 /* Disable GPIO if not used */
1574                 if (pin->enable_count <= 1) {
1575                         gpio_set_value_cansleep(pin->gpio,
1576                                                 pin->ena_gpio_invert);
1577                         pin->enable_count = 0;
1578                 }
1579         }
1580
1581         return 0;
1582 }
1583
1584 static int _regulator_do_enable(struct regulator_dev *rdev)
1585 {
1586         int ret, delay;
1587
1588         /* Query before enabling in case configuration dependent.  */
1589         ret = _regulator_get_enable_time(rdev);
1590         if (ret >= 0) {
1591                 delay = ret;
1592         } else {
1593                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1594                 delay = 0;
1595         }
1596
1597         trace_regulator_enable(rdev_get_name(rdev));
1598
1599         if (rdev->ena_pin) {
1600                 ret = regulator_ena_gpio_ctrl(rdev, true);
1601                 if (ret < 0)
1602                         return ret;
1603                 rdev->ena_gpio_state = 1;
1604         } else if (rdev->desc->ops->enable) {
1605                 ret = rdev->desc->ops->enable(rdev);
1606                 if (ret < 0)
1607                         return ret;
1608         } else {
1609                 return -EINVAL;
1610         }
1611
1612         /* Allow the regulator to ramp; it would be useful to extend
1613          * this for bulk operations so that the regulators can ramp
1614          * together.  */
1615         trace_regulator_enable_delay(rdev_get_name(rdev));
1616
1617         if (delay >= 1000) {
1618                 mdelay(delay / 1000);
1619                 udelay(delay % 1000);
1620         } else if (delay) {
1621                 udelay(delay);
1622         }
1623
1624         trace_regulator_enable_complete(rdev_get_name(rdev));
1625
1626         return 0;
1627 }
1628
1629 /* locks held by regulator_enable() */
1630 static int _regulator_enable(struct regulator_dev *rdev)
1631 {
1632         int ret;
1633
1634         /* check voltage and requested load before enabling */
1635         if (rdev->constraints &&
1636             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1637                 drms_uA_update(rdev);
1638
1639         if (rdev->use_count == 0) {
1640                 /* The regulator may on if it's not switchable or left on */
1641                 ret = _regulator_is_enabled(rdev);
1642                 if (ret == -EINVAL || ret == 0) {
1643                         if (!_regulator_can_change_status(rdev))
1644                                 return -EPERM;
1645
1646                         ret = _regulator_do_enable(rdev);
1647                         if (ret < 0)
1648                                 return ret;
1649
1650                 } else if (ret < 0) {
1651                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1652                         return ret;
1653                 }
1654                 /* Fallthrough on positive return values - already enabled */
1655         }
1656
1657         rdev->use_count++;
1658
1659         return 0;
1660 }
1661
1662 /**
1663  * regulator_enable - enable regulator output
1664  * @regulator: regulator source
1665  *
1666  * Request that the regulator be enabled with the regulator output at
1667  * the predefined voltage or current value.  Calls to regulator_enable()
1668  * must be balanced with calls to regulator_disable().
1669  *
1670  * NOTE: the output value can be set by other drivers, boot loader or may be
1671  * hardwired in the regulator.
1672  */
1673 int regulator_enable(struct regulator *regulator)
1674 {
1675         struct regulator_dev *rdev = regulator->rdev;
1676         int ret = 0;
1677
1678         if (regulator->always_on)
1679                 return 0;
1680
1681         if (rdev->supply) {
1682                 ret = regulator_enable(rdev->supply);
1683                 if (ret != 0)
1684                         return ret;
1685         }
1686
1687         mutex_lock(&rdev->mutex);
1688         ret = _regulator_enable(rdev);
1689         mutex_unlock(&rdev->mutex);
1690
1691         if (ret != 0 && rdev->supply)
1692                 regulator_disable(rdev->supply);
1693
1694         return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_enable);
1697
1698 static int _regulator_do_disable(struct regulator_dev *rdev)
1699 {
1700         int ret;
1701
1702         trace_regulator_disable(rdev_get_name(rdev));
1703
1704         if (rdev->ena_pin) {
1705                 ret = regulator_ena_gpio_ctrl(rdev, false);
1706                 if (ret < 0)
1707                         return ret;
1708                 rdev->ena_gpio_state = 0;
1709
1710         } else if (rdev->desc->ops->disable) {
1711                 ret = rdev->desc->ops->disable(rdev);
1712                 if (ret != 0)
1713                         return ret;
1714         }
1715
1716         trace_regulator_disable_complete(rdev_get_name(rdev));
1717
1718         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1719                              NULL);
1720         return 0;
1721 }
1722
1723 /* locks held by regulator_disable() */
1724 static int _regulator_disable(struct regulator_dev *rdev)
1725 {
1726         int ret = 0;
1727
1728         if (WARN(rdev->use_count <= 0,
1729                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1730                 return -EIO;
1731
1732         /* are we the last user and permitted to disable ? */
1733         if (rdev->use_count == 1 &&
1734             (rdev->constraints && !rdev->constraints->always_on)) {
1735
1736                 /* we are last user */
1737                 if (_regulator_can_change_status(rdev)) {
1738                         ret = _regulator_do_disable(rdev);
1739                         if (ret < 0) {
1740                                 rdev_err(rdev, "failed to disable\n");
1741                                 return ret;
1742                         }
1743                 }
1744
1745                 rdev->use_count = 0;
1746         } else if (rdev->use_count > 1) {
1747
1748                 if (rdev->constraints &&
1749                         (rdev->constraints->valid_ops_mask &
1750                         REGULATOR_CHANGE_DRMS))
1751                         drms_uA_update(rdev);
1752
1753                 rdev->use_count--;
1754         }
1755
1756         return ret;
1757 }
1758
1759 /**
1760  * regulator_disable - disable regulator output
1761  * @regulator: regulator source
1762  *
1763  * Disable the regulator output voltage or current.  Calls to
1764  * regulator_enable() must be balanced with calls to
1765  * regulator_disable().
1766  *
1767  * NOTE: this will only disable the regulator output if no other consumer
1768  * devices have it enabled, the regulator device supports disabling and
1769  * machine constraints permit this operation.
1770  */
1771 int regulator_disable(struct regulator *regulator)
1772 {
1773         struct regulator_dev *rdev = regulator->rdev;
1774         int ret = 0;
1775
1776         if (regulator->always_on)
1777                 return 0;
1778
1779         mutex_lock(&rdev->mutex);
1780         ret = _regulator_disable(rdev);
1781         mutex_unlock(&rdev->mutex);
1782
1783         if (ret == 0 && rdev->supply)
1784                 regulator_disable(rdev->supply);
1785
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_disable);
1789
1790 /* locks held by regulator_force_disable() */
1791 static int _regulator_force_disable(struct regulator_dev *rdev)
1792 {
1793         int ret = 0;
1794
1795         /* force disable */
1796         if (rdev->desc->ops->disable) {
1797                 /* ah well, who wants to live forever... */
1798                 ret = rdev->desc->ops->disable(rdev);
1799                 if (ret < 0) {
1800                         rdev_err(rdev, "failed to force disable\n");
1801                         return ret;
1802                 }
1803                 /* notify other consumers that power has been forced off */
1804                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805                         REGULATOR_EVENT_DISABLE, NULL);
1806         }
1807
1808         return ret;
1809 }
1810
1811 /**
1812  * regulator_force_disable - force disable regulator output
1813  * @regulator: regulator source
1814  *
1815  * Forcibly disable the regulator output voltage or current.
1816  * NOTE: this *will* disable the regulator output even if other consumer
1817  * devices have it enabled. This should be used for situations when device
1818  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1819  */
1820 int regulator_force_disable(struct regulator *regulator)
1821 {
1822         struct regulator_dev *rdev = regulator->rdev;
1823         int ret;
1824
1825         mutex_lock(&rdev->mutex);
1826         regulator->uA_load = 0;
1827         ret = _regulator_force_disable(regulator->rdev);
1828         mutex_unlock(&rdev->mutex);
1829
1830         if (rdev->supply)
1831                 while (rdev->open_count--)
1832                         regulator_disable(rdev->supply);
1833
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(regulator_force_disable);
1837
1838 static void regulator_disable_work(struct work_struct *work)
1839 {
1840         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1841                                                   disable_work.work);
1842         int count, i, ret;
1843
1844         mutex_lock(&rdev->mutex);
1845
1846         BUG_ON(!rdev->deferred_disables);
1847
1848         count = rdev->deferred_disables;
1849         rdev->deferred_disables = 0;
1850
1851         for (i = 0; i < count; i++) {
1852                 ret = _regulator_disable(rdev);
1853                 if (ret != 0)
1854                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1855         }
1856
1857         mutex_unlock(&rdev->mutex);
1858
1859         if (rdev->supply) {
1860                 for (i = 0; i < count; i++) {
1861                         ret = regulator_disable(rdev->supply);
1862                         if (ret != 0) {
1863                                 rdev_err(rdev,
1864                                          "Supply disable failed: %d\n", ret);
1865                         }
1866                 }
1867         }
1868 }
1869
1870 /**
1871  * regulator_disable_deferred - disable regulator output with delay
1872  * @regulator: regulator source
1873  * @ms: miliseconds until the regulator is disabled
1874  *
1875  * Execute regulator_disable() on the regulator after a delay.  This
1876  * is intended for use with devices that require some time to quiesce.
1877  *
1878  * NOTE: this will only disable the regulator output if no other consumer
1879  * devices have it enabled, the regulator device supports disabling and
1880  * machine constraints permit this operation.
1881  */
1882 int regulator_disable_deferred(struct regulator *regulator, int ms)
1883 {
1884         struct regulator_dev *rdev = regulator->rdev;
1885         int ret;
1886
1887         if (regulator->always_on)
1888                 return 0;
1889
1890         if (!ms)
1891                 return regulator_disable(regulator);
1892
1893         mutex_lock(&rdev->mutex);
1894         rdev->deferred_disables++;
1895         mutex_unlock(&rdev->mutex);
1896
1897         ret = queue_delayed_work(system_power_efficient_wq,
1898                                  &rdev->disable_work,
1899                                  msecs_to_jiffies(ms));
1900         if (ret < 0)
1901                 return ret;
1902         else
1903                 return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1906
1907 static int _regulator_is_enabled(struct regulator_dev *rdev)
1908 {
1909         /* A GPIO control always takes precedence */
1910         if (rdev->ena_pin)
1911                 return rdev->ena_gpio_state;
1912
1913         /* If we don't know then assume that the regulator is always on */
1914         if (!rdev->desc->ops->is_enabled)
1915                 return 1;
1916
1917         return rdev->desc->ops->is_enabled(rdev);
1918 }
1919
1920 /**
1921  * regulator_is_enabled - is the regulator output enabled
1922  * @regulator: regulator source
1923  *
1924  * Returns positive if the regulator driver backing the source/client
1925  * has requested that the device be enabled, zero if it hasn't, else a
1926  * negative errno code.
1927  *
1928  * Note that the device backing this regulator handle can have multiple
1929  * users, so it might be enabled even if regulator_enable() was never
1930  * called for this particular source.
1931  */
1932 int regulator_is_enabled(struct regulator *regulator)
1933 {
1934         int ret;
1935
1936         if (regulator->always_on)
1937                 return 1;
1938
1939         mutex_lock(&regulator->rdev->mutex);
1940         ret = _regulator_is_enabled(regulator->rdev);
1941         mutex_unlock(&regulator->rdev->mutex);
1942
1943         return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1946
1947 /**
1948  * regulator_can_change_voltage - check if regulator can change voltage
1949  * @regulator: regulator source
1950  *
1951  * Returns positive if the regulator driver backing the source/client
1952  * can change its voltage, false otherwise. Usefull for detecting fixed
1953  * or dummy regulators and disabling voltage change logic in the client
1954  * driver.
1955  */
1956 int regulator_can_change_voltage(struct regulator *regulator)
1957 {
1958         struct regulator_dev    *rdev = regulator->rdev;
1959
1960         if (rdev->constraints &&
1961             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1962                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1963                         return 1;
1964
1965                 if (rdev->desc->continuous_voltage_range &&
1966                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
1967                     rdev->constraints->min_uV != rdev->constraints->max_uV)
1968                         return 1;
1969         }
1970
1971         return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1974
1975 /**
1976  * regulator_count_voltages - count regulator_list_voltage() selectors
1977  * @regulator: regulator source
1978  *
1979  * Returns number of selectors, or negative errno.  Selectors are
1980  * numbered starting at zero, and typically correspond to bitfields
1981  * in hardware registers.
1982  */
1983 int regulator_count_voltages(struct regulator *regulator)
1984 {
1985         struct regulator_dev    *rdev = regulator->rdev;
1986
1987         return rdev->desc->n_voltages ? : -EINVAL;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1990
1991 /**
1992  * regulator_list_voltage_linear - List voltages with simple calculation
1993  *
1994  * @rdev: Regulator device
1995  * @selector: Selector to convert into a voltage
1996  *
1997  * Regulators with a simple linear mapping between voltages and
1998  * selectors can set min_uV and uV_step in the regulator descriptor
1999  * and then use this function as their list_voltage() operation,
2000  */
2001 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2002                                   unsigned int selector)
2003 {
2004         if (selector >= rdev->desc->n_voltages)
2005                 return -EINVAL;
2006         if (selector < rdev->desc->linear_min_sel)
2007                 return 0;
2008
2009         selector -= rdev->desc->linear_min_sel;
2010
2011         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2012 }
2013 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2014
2015 /**
2016  * regulator_list_voltage_linear_range - List voltages for linear ranges
2017  *
2018  * @rdev: Regulator device
2019  * @selector: Selector to convert into a voltage
2020  *
2021  * Regulators with a series of simple linear mappings between voltages
2022  * and selectors can set linear_ranges in the regulator descriptor and
2023  * then use this function as their list_voltage() operation,
2024  */
2025 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
2026                                         unsigned int selector)
2027 {
2028         const struct regulator_linear_range *range;
2029         int i;
2030
2031         if (!rdev->desc->n_linear_ranges) {
2032                 BUG_ON(!rdev->desc->n_linear_ranges);
2033                 return -EINVAL;
2034         }
2035
2036         for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
2037                 range = &rdev->desc->linear_ranges[i];
2038
2039                 if (!(selector >= range->min_sel &&
2040                       selector <= range->max_sel))
2041                         continue;
2042
2043                 selector -= range->min_sel;
2044
2045                 return range->min_uV + (range->uV_step * selector);
2046         }
2047
2048         return -EINVAL;
2049 }
2050 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
2051
2052 /**
2053  * regulator_list_voltage_table - List voltages with table based mapping
2054  *
2055  * @rdev: Regulator device
2056  * @selector: Selector to convert into a voltage
2057  *
2058  * Regulators with table based mapping between voltages and
2059  * selectors can set volt_table in the regulator descriptor
2060  * and then use this function as their list_voltage() operation.
2061  */
2062 int regulator_list_voltage_table(struct regulator_dev *rdev,
2063                                  unsigned int selector)
2064 {
2065         if (!rdev->desc->volt_table) {
2066                 BUG_ON(!rdev->desc->volt_table);
2067                 return -EINVAL;
2068         }
2069
2070         if (selector >= rdev->desc->n_voltages)
2071                 return -EINVAL;
2072
2073         return rdev->desc->volt_table[selector];
2074 }
2075 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2076
2077 /**
2078  * regulator_list_voltage - enumerate supported voltages
2079  * @regulator: regulator source
2080  * @selector: identify voltage to list
2081  * Context: can sleep
2082  *
2083  * Returns a voltage that can be passed to @regulator_set_voltage(),
2084  * zero if this selector code can't be used on this system, or a
2085  * negative errno.
2086  */
2087 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2088 {
2089         struct regulator_dev    *rdev = regulator->rdev;
2090         struct regulator_ops    *ops = rdev->desc->ops;
2091         int                     ret;
2092
2093         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2094                 return -EINVAL;
2095
2096         mutex_lock(&rdev->mutex);
2097         ret = ops->list_voltage(rdev, selector);
2098         mutex_unlock(&rdev->mutex);
2099
2100         if (ret > 0) {
2101                 if (ret < rdev->constraints->min_uV)
2102                         ret = 0;
2103                 else if (ret > rdev->constraints->max_uV)
2104                         ret = 0;
2105         }
2106
2107         return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2110
2111 /**
2112  * regulator_get_linear_step - return the voltage step size between VSEL values
2113  * @regulator: regulator source
2114  *
2115  * Returns the voltage step size between VSEL values for linear
2116  * regulators, or return 0 if the regulator isn't a linear regulator.
2117  */
2118 unsigned int regulator_get_linear_step(struct regulator *regulator)
2119 {
2120         struct regulator_dev *rdev = regulator->rdev;
2121
2122         return rdev->desc->uV_step;
2123 }
2124 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2125
2126 /**
2127  * regulator_is_supported_voltage - check if a voltage range can be supported
2128  *
2129  * @regulator: Regulator to check.
2130  * @min_uV: Minimum required voltage in uV.
2131  * @max_uV: Maximum required voltage in uV.
2132  *
2133  * Returns a boolean or a negative error code.
2134  */
2135 int regulator_is_supported_voltage(struct regulator *regulator,
2136                                    int min_uV, int max_uV)
2137 {
2138         struct regulator_dev *rdev = regulator->rdev;
2139         int i, voltages, ret;
2140
2141         /* If we can't change voltage check the current voltage */
2142         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2143                 ret = regulator_get_voltage(regulator);
2144                 if (ret >= 0)
2145                         return (min_uV <= ret && ret <= max_uV);
2146                 else
2147                         return ret;
2148         }
2149
2150         /* Any voltage within constrains range is fine? */
2151         if (rdev->desc->continuous_voltage_range)
2152                 return min_uV >= rdev->constraints->min_uV &&
2153                                 max_uV <= rdev->constraints->max_uV;
2154
2155         ret = regulator_count_voltages(regulator);
2156         if (ret < 0)
2157                 return ret;
2158         voltages = ret;
2159
2160         for (i = 0; i < voltages; i++) {
2161                 ret = regulator_list_voltage(regulator, i);
2162
2163                 if (ret >= min_uV && ret <= max_uV)
2164                         return 1;
2165         }
2166
2167         return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2170
2171 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2172                                      int min_uV, int max_uV)
2173 {
2174         int ret;
2175         int delay = 0;
2176         int best_val = 0;
2177         unsigned int selector;
2178         int old_selector = -1;
2179
2180         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2181
2182         min_uV += rdev->constraints->uV_offset;
2183         max_uV += rdev->constraints->uV_offset;
2184
2185         /*
2186          * If we can't obtain the old selector there is not enough
2187          * info to call set_voltage_time_sel().
2188          */
2189         if (_regulator_is_enabled(rdev) &&
2190             rdev->desc->ops->set_voltage_time_sel &&
2191             rdev->desc->ops->get_voltage_sel) {
2192                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2193                 if (old_selector < 0)
2194                         return old_selector;
2195         }
2196
2197         if (rdev->desc->ops->set_voltage) {
2198                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2199                                                    &selector);
2200
2201                 if (ret >= 0) {
2202                         if (rdev->desc->ops->list_voltage)
2203                                 best_val = rdev->desc->ops->list_voltage(rdev,
2204                                                                          selector);
2205                         else
2206                                 best_val = _regulator_get_voltage(rdev);
2207                 }
2208
2209         } else if (rdev->desc->ops->set_voltage_sel) {
2210                 if (rdev->desc->ops->map_voltage) {
2211                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2212                                                            max_uV);
2213                 } else {
2214                         if (rdev->desc->ops->list_voltage ==
2215                             regulator_list_voltage_linear)
2216                                 ret = regulator_map_voltage_linear(rdev,
2217                                                                 min_uV, max_uV);
2218                         else
2219                                 ret = regulator_map_voltage_iterate(rdev,
2220                                                                 min_uV, max_uV);
2221                 }
2222
2223                 if (ret >= 0) {
2224                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2225                         if (min_uV <= best_val && max_uV >= best_val) {
2226                                 selector = ret;
2227                                 if (old_selector == selector)
2228                                         ret = 0;
2229                                 else
2230                                         ret = rdev->desc->ops->set_voltage_sel(
2231                                                                 rdev, ret);
2232                         } else {
2233                                 ret = -EINVAL;
2234                         }
2235                 }
2236         } else {
2237                 ret = -EINVAL;
2238         }
2239
2240         /* Call set_voltage_time_sel if successfully obtained old_selector */
2241         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2242             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2243
2244                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2245                                                 old_selector, selector);
2246                 if (delay < 0) {
2247                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2248                                   delay);
2249                         delay = 0;
2250                 }
2251
2252                 /* Insert any necessary delays */
2253                 if (delay >= 1000) {
2254                         mdelay(delay / 1000);
2255                         udelay(delay % 1000);
2256                 } else if (delay) {
2257                         udelay(delay);
2258                 }
2259         }
2260
2261         if (ret == 0 && best_val >= 0) {
2262                 unsigned long data = best_val;
2263
2264                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2265                                      (void *)data);
2266         }
2267
2268         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2269
2270         return ret;
2271 }
2272
2273 /**
2274  * regulator_set_voltage - set regulator output voltage
2275  * @regulator: regulator source
2276  * @min_uV: Minimum required voltage in uV
2277  * @max_uV: Maximum acceptable voltage in uV
2278  *
2279  * Sets a voltage regulator to the desired output voltage. This can be set
2280  * during any regulator state. IOW, regulator can be disabled or enabled.
2281  *
2282  * If the regulator is enabled then the voltage will change to the new value
2283  * immediately otherwise if the regulator is disabled the regulator will
2284  * output at the new voltage when enabled.
2285  *
2286  * NOTE: If the regulator is shared between several devices then the lowest
2287  * request voltage that meets the system constraints will be used.
2288  * Regulator system constraints must be set for this regulator before
2289  * calling this function otherwise this call will fail.
2290  */
2291 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2292 {
2293         struct regulator_dev *rdev = regulator->rdev;
2294         int ret = 0;
2295         int old_min_uV, old_max_uV;
2296
2297         mutex_lock(&rdev->mutex);
2298
2299         /* If we're setting the same range as last time the change
2300          * should be a noop (some cpufreq implementations use the same
2301          * voltage for multiple frequencies, for example).
2302          */
2303         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2304                 goto out;
2305
2306         /* sanity check */
2307         if (!rdev->desc->ops->set_voltage &&
2308             !rdev->desc->ops->set_voltage_sel) {
2309                 ret = -EINVAL;
2310                 goto out;
2311         }
2312
2313         /* constraints check */
2314         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2315         if (ret < 0)
2316                 goto out;
2317         
2318         /* restore original values in case of error */
2319         old_min_uV = regulator->min_uV;
2320         old_max_uV = regulator->max_uV;
2321         regulator->min_uV = min_uV;
2322         regulator->max_uV = max_uV;
2323
2324         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2325         if (ret < 0)
2326                 goto out2;
2327
2328         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2329         if (ret < 0)
2330                 goto out2;
2331         
2332 out:
2333         mutex_unlock(&rdev->mutex);
2334         return ret;
2335 out2:
2336         regulator->min_uV = old_min_uV;
2337         regulator->max_uV = old_max_uV;
2338         mutex_unlock(&rdev->mutex);
2339         return ret;
2340 }
2341 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2342
2343 /**
2344  * regulator_set_voltage_time - get raise/fall time
2345  * @regulator: regulator source
2346  * @old_uV: starting voltage in microvolts
2347  * @new_uV: target voltage in microvolts
2348  *
2349  * Provided with the starting and ending voltage, this function attempts to
2350  * calculate the time in microseconds required to rise or fall to this new
2351  * voltage.
2352  */
2353 int regulator_set_voltage_time(struct regulator *regulator,
2354                                int old_uV, int new_uV)
2355 {
2356         struct regulator_dev    *rdev = regulator->rdev;
2357         struct regulator_ops    *ops = rdev->desc->ops;
2358         int old_sel = -1;
2359         int new_sel = -1;
2360         int voltage;
2361         int i;
2362
2363         /* Currently requires operations to do this */
2364         if (!ops->list_voltage || !ops->set_voltage_time_sel
2365             || !rdev->desc->n_voltages)
2366                 return -EINVAL;
2367
2368         for (i = 0; i < rdev->desc->n_voltages; i++) {
2369                 /* We only look for exact voltage matches here */
2370                 voltage = regulator_list_voltage(regulator, i);
2371                 if (voltage < 0)
2372                         return -EINVAL;
2373                 if (voltage == 0)
2374                         continue;
2375                 if (voltage == old_uV)
2376                         old_sel = i;
2377                 if (voltage == new_uV)
2378                         new_sel = i;
2379         }
2380
2381         if (old_sel < 0 || new_sel < 0)
2382                 return -EINVAL;
2383
2384         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2387
2388 /**
2389  * regulator_set_voltage_time_sel - get raise/fall time
2390  * @rdev: regulator source device
2391  * @old_selector: selector for starting voltage
2392  * @new_selector: selector for target voltage
2393  *
2394  * Provided with the starting and target voltage selectors, this function
2395  * returns time in microseconds required to rise or fall to this new voltage
2396  *
2397  * Drivers providing ramp_delay in regulation_constraints can use this as their
2398  * set_voltage_time_sel() operation.
2399  */
2400 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2401                                    unsigned int old_selector,
2402                                    unsigned int new_selector)
2403 {
2404         unsigned int ramp_delay = 0;
2405         int old_volt, new_volt;
2406
2407         if (rdev->constraints->ramp_delay)
2408                 ramp_delay = rdev->constraints->ramp_delay;
2409         else if (rdev->desc->ramp_delay)
2410                 ramp_delay = rdev->desc->ramp_delay;
2411
2412         if (ramp_delay == 0) {
2413                 rdev_warn(rdev, "ramp_delay not set\n");
2414                 return 0;
2415         }
2416
2417         /* sanity check */
2418         if (!rdev->desc->ops->list_voltage)
2419                 return -EINVAL;
2420
2421         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2422         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2423
2424         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2425 }
2426 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2427
2428 /**
2429  * regulator_sync_voltage - re-apply last regulator output voltage
2430  * @regulator: regulator source
2431  *
2432  * Re-apply the last configured voltage.  This is intended to be used
2433  * where some external control source the consumer is cooperating with
2434  * has caused the configured voltage to change.
2435  */
2436 int regulator_sync_voltage(struct regulator *regulator)
2437 {
2438         struct regulator_dev *rdev = regulator->rdev;
2439         int ret, min_uV, max_uV;
2440
2441         mutex_lock(&rdev->mutex);
2442
2443         if (!rdev->desc->ops->set_voltage &&
2444             !rdev->desc->ops->set_voltage_sel) {
2445                 ret = -EINVAL;
2446                 goto out;
2447         }
2448
2449         /* This is only going to work if we've had a voltage configured. */
2450         if (!regulator->min_uV && !regulator->max_uV) {
2451                 ret = -EINVAL;
2452                 goto out;
2453         }
2454
2455         min_uV = regulator->min_uV;
2456         max_uV = regulator->max_uV;
2457
2458         /* This should be a paranoia check... */
2459         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2460         if (ret < 0)
2461                 goto out;
2462
2463         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2464         if (ret < 0)
2465                 goto out;
2466
2467         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2468
2469 out:
2470         mutex_unlock(&rdev->mutex);
2471         return ret;
2472 }
2473 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2474
2475 static int _regulator_get_voltage(struct regulator_dev *rdev)
2476 {
2477         int sel, ret;
2478
2479         if (rdev->desc->ops->get_voltage_sel) {
2480                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2481                 if (sel < 0)
2482                         return sel;
2483                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2484         } else if (rdev->desc->ops->get_voltage) {
2485                 ret = rdev->desc->ops->get_voltage(rdev);
2486         } else if (rdev->desc->ops->list_voltage) {
2487                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2488         } else {
2489                 return -EINVAL;
2490         }
2491
2492         if (ret < 0)
2493                 return ret;
2494         return ret - rdev->constraints->uV_offset;
2495 }
2496
2497 /**
2498  * regulator_get_voltage - get regulator output voltage
2499  * @regulator: regulator source
2500  *
2501  * This returns the current regulator voltage in uV.
2502  *
2503  * NOTE: If the regulator is disabled it will return the voltage value. This
2504  * function should not be used to determine regulator state.
2505  */
2506 int regulator_get_voltage(struct regulator *regulator)
2507 {
2508         int ret;
2509
2510         mutex_lock(&regulator->rdev->mutex);
2511
2512         ret = _regulator_get_voltage(regulator->rdev);
2513
2514         mutex_unlock(&regulator->rdev->mutex);
2515
2516         return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2519
2520 /**
2521  * regulator_set_current_limit - set regulator output current limit
2522  * @regulator: regulator source
2523  * @min_uA: Minimum supported current in uA
2524  * @max_uA: Maximum supported current in uA
2525  *
2526  * Sets current sink to the desired output current. This can be set during
2527  * any regulator state. IOW, regulator can be disabled or enabled.
2528  *
2529  * If the regulator is enabled then the current will change to the new value
2530  * immediately otherwise if the regulator is disabled the regulator will
2531  * output at the new current when enabled.
2532  *
2533  * NOTE: Regulator system constraints must be set for this regulator before
2534  * calling this function otherwise this call will fail.
2535  */
2536 int regulator_set_current_limit(struct regulator *regulator,
2537                                int min_uA, int max_uA)
2538 {
2539         struct regulator_dev *rdev = regulator->rdev;
2540         int ret;
2541
2542         mutex_lock(&rdev->mutex);
2543
2544         /* sanity check */
2545         if (!rdev->desc->ops->set_current_limit) {
2546                 ret = -EINVAL;
2547                 goto out;
2548         }
2549
2550         /* constraints check */
2551         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2552         if (ret < 0)
2553                 goto out;
2554
2555         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2556 out:
2557         mutex_unlock(&rdev->mutex);
2558         return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2561
2562 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2563 {
2564         int ret;
2565
2566         mutex_lock(&rdev->mutex);
2567
2568         /* sanity check */
2569         if (!rdev->desc->ops->get_current_limit) {
2570                 ret = -EINVAL;
2571                 goto out;
2572         }
2573
2574         ret = rdev->desc->ops->get_current_limit(rdev);
2575 out:
2576         mutex_unlock(&rdev->mutex);
2577         return ret;
2578 }
2579
2580 /**
2581  * regulator_get_current_limit - get regulator output current
2582  * @regulator: regulator source
2583  *
2584  * This returns the current supplied by the specified current sink in uA.
2585  *
2586  * NOTE: If the regulator is disabled it will return the current value. This
2587  * function should not be used to determine regulator state.
2588  */
2589 int regulator_get_current_limit(struct regulator *regulator)
2590 {
2591         return _regulator_get_current_limit(regulator->rdev);
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2594
2595 /**
2596  * regulator_set_mode - set regulator operating mode
2597  * @regulator: regulator source
2598  * @mode: operating mode - one of the REGULATOR_MODE constants
2599  *
2600  * Set regulator operating mode to increase regulator efficiency or improve
2601  * regulation performance.
2602  *
2603  * NOTE: Regulator system constraints must be set for this regulator before
2604  * calling this function otherwise this call will fail.
2605  */
2606 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2607 {
2608         struct regulator_dev *rdev = regulator->rdev;
2609         int ret;
2610         int regulator_curr_mode;
2611
2612         mutex_lock(&rdev->mutex);
2613
2614         /* sanity check */
2615         if (!rdev->desc->ops->set_mode) {
2616                 ret = -EINVAL;
2617                 goto out;
2618         }
2619
2620         /* return if the same mode is requested */
2621         if (rdev->desc->ops->get_mode) {
2622                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2623                 if (regulator_curr_mode == mode) {
2624                         ret = 0;
2625                         goto out;
2626                 }
2627         }
2628
2629         /* constraints check */
2630         ret = regulator_mode_constrain(rdev, &mode);
2631         if (ret < 0)
2632                 goto out;
2633
2634         ret = rdev->desc->ops->set_mode(rdev, mode);
2635 out:
2636         mutex_unlock(&rdev->mutex);
2637         return ret;
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_set_mode);
2640
2641 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2642 {
2643         int ret;
2644
2645         mutex_lock(&rdev->mutex);
2646
2647         /* sanity check */
2648         if (!rdev->desc->ops->get_mode) {
2649                 ret = -EINVAL;
2650                 goto out;
2651         }
2652
2653         ret = rdev->desc->ops->get_mode(rdev);
2654 out:
2655         mutex_unlock(&rdev->mutex);
2656         return ret;
2657 }
2658
2659 /**
2660  * regulator_get_mode - get regulator operating mode
2661  * @regulator: regulator source
2662  *
2663  * Get the current regulator operating mode.
2664  */
2665 unsigned int regulator_get_mode(struct regulator *regulator)
2666 {
2667         return _regulator_get_mode(regulator->rdev);
2668 }
2669 EXPORT_SYMBOL_GPL(regulator_get_mode);
2670
2671 /**
2672  * regulator_set_optimum_mode - set regulator optimum operating mode
2673  * @regulator: regulator source
2674  * @uA_load: load current
2675  *
2676  * Notifies the regulator core of a new device load. This is then used by
2677  * DRMS (if enabled by constraints) to set the most efficient regulator
2678  * operating mode for the new regulator loading.
2679  *
2680  * Consumer devices notify their supply regulator of the maximum power
2681  * they will require (can be taken from device datasheet in the power
2682  * consumption tables) when they change operational status and hence power
2683  * state. Examples of operational state changes that can affect power
2684  * consumption are :-
2685  *
2686  *    o Device is opened / closed.
2687  *    o Device I/O is about to begin or has just finished.
2688  *    o Device is idling in between work.
2689  *
2690  * This information is also exported via sysfs to userspace.
2691  *
2692  * DRMS will sum the total requested load on the regulator and change
2693  * to the most efficient operating mode if platform constraints allow.
2694  *
2695  * Returns the new regulator mode or error.
2696  */
2697 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2698 {
2699         struct regulator_dev *rdev = regulator->rdev;
2700         struct regulator *consumer;
2701         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2702         unsigned int mode;
2703
2704         if (rdev->supply)
2705                 input_uV = regulator_get_voltage(rdev->supply);
2706
2707         mutex_lock(&rdev->mutex);
2708
2709         /*
2710          * first check to see if we can set modes at all, otherwise just
2711          * tell the consumer everything is OK.
2712          */
2713         regulator->uA_load = uA_load;
2714         ret = regulator_check_drms(rdev);
2715         if (ret < 0) {
2716                 ret = 0;
2717                 goto out;
2718         }
2719
2720         if (!rdev->desc->ops->get_optimum_mode)
2721                 goto out;
2722
2723         /*
2724          * we can actually do this so any errors are indicators of
2725          * potential real failure.
2726          */
2727         ret = -EINVAL;
2728
2729         if (!rdev->desc->ops->set_mode)
2730                 goto out;
2731
2732         /* get output voltage */
2733         output_uV = _regulator_get_voltage(rdev);
2734         if (output_uV <= 0) {
2735                 rdev_err(rdev, "invalid output voltage found\n");
2736                 goto out;
2737         }
2738
2739         /* No supply? Use constraint voltage */
2740         if (input_uV <= 0)
2741                 input_uV = rdev->constraints->input_uV;
2742         if (input_uV <= 0) {
2743                 rdev_err(rdev, "invalid input voltage found\n");
2744                 goto out;
2745         }
2746
2747         /* calc total requested load for this regulator */
2748         list_for_each_entry(consumer, &rdev->consumer_list, list)
2749                 total_uA_load += consumer->uA_load;
2750
2751         mode = rdev->desc->ops->get_optimum_mode(rdev,
2752                                                  input_uV, output_uV,
2753                                                  total_uA_load);
2754         ret = regulator_mode_constrain(rdev, &mode);
2755         if (ret < 0) {
2756                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2757                          total_uA_load, input_uV, output_uV);
2758                 goto out;
2759         }
2760
2761         ret = rdev->desc->ops->set_mode(rdev, mode);
2762         if (ret < 0) {
2763                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2764                 goto out;
2765         }
2766         ret = mode;
2767 out:
2768         mutex_unlock(&rdev->mutex);
2769         return ret;
2770 }
2771 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2772
2773 /**
2774  * regulator_allow_bypass - allow the regulator to go into bypass mode
2775  *
2776  * @regulator: Regulator to configure
2777  * @enable: enable or disable bypass mode
2778  *
2779  * Allow the regulator to go into bypass mode if all other consumers
2780  * for the regulator also enable bypass mode and the machine
2781  * constraints allow this.  Bypass mode means that the regulator is
2782  * simply passing the input directly to the output with no regulation.
2783  */
2784 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2785 {
2786         struct regulator_dev *rdev = regulator->rdev;
2787         int ret = 0;
2788
2789         if (!rdev->desc->ops->set_bypass)
2790                 return 0;
2791
2792         if (rdev->constraints &&
2793             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2794                 return 0;
2795
2796         mutex_lock(&rdev->mutex);
2797
2798         if (enable && !regulator->bypass) {
2799                 rdev->bypass_count++;
2800
2801                 if (rdev->bypass_count == rdev->open_count) {
2802                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2803                         if (ret != 0)
2804                                 rdev->bypass_count--;
2805                 }
2806
2807         } else if (!enable && regulator->bypass) {
2808                 rdev->bypass_count--;
2809
2810                 if (rdev->bypass_count != rdev->open_count) {
2811                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2812                         if (ret != 0)
2813                                 rdev->bypass_count++;
2814                 }
2815         }
2816
2817         if (ret == 0)
2818                 regulator->bypass = enable;
2819
2820         mutex_unlock(&rdev->mutex);
2821
2822         return ret;
2823 }
2824 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2825
2826 /**
2827  * regulator_register_notifier - register regulator event notifier
2828  * @regulator: regulator source
2829  * @nb: notifier block
2830  *
2831  * Register notifier block to receive regulator events.
2832  */
2833 int regulator_register_notifier(struct regulator *regulator,
2834                               struct notifier_block *nb)
2835 {
2836         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2837                                                 nb);
2838 }
2839 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2840
2841 /**
2842  * regulator_unregister_notifier - unregister regulator event notifier
2843  * @regulator: regulator source
2844  * @nb: notifier block
2845  *
2846  * Unregister regulator event notifier block.
2847  */
2848 int regulator_unregister_notifier(struct regulator *regulator,
2849                                 struct notifier_block *nb)
2850 {
2851         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2852                                                   nb);
2853 }
2854 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2855
2856 /* notify regulator consumers and downstream regulator consumers.
2857  * Note mutex must be held by caller.
2858  */
2859 static void _notifier_call_chain(struct regulator_dev *rdev,
2860                                   unsigned long event, void *data)
2861 {
2862         /* call rdev chain first */
2863         blocking_notifier_call_chain(&rdev->notifier, event, data);
2864 }
2865
2866 /**
2867  * regulator_bulk_get - get multiple regulator consumers
2868  *
2869  * @dev:           Device to supply
2870  * @num_consumers: Number of consumers to register
2871  * @consumers:     Configuration of consumers; clients are stored here.
2872  *
2873  * @return 0 on success, an errno on failure.
2874  *
2875  * This helper function allows drivers to get several regulator
2876  * consumers in one operation.  If any of the regulators cannot be
2877  * acquired then any regulators that were allocated will be freed
2878  * before returning to the caller.
2879  */
2880 int regulator_bulk_get(struct device *dev, int num_consumers,
2881                        struct regulator_bulk_data *consumers)
2882 {
2883         int i;
2884         int ret;
2885
2886         for (i = 0; i < num_consumers; i++)
2887                 consumers[i].consumer = NULL;
2888
2889         for (i = 0; i < num_consumers; i++) {
2890                 consumers[i].consumer = regulator_get(dev,
2891                                                       consumers[i].supply);
2892                 if (IS_ERR(consumers[i].consumer)) {
2893                         ret = PTR_ERR(consumers[i].consumer);
2894                         dev_err(dev, "Failed to get supply '%s': %d\n",
2895                                 consumers[i].supply, ret);
2896                         consumers[i].consumer = NULL;
2897                         goto err;
2898                 }
2899         }
2900
2901         return 0;
2902
2903 err:
2904         while (--i >= 0)
2905                 regulator_put(consumers[i].consumer);
2906
2907         return ret;
2908 }
2909 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2910
2911 /**
2912  * devm_regulator_bulk_get - managed get multiple regulator consumers
2913  *
2914  * @dev:           Device to supply
2915  * @num_consumers: Number of consumers to register
2916  * @consumers:     Configuration of consumers; clients are stored here.
2917  *
2918  * @return 0 on success, an errno on failure.
2919  *
2920  * This helper function allows drivers to get several regulator
2921  * consumers in one operation with management, the regulators will
2922  * automatically be freed when the device is unbound.  If any of the
2923  * regulators cannot be acquired then any regulators that were
2924  * allocated will be freed before returning to the caller.
2925  */
2926 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2927                             struct regulator_bulk_data *consumers)
2928 {
2929         int i;
2930         int ret;
2931
2932         for (i = 0; i < num_consumers; i++)
2933                 consumers[i].consumer = NULL;
2934
2935         for (i = 0; i < num_consumers; i++) {
2936                 consumers[i].consumer = devm_regulator_get(dev,
2937                                                            consumers[i].supply);
2938                 if (IS_ERR(consumers[i].consumer)) {
2939                         ret = PTR_ERR(consumers[i].consumer);
2940                         dev_err(dev, "Failed to get supply '%s': %d\n",
2941                                 consumers[i].supply, ret);
2942                         consumers[i].consumer = NULL;
2943                         goto err;
2944                 }
2945         }
2946
2947         return 0;
2948
2949 err:
2950         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2951                 devm_regulator_put(consumers[i].consumer);
2952
2953         return ret;
2954 }
2955 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2956
2957 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2958 {
2959         struct regulator_bulk_data *bulk = data;
2960
2961         bulk->ret = regulator_enable(bulk->consumer);
2962 }
2963
2964 /**
2965  * regulator_bulk_enable - enable multiple regulator consumers
2966  *
2967  * @num_consumers: Number of consumers
2968  * @consumers:     Consumer data; clients are stored here.
2969  * @return         0 on success, an errno on failure
2970  *
2971  * This convenience API allows consumers to enable multiple regulator
2972  * clients in a single API call.  If any consumers cannot be enabled
2973  * then any others that were enabled will be disabled again prior to
2974  * return.
2975  */
2976 int regulator_bulk_enable(int num_consumers,
2977                           struct regulator_bulk_data *consumers)
2978 {
2979         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2980         int i;
2981         int ret = 0;
2982
2983         for (i = 0; i < num_consumers; i++) {
2984                 if (consumers[i].consumer->always_on)
2985                         consumers[i].ret = 0;
2986                 else
2987                         async_schedule_domain(regulator_bulk_enable_async,
2988                                               &consumers[i], &async_domain);
2989         }
2990
2991         async_synchronize_full_domain(&async_domain);
2992
2993         /* If any consumer failed we need to unwind any that succeeded */
2994         for (i = 0; i < num_consumers; i++) {
2995                 if (consumers[i].ret != 0) {
2996                         ret = consumers[i].ret;
2997                         goto err;
2998                 }
2999         }
3000
3001         return 0;
3002
3003 err:
3004         for (i = 0; i < num_consumers; i++) {
3005                 if (consumers[i].ret < 0)
3006                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3007                                consumers[i].ret);
3008                 else
3009                         regulator_disable(consumers[i].consumer);
3010         }
3011
3012         return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3015
3016 /**
3017  * regulator_bulk_disable - disable multiple regulator consumers
3018  *
3019  * @num_consumers: Number of consumers
3020  * @consumers:     Consumer data; clients are stored here.
3021  * @return         0 on success, an errno on failure
3022  *
3023  * This convenience API allows consumers to disable multiple regulator
3024  * clients in a single API call.  If any consumers cannot be disabled
3025  * then any others that were disabled will be enabled again prior to
3026  * return.
3027  */
3028 int regulator_bulk_disable(int num_consumers,
3029                            struct regulator_bulk_data *consumers)
3030 {
3031         int i;
3032         int ret, r;
3033
3034         for (i = num_consumers - 1; i >= 0; --i) {
3035                 ret = regulator_disable(consumers[i].consumer);
3036                 if (ret != 0)
3037                         goto err;
3038         }
3039
3040         return 0;
3041
3042 err:
3043         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3044         for (++i; i < num_consumers; ++i) {
3045                 r = regulator_enable(consumers[i].consumer);
3046                 if (r != 0)
3047                         pr_err("Failed to reename %s: %d\n",
3048                                consumers[i].supply, r);
3049         }
3050
3051         return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3054
3055 /**
3056  * regulator_bulk_force_disable - force disable multiple regulator consumers
3057  *
3058  * @num_consumers: Number of consumers
3059  * @consumers:     Consumer data; clients are stored here.
3060  * @return         0 on success, an errno on failure
3061  *
3062  * This convenience API allows consumers to forcibly disable multiple regulator
3063  * clients in a single API call.
3064  * NOTE: This should be used for situations when device damage will
3065  * likely occur if the regulators are not disabled (e.g. over temp).
3066  * Although regulator_force_disable function call for some consumers can
3067  * return error numbers, the function is called for all consumers.
3068  */
3069 int regulator_bulk_force_disable(int num_consumers,
3070                            struct regulator_bulk_data *consumers)
3071 {
3072         int i;
3073         int ret;
3074
3075         for (i = 0; i < num_consumers; i++)
3076                 consumers[i].ret =
3077                             regulator_force_disable(consumers[i].consumer);
3078
3079         for (i = 0; i < num_consumers; i++) {
3080                 if (consumers[i].ret != 0) {
3081                         ret = consumers[i].ret;
3082                         goto out;
3083                 }
3084         }
3085
3086         return 0;
3087 out:
3088         return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3091
3092 /**
3093  * regulator_bulk_free - free multiple regulator consumers
3094  *
3095  * @num_consumers: Number of consumers
3096  * @consumers:     Consumer data; clients are stored here.
3097  *
3098  * This convenience API allows consumers to free multiple regulator
3099  * clients in a single API call.
3100  */
3101 void regulator_bulk_free(int num_consumers,
3102                          struct regulator_bulk_data *consumers)
3103 {
3104         int i;
3105
3106         for (i = 0; i < num_consumers; i++) {
3107                 regulator_put(consumers[i].consumer);
3108                 consumers[i].consumer = NULL;
3109         }
3110 }
3111 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3112
3113 /**
3114  * regulator_notifier_call_chain - call regulator event notifier
3115  * @rdev: regulator source
3116  * @event: notifier block
3117  * @data: callback-specific data.
3118  *
3119  * Called by regulator drivers to notify clients a regulator event has
3120  * occurred. We also notify regulator clients downstream.
3121  * Note lock must be held by caller.
3122  */
3123 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3124                                   unsigned long event, void *data)
3125 {
3126         _notifier_call_chain(rdev, event, data);
3127         return NOTIFY_DONE;
3128
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3131
3132 /**
3133  * regulator_mode_to_status - convert a regulator mode into a status
3134  *
3135  * @mode: Mode to convert
3136  *
3137  * Convert a regulator mode into a status.
3138  */
3139 int regulator_mode_to_status(unsigned int mode)
3140 {
3141         switch (mode) {
3142         case REGULATOR_MODE_FAST:
3143                 return REGULATOR_STATUS_FAST;
3144         case REGULATOR_MODE_NORMAL:
3145                 return REGULATOR_STATUS_NORMAL;
3146         case REGULATOR_MODE_IDLE:
3147                 return REGULATOR_STATUS_IDLE;
3148         case REGULATOR_MODE_STANDBY:
3149                 return REGULATOR_STATUS_STANDBY;
3150         default:
3151                 return REGULATOR_STATUS_UNDEFINED;
3152         }
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3155
3156 /*
3157  * To avoid cluttering sysfs (and memory) with useless state, only
3158  * create attributes that can be meaningfully displayed.
3159  */
3160 static int add_regulator_attributes(struct regulator_dev *rdev)
3161 {
3162         struct device           *dev = &rdev->dev;
3163         struct regulator_ops    *ops = rdev->desc->ops;
3164         int                     status = 0;
3165
3166         /* some attributes need specific methods to be displayed */
3167         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3168             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3169             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3170                 status = device_create_file(dev, &dev_attr_microvolts);
3171                 if (status < 0)
3172                         return status;
3173         }
3174         if (ops->get_current_limit) {
3175                 status = device_create_file(dev, &dev_attr_microamps);
3176                 if (status < 0)
3177                         return status;
3178         }
3179         if (ops->get_mode) {
3180                 status = device_create_file(dev, &dev_attr_opmode);
3181                 if (status < 0)
3182                         return status;
3183         }
3184         if (rdev->ena_pin || ops->is_enabled) {
3185                 status = device_create_file(dev, &dev_attr_state);
3186                 if (status < 0)
3187                         return status;
3188         }
3189         if (ops->get_status) {
3190                 status = device_create_file(dev, &dev_attr_status);
3191                 if (status < 0)
3192                         return status;
3193         }
3194         if (ops->get_bypass) {
3195                 status = device_create_file(dev, &dev_attr_bypass);
3196                 if (status < 0)
3197                         return status;
3198         }
3199
3200         /* some attributes are type-specific */
3201         if (rdev->desc->type == REGULATOR_CURRENT) {
3202                 status = device_create_file(dev, &dev_attr_requested_microamps);
3203                 if (status < 0)
3204                         return status;
3205         }
3206
3207         /* all the other attributes exist to support constraints;
3208          * don't show them if there are no constraints, or if the
3209          * relevant supporting methods are missing.
3210          */
3211         if (!rdev->constraints)
3212                 return status;
3213
3214         /* constraints need specific supporting methods */
3215         if (ops->set_voltage || ops->set_voltage_sel) {
3216                 status = device_create_file(dev, &dev_attr_min_microvolts);
3217                 if (status < 0)
3218                         return status;
3219                 status = device_create_file(dev, &dev_attr_max_microvolts);
3220                 if (status < 0)
3221                         return status;
3222         }
3223         if (ops->set_current_limit) {
3224                 status = device_create_file(dev, &dev_attr_min_microamps);
3225                 if (status < 0)
3226                         return status;
3227                 status = device_create_file(dev, &dev_attr_max_microamps);
3228                 if (status < 0)
3229                         return status;
3230         }
3231
3232         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3233         if (status < 0)
3234                 return status;
3235         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3236         if (status < 0)
3237                 return status;
3238         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3239         if (status < 0)
3240                 return status;
3241
3242         if (ops->set_suspend_voltage) {
3243                 status = device_create_file(dev,
3244                                 &dev_attr_suspend_standby_microvolts);
3245                 if (status < 0)
3246                         return status;
3247                 status = device_create_file(dev,
3248                                 &dev_attr_suspend_mem_microvolts);
3249                 if (status < 0)
3250                         return status;
3251                 status = device_create_file(dev,
3252                                 &dev_attr_suspend_disk_microvolts);
3253                 if (status < 0)
3254                         return status;
3255         }
3256
3257         if (ops->set_suspend_mode) {
3258                 status = device_create_file(dev,
3259                                 &dev_attr_suspend_standby_mode);
3260                 if (status < 0)
3261                         return status;
3262                 status = device_create_file(dev,
3263                                 &dev_attr_suspend_mem_mode);
3264                 if (status < 0)
3265                         return status;
3266                 status = device_create_file(dev,
3267                                 &dev_attr_suspend_disk_mode);
3268                 if (status < 0)
3269                         return status;
3270         }
3271
3272         return status;
3273 }
3274
3275 static void rdev_init_debugfs(struct regulator_dev *rdev)
3276 {
3277         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3278         if (!rdev->debugfs) {
3279                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3280                 return;
3281         }
3282
3283         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3284                            &rdev->use_count);
3285         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3286                            &rdev->open_count);
3287         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3288                            &rdev->bypass_count);
3289 }
3290
3291 /**
3292  * regulator_register - register regulator
3293  * @regulator_desc: regulator to register
3294  * @config: runtime configuration for regulator
3295  *
3296  * Called by regulator drivers to register a regulator.
3297  * Returns a valid pointer to struct regulator_dev on success
3298  * or an ERR_PTR() on error.
3299  */
3300 struct regulator_dev *
3301 regulator_register(const struct regulator_desc *regulator_desc,
3302                    const struct regulator_config *config)
3303 {
3304         const struct regulation_constraints *constraints = NULL;
3305         const struct regulator_init_data *init_data;
3306         static atomic_t regulator_no = ATOMIC_INIT(0);
3307         struct regulator_dev *rdev;
3308         struct device *dev;
3309         int ret, i;
3310         const char *supply = NULL;
3311
3312         if (regulator_desc == NULL || config == NULL)
3313                 return ERR_PTR(-EINVAL);
3314
3315         dev = config->dev;
3316         WARN_ON(!dev);
3317
3318         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3319                 return ERR_PTR(-EINVAL);
3320
3321         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3322             regulator_desc->type != REGULATOR_CURRENT)
3323                 return ERR_PTR(-EINVAL);
3324
3325         /* Only one of each should be implemented */
3326         WARN_ON(regulator_desc->ops->get_voltage &&
3327                 regulator_desc->ops->get_voltage_sel);
3328         WARN_ON(regulator_desc->ops->set_voltage &&
3329                 regulator_desc->ops->set_voltage_sel);
3330
3331         /* If we're using selectors we must implement list_voltage. */
3332         if (regulator_desc->ops->get_voltage_sel &&
3333             !regulator_desc->ops->list_voltage) {
3334                 return ERR_PTR(-EINVAL);
3335         }
3336         if (regulator_desc->ops->set_voltage_sel &&
3337             !regulator_desc->ops->list_voltage) {
3338                 return ERR_PTR(-EINVAL);
3339         }
3340
3341         init_data = config->init_data;
3342
3343         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3344         if (rdev == NULL)
3345                 return ERR_PTR(-ENOMEM);
3346
3347         mutex_lock(&regulator_list_mutex);
3348
3349         mutex_init(&rdev->mutex);
3350         rdev->reg_data = config->driver_data;
3351         rdev->owner = regulator_desc->owner;
3352         rdev->desc = regulator_desc;
3353         if (config->regmap)
3354                 rdev->regmap = config->regmap;
3355         else if (dev_get_regmap(dev, NULL))
3356                 rdev->regmap = dev_get_regmap(dev, NULL);
3357         else if (dev->parent)
3358                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3359         INIT_LIST_HEAD(&rdev->consumer_list);
3360         INIT_LIST_HEAD(&rdev->list);
3361         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3362         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3363
3364         /* preform any regulator specific init */
3365         if (init_data && init_data->regulator_init) {
3366                 ret = init_data->regulator_init(rdev->reg_data);
3367                 if (ret < 0)
3368                         goto clean;
3369         }
3370
3371         /* register with sysfs */
3372         rdev->dev.class = &regulator_class;
3373         rdev->dev.of_node = config->of_node;
3374         rdev->dev.parent = dev;
3375         dev_set_name(&rdev->dev, "regulator.%d",
3376                      atomic_inc_return(&regulator_no) - 1);
3377         ret = device_register(&rdev->dev);
3378         if (ret != 0) {
3379                 put_device(&rdev->dev);
3380                 goto clean;
3381         }
3382
3383         dev_set_drvdata(&rdev->dev, rdev);
3384
3385         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3386                 ret = regulator_ena_gpio_request(rdev, config);
3387                 if (ret != 0) {
3388                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3389                                  config->ena_gpio, ret);
3390                         goto wash;
3391                 }
3392
3393                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3394                         rdev->ena_gpio_state = 1;
3395
3396                 if (config->ena_gpio_invert)
3397                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3398         }
3399
3400         /* set regulator constraints */
3401         if (init_data)
3402                 constraints = &init_data->constraints;
3403
3404         ret = set_machine_constraints(rdev, constraints);
3405         if (ret < 0)
3406                 goto scrub;
3407
3408         /* add attributes supported by this regulator */
3409         ret = add_regulator_attributes(rdev);
3410         if (ret < 0)
3411                 goto scrub;
3412
3413         if (init_data && init_data->supply_regulator)
3414                 supply = init_data->supply_regulator;
3415         else if (regulator_desc->supply_name)
3416                 supply = regulator_desc->supply_name;
3417
3418         if (supply) {
3419                 struct regulator_dev *r;
3420
3421                 r = regulator_dev_lookup(dev, supply, &ret);
3422
3423                 if (ret == -ENODEV) {
3424                         /*
3425                          * No supply was specified for this regulator and
3426                          * there will never be one.
3427                          */
3428                         ret = 0;
3429                         goto add_dev;
3430                 } else if (!r) {
3431                         dev_err(dev, "Failed to find supply %s\n", supply);
3432                         ret = -EPROBE_DEFER;
3433                         goto scrub;
3434                 }
3435
3436                 ret = set_supply(rdev, r);
3437                 if (ret < 0)
3438                         goto scrub;
3439
3440                 /* Enable supply if rail is enabled */
3441                 if (_regulator_is_enabled(rdev)) {
3442                         ret = regulator_enable(rdev->supply);
3443                         if (ret < 0)
3444                                 goto scrub;
3445                 }
3446         }
3447
3448 add_dev:
3449         /* add consumers devices */
3450         if (init_data) {
3451                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3452                         ret = set_consumer_device_supply(rdev,
3453                                 init_data->consumer_supplies[i].dev_name,
3454                                 init_data->consumer_supplies[i].supply);
3455                         if (ret < 0) {
3456                                 dev_err(dev, "Failed to set supply %s\n",
3457                                         init_data->consumer_supplies[i].supply);
3458                                 goto unset_supplies;
3459                         }
3460                 }
3461         }
3462
3463         list_add(&rdev->list, &regulator_list);
3464
3465         rdev_init_debugfs(rdev);
3466 out:
3467         mutex_unlock(&regulator_list_mutex);
3468         return rdev;
3469
3470 unset_supplies:
3471         unset_regulator_supplies(rdev);
3472
3473 scrub:
3474         if (rdev->supply)
3475                 _regulator_put(rdev->supply);
3476         regulator_ena_gpio_free(rdev);
3477         kfree(rdev->constraints);
3478 wash:
3479         device_unregister(&rdev->dev);
3480         /* device core frees rdev */
3481         rdev = ERR_PTR(ret);
3482         goto out;
3483
3484 clean:
3485         kfree(rdev);
3486         rdev = ERR_PTR(ret);
3487         goto out;
3488 }
3489 EXPORT_SYMBOL_GPL(regulator_register);
3490
3491 /**
3492  * regulator_unregister - unregister regulator
3493  * @rdev: regulator to unregister
3494  *
3495  * Called by regulator drivers to unregister a regulator.
3496  */
3497 void regulator_unregister(struct regulator_dev *rdev)
3498 {
3499         if (rdev == NULL)
3500                 return;
3501
3502         if (rdev->supply) {
3503                 while (rdev->use_count--)
3504                         regulator_disable(rdev->supply);
3505                 regulator_put(rdev->supply);
3506         }
3507         mutex_lock(&regulator_list_mutex);
3508         debugfs_remove_recursive(rdev->debugfs);
3509         flush_work(&rdev->disable_work.work);
3510         WARN_ON(rdev->open_count);
3511         unset_regulator_supplies(rdev);
3512         list_del(&rdev->list);
3513         kfree(rdev->constraints);
3514         regulator_ena_gpio_free(rdev);
3515         device_unregister(&rdev->dev);
3516         mutex_unlock(&regulator_list_mutex);
3517 }
3518 EXPORT_SYMBOL_GPL(regulator_unregister);
3519
3520 /**
3521  * regulator_suspend_prepare - prepare regulators for system wide suspend
3522  * @state: system suspend state
3523  *
3524  * Configure each regulator with it's suspend operating parameters for state.
3525  * This will usually be called by machine suspend code prior to supending.
3526  */
3527 int regulator_suspend_prepare(suspend_state_t state)
3528 {
3529         struct regulator_dev *rdev;
3530         int ret = 0;
3531
3532         /* ON is handled by regulator active state */
3533         if (state == PM_SUSPEND_ON)
3534                 return -EINVAL;
3535
3536         mutex_lock(&regulator_list_mutex);
3537         list_for_each_entry(rdev, &regulator_list, list) {
3538
3539                 mutex_lock(&rdev->mutex);
3540                 ret = suspend_prepare(rdev, state);
3541                 mutex_unlock(&rdev->mutex);
3542
3543                 if (ret < 0) {
3544                         rdev_err(rdev, "failed to prepare\n");
3545                         goto out;
3546                 }
3547         }
3548 out:
3549         mutex_unlock(&regulator_list_mutex);
3550         return ret;
3551 }
3552 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3553
3554 /**
3555  * regulator_suspend_finish - resume regulators from system wide suspend
3556  *
3557  * Turn on regulators that might be turned off by regulator_suspend_prepare
3558  * and that should be turned on according to the regulators properties.
3559  */
3560 int regulator_suspend_finish(void)
3561 {
3562         struct regulator_dev *rdev;
3563         int ret = 0, error;
3564
3565         mutex_lock(&regulator_list_mutex);
3566         list_for_each_entry(rdev, &regulator_list, list) {
3567                 struct regulator_ops *ops = rdev->desc->ops;
3568
3569                 mutex_lock(&rdev->mutex);
3570                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3571                                 ops->enable) {
3572                         error = ops->enable(rdev);
3573                         if (error)
3574                                 ret = error;
3575                 } else {
3576                         if (!has_full_constraints)
3577                                 goto unlock;
3578                         if (!ops->disable)
3579                                 goto unlock;
3580                         if (!_regulator_is_enabled(rdev))
3581                                 goto unlock;
3582
3583                         error = ops->disable(rdev);
3584                         if (error)
3585                                 ret = error;
3586                 }
3587 unlock:
3588                 mutex_unlock(&rdev->mutex);
3589         }
3590         mutex_unlock(&regulator_list_mutex);
3591         return ret;
3592 }
3593 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3594
3595 /**
3596  * regulator_has_full_constraints - the system has fully specified constraints
3597  *
3598  * Calling this function will cause the regulator API to disable all
3599  * regulators which have a zero use count and don't have an always_on
3600  * constraint in a late_initcall.
3601  *
3602  * The intention is that this will become the default behaviour in a
3603  * future kernel release so users are encouraged to use this facility
3604  * now.
3605  */
3606 void regulator_has_full_constraints(void)
3607 {
3608         has_full_constraints = 1;
3609 }
3610 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3611
3612 /**
3613  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3614  *
3615  * Calling this function will cause the regulator API to provide a
3616  * dummy regulator to consumers if no physical regulator is found,
3617  * allowing most consumers to proceed as though a regulator were
3618  * configured.  This allows systems such as those with software
3619  * controllable regulators for the CPU core only to be brought up more
3620  * readily.
3621  */
3622 void regulator_use_dummy_regulator(void)
3623 {
3624         board_wants_dummy_regulator = true;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3627
3628 /**
3629  * rdev_get_drvdata - get rdev regulator driver data
3630  * @rdev: regulator
3631  *
3632  * Get rdev regulator driver private data. This call can be used in the
3633  * regulator driver context.
3634  */
3635 void *rdev_get_drvdata(struct regulator_dev *rdev)
3636 {
3637         return rdev->reg_data;
3638 }
3639 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3640
3641 /**
3642  * regulator_get_drvdata - get regulator driver data
3643  * @regulator: regulator
3644  *
3645  * Get regulator driver private data. This call can be used in the consumer
3646  * driver context when non API regulator specific functions need to be called.
3647  */
3648 void *regulator_get_drvdata(struct regulator *regulator)
3649 {
3650         return regulator->rdev->reg_data;
3651 }
3652 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3653
3654 /**
3655  * regulator_set_drvdata - set regulator driver data
3656  * @regulator: regulator
3657  * @data: data
3658  */
3659 void regulator_set_drvdata(struct regulator *regulator, void *data)
3660 {
3661         regulator->rdev->reg_data = data;
3662 }
3663 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3664
3665 /**
3666  * regulator_get_id - get regulator ID
3667  * @rdev: regulator
3668  */
3669 int rdev_get_id(struct regulator_dev *rdev)
3670 {
3671         return rdev->desc->id;
3672 }
3673 EXPORT_SYMBOL_GPL(rdev_get_id);
3674
3675 struct device *rdev_get_dev(struct regulator_dev *rdev)
3676 {
3677         return &rdev->dev;
3678 }
3679 EXPORT_SYMBOL_GPL(rdev_get_dev);
3680
3681 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3682 {
3683         return reg_init_data->driver_data;
3684 }
3685 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3686
3687 #ifdef CONFIG_DEBUG_FS
3688 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3689                                     size_t count, loff_t *ppos)
3690 {
3691         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3692         ssize_t len, ret = 0;
3693         struct regulator_map *map;
3694
3695         if (!buf)
3696                 return -ENOMEM;
3697
3698         list_for_each_entry(map, &regulator_map_list, list) {
3699                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3700                                "%s -> %s.%s\n",
3701                                rdev_get_name(map->regulator), map->dev_name,
3702                                map->supply);
3703                 if (len >= 0)
3704                         ret += len;
3705                 if (ret > PAGE_SIZE) {
3706                         ret = PAGE_SIZE;
3707                         break;
3708                 }
3709         }
3710
3711         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3712
3713         kfree(buf);
3714
3715         return ret;
3716 }
3717 #endif
3718
3719 static const struct file_operations supply_map_fops = {
3720 #ifdef CONFIG_DEBUG_FS
3721         .read = supply_map_read_file,
3722         .llseek = default_llseek,
3723 #endif
3724 };
3725
3726 static int __init regulator_init(void)
3727 {
3728         int ret;
3729
3730         ret = class_register(&regulator_class);
3731
3732         debugfs_root = debugfs_create_dir("regulator", NULL);
3733         if (!debugfs_root)
3734                 pr_warn("regulator: Failed to create debugfs directory\n");
3735
3736         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3737                             &supply_map_fops);
3738
3739         regulator_dummy_init();
3740
3741         return ret;
3742 }
3743
3744 /* init early to allow our consumers to complete system booting */
3745 core_initcall(regulator_init);
3746
3747 static int __init regulator_init_complete(void)
3748 {
3749         struct regulator_dev *rdev;
3750         struct regulator_ops *ops;
3751         struct regulation_constraints *c;
3752         int enabled, ret;
3753
3754         /*
3755          * Since DT doesn't provide an idiomatic mechanism for
3756          * enabling full constraints and since it's much more natural
3757          * with DT to provide them just assume that a DT enabled
3758          * system has full constraints.
3759          */
3760         if (of_have_populated_dt())
3761                 has_full_constraints = true;
3762
3763         mutex_lock(&regulator_list_mutex);
3764
3765         /* If we have a full configuration then disable any regulators
3766          * which are not in use or always_on.  This will become the
3767          * default behaviour in the future.
3768          */
3769         list_for_each_entry(rdev, &regulator_list, list) {
3770                 ops = rdev->desc->ops;
3771                 c = rdev->constraints;
3772
3773                 if (!ops->disable || (c && c->always_on))
3774                         continue;
3775
3776                 mutex_lock(&rdev->mutex);
3777
3778                 if (rdev->use_count)
3779                         goto unlock;
3780
3781                 /* If we can't read the status assume it's on. */
3782                 if (ops->is_enabled)
3783                         enabled = ops->is_enabled(rdev);
3784                 else
3785                         enabled = 1;
3786
3787                 if (!enabled)
3788                         goto unlock;
3789
3790                 if (has_full_constraints) {
3791                         /* We log since this may kill the system if it
3792                          * goes wrong. */
3793                         rdev_info(rdev, "disabling\n");
3794                         ret = ops->disable(rdev);
3795                         if (ret != 0) {
3796                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3797                         }
3798                 } else {
3799                         /* The intention is that in future we will
3800                          * assume that full constraints are provided
3801                          * so warn even if we aren't going to do
3802                          * anything here.
3803                          */
3804                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3805                 }
3806
3807 unlock:
3808                 mutex_unlock(&rdev->mutex);
3809         }
3810
3811         mutex_unlock(&regulator_list_mutex);
3812
3813         return 0;
3814 }
3815 late_initcall(regulator_init_complete);