Merge tag '9p-for-5.3' of git://github.com/martinetd/linux
[platform/kernel/linux-rpi.git] / drivers / rapidio / rio.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RapidIO interconnect services
4  * (RapidIO Interconnect Specification, http://www.rapidio.org)
5  *
6  * Copyright 2005 MontaVista Software, Inc.
7  * Matt Porter <mporter@kernel.crashing.org>
8  *
9  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
10  * Alex Bounine <alexandre.bounine@idt.com>
11  */
12
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/rio.h>
19 #include <linux/rio_drv.h>
20 #include <linux/rio_ids.h>
21 #include <linux/rio_regs.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26
27 #include "rio.h"
28
29 /*
30  * struct rio_pwrite - RIO portwrite event
31  * @node:    Node in list of doorbell events
32  * @pwcback: Doorbell event callback
33  * @context: Handler specific context to pass on event
34  */
35 struct rio_pwrite {
36         struct list_head node;
37
38         int (*pwcback)(struct rio_mport *mport, void *context,
39                        union rio_pw_msg *msg, int step);
40         void *context;
41 };
42
43 MODULE_DESCRIPTION("RapidIO Subsystem Core");
44 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
45 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
46 MODULE_LICENSE("GPL");
47
48 static int hdid[RIO_MAX_MPORTS];
49 static int ids_num;
50 module_param_array(hdid, int, &ids_num, 0);
51 MODULE_PARM_DESC(hdid,
52         "Destination ID assignment to local RapidIO controllers");
53
54 static LIST_HEAD(rio_devices);
55 static LIST_HEAD(rio_nets);
56 static DEFINE_SPINLOCK(rio_global_list_lock);
57
58 static LIST_HEAD(rio_mports);
59 static LIST_HEAD(rio_scans);
60 static DEFINE_MUTEX(rio_mport_list_lock);
61 static unsigned char next_portid;
62 static DEFINE_SPINLOCK(rio_mmap_lock);
63
64 /**
65  * rio_local_get_device_id - Get the base/extended device id for a port
66  * @port: RIO master port from which to get the deviceid
67  *
68  * Reads the base/extended device id from the local device
69  * implementing the master port. Returns the 8/16-bit device
70  * id.
71  */
72 u16 rio_local_get_device_id(struct rio_mport *port)
73 {
74         u32 result;
75
76         rio_local_read_config_32(port, RIO_DID_CSR, &result);
77
78         return (RIO_GET_DID(port->sys_size, result));
79 }
80 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
81
82 /**
83  * rio_query_mport - Query mport device attributes
84  * @port: mport device to query
85  * @mport_attr: mport attributes data structure
86  *
87  * Returns attributes of specified mport through the
88  * pointer to attributes data structure.
89  */
90 int rio_query_mport(struct rio_mport *port,
91                     struct rio_mport_attr *mport_attr)
92 {
93         if (!port->ops->query_mport)
94                 return -ENODATA;
95         return port->ops->query_mport(port, mport_attr);
96 }
97 EXPORT_SYMBOL(rio_query_mport);
98
99 /**
100  * rio_alloc_net- Allocate and initialize a new RIO network data structure
101  * @mport: Master port associated with the RIO network
102  *
103  * Allocates a RIO network structure, initializes per-network
104  * list heads, and adds the associated master port to the
105  * network list of associated master ports. Returns a
106  * RIO network pointer on success or %NULL on failure.
107  */
108 struct rio_net *rio_alloc_net(struct rio_mport *mport)
109 {
110         struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
111
112         if (net) {
113                 INIT_LIST_HEAD(&net->node);
114                 INIT_LIST_HEAD(&net->devices);
115                 INIT_LIST_HEAD(&net->switches);
116                 INIT_LIST_HEAD(&net->mports);
117                 mport->net = net;
118         }
119         return net;
120 }
121 EXPORT_SYMBOL_GPL(rio_alloc_net);
122
123 int rio_add_net(struct rio_net *net)
124 {
125         int err;
126
127         err = device_register(&net->dev);
128         if (err)
129                 return err;
130         spin_lock(&rio_global_list_lock);
131         list_add_tail(&net->node, &rio_nets);
132         spin_unlock(&rio_global_list_lock);
133
134         return 0;
135 }
136 EXPORT_SYMBOL_GPL(rio_add_net);
137
138 void rio_free_net(struct rio_net *net)
139 {
140         spin_lock(&rio_global_list_lock);
141         if (!list_empty(&net->node))
142                 list_del(&net->node);
143         spin_unlock(&rio_global_list_lock);
144         if (net->release)
145                 net->release(net);
146         device_unregister(&net->dev);
147 }
148 EXPORT_SYMBOL_GPL(rio_free_net);
149
150 /**
151  * rio_local_set_device_id - Set the base/extended device id for a port
152  * @port: RIO master port
153  * @did: Device ID value to be written
154  *
155  * Writes the base/extended device id from a device.
156  */
157 void rio_local_set_device_id(struct rio_mport *port, u16 did)
158 {
159         rio_local_write_config_32(port, RIO_DID_CSR,
160                                   RIO_SET_DID(port->sys_size, did));
161 }
162 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
163
164 /**
165  * rio_add_device- Adds a RIO device to the device model
166  * @rdev: RIO device
167  *
168  * Adds the RIO device to the global device list and adds the RIO
169  * device to the RIO device list.  Creates the generic sysfs nodes
170  * for an RIO device.
171  */
172 int rio_add_device(struct rio_dev *rdev)
173 {
174         int err;
175
176         atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
177         err = device_register(&rdev->dev);
178         if (err)
179                 return err;
180
181         spin_lock(&rio_global_list_lock);
182         list_add_tail(&rdev->global_list, &rio_devices);
183         if (rdev->net) {
184                 list_add_tail(&rdev->net_list, &rdev->net->devices);
185                 if (rdev->pef & RIO_PEF_SWITCH)
186                         list_add_tail(&rdev->rswitch->node,
187                                       &rdev->net->switches);
188         }
189         spin_unlock(&rio_global_list_lock);
190
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(rio_add_device);
194
195 /*
196  * rio_del_device - removes a RIO device from the device model
197  * @rdev: RIO device
198  * @state: device state to set during removal process
199  *
200  * Removes the RIO device to the kernel device list and subsystem's device list.
201  * Clears sysfs entries for the removed device.
202  */
203 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
204 {
205         pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
206         atomic_set(&rdev->state, state);
207         spin_lock(&rio_global_list_lock);
208         list_del(&rdev->global_list);
209         if (rdev->net) {
210                 list_del(&rdev->net_list);
211                 if (rdev->pef & RIO_PEF_SWITCH) {
212                         list_del(&rdev->rswitch->node);
213                         kfree(rdev->rswitch->route_table);
214                 }
215         }
216         spin_unlock(&rio_global_list_lock);
217         device_unregister(&rdev->dev);
218 }
219 EXPORT_SYMBOL_GPL(rio_del_device);
220
221 /**
222  * rio_request_inb_mbox - request inbound mailbox service
223  * @mport: RIO master port from which to allocate the mailbox resource
224  * @dev_id: Device specific pointer to pass on event
225  * @mbox: Mailbox number to claim
226  * @entries: Number of entries in inbound mailbox queue
227  * @minb: Callback to execute when inbound message is received
228  *
229  * Requests ownership of an inbound mailbox resource and binds
230  * a callback function to the resource. Returns %0 on success.
231  */
232 int rio_request_inb_mbox(struct rio_mport *mport,
233                          void *dev_id,
234                          int mbox,
235                          int entries,
236                          void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
237                                        int slot))
238 {
239         int rc = -ENOSYS;
240         struct resource *res;
241
242         if (!mport->ops->open_inb_mbox)
243                 goto out;
244
245         res = kzalloc(sizeof(*res), GFP_KERNEL);
246         if (res) {
247                 rio_init_mbox_res(res, mbox, mbox);
248
249                 /* Make sure this mailbox isn't in use */
250                 rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
251                                       res);
252                 if (rc < 0) {
253                         kfree(res);
254                         goto out;
255                 }
256
257                 mport->inb_msg[mbox].res = res;
258
259                 /* Hook the inbound message callback */
260                 mport->inb_msg[mbox].mcback = minb;
261
262                 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
263                 if (rc) {
264                         mport->inb_msg[mbox].mcback = NULL;
265                         mport->inb_msg[mbox].res = NULL;
266                         release_resource(res);
267                         kfree(res);
268                 }
269         } else
270                 rc = -ENOMEM;
271
272       out:
273         return rc;
274 }
275 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
276
277 /**
278  * rio_release_inb_mbox - release inbound mailbox message service
279  * @mport: RIO master port from which to release the mailbox resource
280  * @mbox: Mailbox number to release
281  *
282  * Releases ownership of an inbound mailbox resource. Returns 0
283  * if the request has been satisfied.
284  */
285 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
286 {
287         int rc;
288
289         if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
290                 return -EINVAL;
291
292         mport->ops->close_inb_mbox(mport, mbox);
293         mport->inb_msg[mbox].mcback = NULL;
294
295         rc = release_resource(mport->inb_msg[mbox].res);
296         if (rc)
297                 return rc;
298
299         kfree(mport->inb_msg[mbox].res);
300         mport->inb_msg[mbox].res = NULL;
301
302         return 0;
303 }
304 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
305
306 /**
307  * rio_request_outb_mbox - request outbound mailbox service
308  * @mport: RIO master port from which to allocate the mailbox resource
309  * @dev_id: Device specific pointer to pass on event
310  * @mbox: Mailbox number to claim
311  * @entries: Number of entries in outbound mailbox queue
312  * @moutb: Callback to execute when outbound message is sent
313  *
314  * Requests ownership of an outbound mailbox resource and binds
315  * a callback function to the resource. Returns 0 on success.
316  */
317 int rio_request_outb_mbox(struct rio_mport *mport,
318                           void *dev_id,
319                           int mbox,
320                           int entries,
321                           void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
322 {
323         int rc = -ENOSYS;
324         struct resource *res;
325
326         if (!mport->ops->open_outb_mbox)
327                 goto out;
328
329         res = kzalloc(sizeof(*res), GFP_KERNEL);
330         if (res) {
331                 rio_init_mbox_res(res, mbox, mbox);
332
333                 /* Make sure this outbound mailbox isn't in use */
334                 rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
335                                       res);
336                 if (rc < 0) {
337                         kfree(res);
338                         goto out;
339                 }
340
341                 mport->outb_msg[mbox].res = res;
342
343                 /* Hook the inbound message callback */
344                 mport->outb_msg[mbox].mcback = moutb;
345
346                 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
347                 if (rc) {
348                         mport->outb_msg[mbox].mcback = NULL;
349                         mport->outb_msg[mbox].res = NULL;
350                         release_resource(res);
351                         kfree(res);
352                 }
353         } else
354                 rc = -ENOMEM;
355
356       out:
357         return rc;
358 }
359 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
360
361 /**
362  * rio_release_outb_mbox - release outbound mailbox message service
363  * @mport: RIO master port from which to release the mailbox resource
364  * @mbox: Mailbox number to release
365  *
366  * Releases ownership of an inbound mailbox resource. Returns 0
367  * if the request has been satisfied.
368  */
369 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
370 {
371         int rc;
372
373         if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
374                 return -EINVAL;
375
376         mport->ops->close_outb_mbox(mport, mbox);
377         mport->outb_msg[mbox].mcback = NULL;
378
379         rc = release_resource(mport->outb_msg[mbox].res);
380         if (rc)
381                 return rc;
382
383         kfree(mport->outb_msg[mbox].res);
384         mport->outb_msg[mbox].res = NULL;
385
386         return 0;
387 }
388 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
389
390 /**
391  * rio_setup_inb_dbell - bind inbound doorbell callback
392  * @mport: RIO master port to bind the doorbell callback
393  * @dev_id: Device specific pointer to pass on event
394  * @res: Doorbell message resource
395  * @dinb: Callback to execute when doorbell is received
396  *
397  * Adds a doorbell resource/callback pair into a port's
398  * doorbell event list. Returns 0 if the request has been
399  * satisfied.
400  */
401 static int
402 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
403                     void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
404                                   u16 info))
405 {
406         struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
407
408         if (!dbell)
409                 return -ENOMEM;
410
411         dbell->res = res;
412         dbell->dinb = dinb;
413         dbell->dev_id = dev_id;
414
415         mutex_lock(&mport->lock);
416         list_add_tail(&dbell->node, &mport->dbells);
417         mutex_unlock(&mport->lock);
418         return 0;
419 }
420
421 /**
422  * rio_request_inb_dbell - request inbound doorbell message service
423  * @mport: RIO master port from which to allocate the doorbell resource
424  * @dev_id: Device specific pointer to pass on event
425  * @start: Doorbell info range start
426  * @end: Doorbell info range end
427  * @dinb: Callback to execute when doorbell is received
428  *
429  * Requests ownership of an inbound doorbell resource and binds
430  * a callback function to the resource. Returns 0 if the request
431  * has been satisfied.
432  */
433 int rio_request_inb_dbell(struct rio_mport *mport,
434                           void *dev_id,
435                           u16 start,
436                           u16 end,
437                           void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
438                                         u16 dst, u16 info))
439 {
440         int rc;
441         struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
442
443         if (res) {
444                 rio_init_dbell_res(res, start, end);
445
446                 /* Make sure these doorbells aren't in use */
447                 rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
448                                       res);
449                 if (rc < 0) {
450                         kfree(res);
451                         goto out;
452                 }
453
454                 /* Hook the doorbell callback */
455                 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
456         } else
457                 rc = -ENOMEM;
458
459       out:
460         return rc;
461 }
462 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
463
464 /**
465  * rio_release_inb_dbell - release inbound doorbell message service
466  * @mport: RIO master port from which to release the doorbell resource
467  * @start: Doorbell info range start
468  * @end: Doorbell info range end
469  *
470  * Releases ownership of an inbound doorbell resource and removes
471  * callback from the doorbell event list. Returns 0 if the request
472  * has been satisfied.
473  */
474 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
475 {
476         int rc = 0, found = 0;
477         struct rio_dbell *dbell;
478
479         mutex_lock(&mport->lock);
480         list_for_each_entry(dbell, &mport->dbells, node) {
481                 if ((dbell->res->start == start) && (dbell->res->end == end)) {
482                         list_del(&dbell->node);
483                         found = 1;
484                         break;
485                 }
486         }
487         mutex_unlock(&mport->lock);
488
489         /* If we can't find an exact match, fail */
490         if (!found) {
491                 rc = -EINVAL;
492                 goto out;
493         }
494
495         /* Release the doorbell resource */
496         rc = release_resource(dbell->res);
497
498         /* Free the doorbell event */
499         kfree(dbell);
500
501       out:
502         return rc;
503 }
504 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
505
506 /**
507  * rio_request_outb_dbell - request outbound doorbell message range
508  * @rdev: RIO device from which to allocate the doorbell resource
509  * @start: Doorbell message range start
510  * @end: Doorbell message range end
511  *
512  * Requests ownership of a doorbell message range. Returns a resource
513  * if the request has been satisfied or %NULL on failure.
514  */
515 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
516                                         u16 end)
517 {
518         struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
519
520         if (res) {
521                 rio_init_dbell_res(res, start, end);
522
523                 /* Make sure these doorbells aren't in use */
524                 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
525                     < 0) {
526                         kfree(res);
527                         res = NULL;
528                 }
529         }
530
531         return res;
532 }
533 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
534
535 /**
536  * rio_release_outb_dbell - release outbound doorbell message range
537  * @rdev: RIO device from which to release the doorbell resource
538  * @res: Doorbell resource to be freed
539  *
540  * Releases ownership of a doorbell message range. Returns 0 if the
541  * request has been satisfied.
542  */
543 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
544 {
545         int rc = release_resource(res);
546
547         kfree(res);
548
549         return rc;
550 }
551 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
552
553 /**
554  * rio_add_mport_pw_handler - add port-write message handler into the list
555  *                            of mport specific pw handlers
556  * @mport:   RIO master port to bind the portwrite callback
557  * @context: Handler specific context to pass on event
558  * @pwcback: Callback to execute when portwrite is received
559  *
560  * Returns 0 if the request has been satisfied.
561  */
562 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
563                              int (*pwcback)(struct rio_mport *mport,
564                              void *context, union rio_pw_msg *msg, int step))
565 {
566         struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
567
568         if (!pwrite)
569                 return -ENOMEM;
570
571         pwrite->pwcback = pwcback;
572         pwrite->context = context;
573         mutex_lock(&mport->lock);
574         list_add_tail(&pwrite->node, &mport->pwrites);
575         mutex_unlock(&mport->lock);
576         return 0;
577 }
578 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
579
580 /**
581  * rio_del_mport_pw_handler - remove port-write message handler from the list
582  *                            of mport specific pw handlers
583  * @mport:   RIO master port to bind the portwrite callback
584  * @context: Registered handler specific context to pass on event
585  * @pwcback: Registered callback function
586  *
587  * Returns 0 if the request has been satisfied.
588  */
589 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
590                              int (*pwcback)(struct rio_mport *mport,
591                              void *context, union rio_pw_msg *msg, int step))
592 {
593         int rc = -EINVAL;
594         struct rio_pwrite *pwrite;
595
596         mutex_lock(&mport->lock);
597         list_for_each_entry(pwrite, &mport->pwrites, node) {
598                 if (pwrite->pwcback == pwcback && pwrite->context == context) {
599                         list_del(&pwrite->node);
600                         kfree(pwrite);
601                         rc = 0;
602                         break;
603                 }
604         }
605         mutex_unlock(&mport->lock);
606
607         return rc;
608 }
609 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
610
611 /**
612  * rio_request_inb_pwrite - request inbound port-write message service for
613  *                          specific RapidIO device
614  * @rdev: RIO device to which register inbound port-write callback routine
615  * @pwcback: Callback routine to execute when port-write is received
616  *
617  * Binds a port-write callback function to the RapidIO device.
618  * Returns 0 if the request has been satisfied.
619  */
620 int rio_request_inb_pwrite(struct rio_dev *rdev,
621         int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
622 {
623         int rc = 0;
624
625         spin_lock(&rio_global_list_lock);
626         if (rdev->pwcback)
627                 rc = -ENOMEM;
628         else
629                 rdev->pwcback = pwcback;
630
631         spin_unlock(&rio_global_list_lock);
632         return rc;
633 }
634 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
635
636 /**
637  * rio_release_inb_pwrite - release inbound port-write message service
638  *                          associated with specific RapidIO device
639  * @rdev: RIO device which registered for inbound port-write callback
640  *
641  * Removes callback from the rio_dev structure. Returns 0 if the request
642  * has been satisfied.
643  */
644 int rio_release_inb_pwrite(struct rio_dev *rdev)
645 {
646         int rc = -ENOMEM;
647
648         spin_lock(&rio_global_list_lock);
649         if (rdev->pwcback) {
650                 rdev->pwcback = NULL;
651                 rc = 0;
652         }
653
654         spin_unlock(&rio_global_list_lock);
655         return rc;
656 }
657 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
658
659 /**
660  * rio_pw_enable - Enables/disables port-write handling by a master port
661  * @mport: Master port associated with port-write handling
662  * @enable:  1=enable,  0=disable
663  */
664 void rio_pw_enable(struct rio_mport *mport, int enable)
665 {
666         if (mport->ops->pwenable) {
667                 mutex_lock(&mport->lock);
668
669                 if ((enable && ++mport->pwe_refcnt == 1) ||
670                     (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
671                         mport->ops->pwenable(mport, enable);
672                 mutex_unlock(&mport->lock);
673         }
674 }
675 EXPORT_SYMBOL_GPL(rio_pw_enable);
676
677 /**
678  * rio_map_inb_region -- Map inbound memory region.
679  * @mport: Master port.
680  * @local: physical address of memory region to be mapped
681  * @rbase: RIO base address assigned to this window
682  * @size: Size of the memory region
683  * @rflags: Flags for mapping.
684  *
685  * Return: 0 -- Success.
686  *
687  * This function will create the mapping from RIO space to local memory.
688  */
689 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
690                         u64 rbase, u32 size, u32 rflags)
691 {
692         int rc;
693         unsigned long flags;
694
695         if (!mport->ops->map_inb)
696                 return -1;
697         spin_lock_irqsave(&rio_mmap_lock, flags);
698         rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
699         spin_unlock_irqrestore(&rio_mmap_lock, flags);
700         return rc;
701 }
702 EXPORT_SYMBOL_GPL(rio_map_inb_region);
703
704 /**
705  * rio_unmap_inb_region -- Unmap the inbound memory region
706  * @mport: Master port
707  * @lstart: physical address of memory region to be unmapped
708  */
709 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
710 {
711         unsigned long flags;
712         if (!mport->ops->unmap_inb)
713                 return;
714         spin_lock_irqsave(&rio_mmap_lock, flags);
715         mport->ops->unmap_inb(mport, lstart);
716         spin_unlock_irqrestore(&rio_mmap_lock, flags);
717 }
718 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
719
720 /**
721  * rio_map_outb_region -- Map outbound memory region.
722  * @mport: Master port.
723  * @destid: destination id window points to
724  * @rbase: RIO base address window translates to
725  * @size: Size of the memory region
726  * @rflags: Flags for mapping.
727  * @local: physical address of memory region mapped
728  *
729  * Return: 0 -- Success.
730  *
731  * This function will create the mapping from RIO space to local memory.
732  */
733 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
734                         u32 size, u32 rflags, dma_addr_t *local)
735 {
736         int rc;
737         unsigned long flags;
738
739         if (!mport->ops->map_outb)
740                 return -ENODEV;
741
742         spin_lock_irqsave(&rio_mmap_lock, flags);
743         rc = mport->ops->map_outb(mport, destid, rbase, size,
744                 rflags, local);
745         spin_unlock_irqrestore(&rio_mmap_lock, flags);
746
747         return rc;
748 }
749 EXPORT_SYMBOL_GPL(rio_map_outb_region);
750
751 /**
752  * rio_unmap_inb_region -- Unmap the inbound memory region
753  * @mport: Master port
754  * @destid: destination id mapping points to
755  * @rstart: RIO base address window translates to
756  */
757 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
758 {
759         unsigned long flags;
760
761         if (!mport->ops->unmap_outb)
762                 return;
763
764         spin_lock_irqsave(&rio_mmap_lock, flags);
765         mport->ops->unmap_outb(mport, destid, rstart);
766         spin_unlock_irqrestore(&rio_mmap_lock, flags);
767 }
768 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
769
770 /**
771  * rio_mport_get_physefb - Helper function that returns register offset
772  *                      for Physical Layer Extended Features Block.
773  * @port: Master port to issue transaction
774  * @local: Indicate a local master port or remote device access
775  * @destid: Destination ID of the device
776  * @hopcount: Number of switch hops to the device
777  * @rmap: pointer to location to store register map type info
778  */
779 u32
780 rio_mport_get_physefb(struct rio_mport *port, int local,
781                       u16 destid, u8 hopcount, u32 *rmap)
782 {
783         u32 ext_ftr_ptr;
784         u32 ftr_header;
785
786         ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
787
788         while (ext_ftr_ptr)  {
789                 if (local)
790                         rio_local_read_config_32(port, ext_ftr_ptr,
791                                                  &ftr_header);
792                 else
793                         rio_mport_read_config_32(port, destid, hopcount,
794                                                  ext_ftr_ptr, &ftr_header);
795
796                 ftr_header = RIO_GET_BLOCK_ID(ftr_header);
797                 switch (ftr_header) {
798
799                 case RIO_EFB_SER_EP_ID:
800                 case RIO_EFB_SER_EP_REC_ID:
801                 case RIO_EFB_SER_EP_FREE_ID:
802                 case RIO_EFB_SER_EP_M1_ID:
803                 case RIO_EFB_SER_EP_SW_M1_ID:
804                 case RIO_EFB_SER_EPF_M1_ID:
805                 case RIO_EFB_SER_EPF_SW_M1_ID:
806                         *rmap = 1;
807                         return ext_ftr_ptr;
808
809                 case RIO_EFB_SER_EP_M2_ID:
810                 case RIO_EFB_SER_EP_SW_M2_ID:
811                 case RIO_EFB_SER_EPF_M2_ID:
812                 case RIO_EFB_SER_EPF_SW_M2_ID:
813                         *rmap = 2;
814                         return ext_ftr_ptr;
815
816                 default:
817                         break;
818                 }
819
820                 ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
821                                                 hopcount, ext_ftr_ptr);
822         }
823
824         return ext_ftr_ptr;
825 }
826 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
827
828 /**
829  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
830  * @comp_tag: RIO component tag to match
831  * @from: Previous RIO device found in search, or %NULL for new search
832  *
833  * Iterates through the list of known RIO devices. If a RIO device is
834  * found with a matching @comp_tag, a pointer to its device
835  * structure is returned. Otherwise, %NULL is returned. A new search
836  * is initiated by passing %NULL to the @from argument. Otherwise, if
837  * @from is not %NULL, searches continue from next device on the global
838  * list.
839  */
840 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
841 {
842         struct list_head *n;
843         struct rio_dev *rdev;
844
845         spin_lock(&rio_global_list_lock);
846         n = from ? from->global_list.next : rio_devices.next;
847
848         while (n && (n != &rio_devices)) {
849                 rdev = rio_dev_g(n);
850                 if (rdev->comp_tag == comp_tag)
851                         goto exit;
852                 n = n->next;
853         }
854         rdev = NULL;
855 exit:
856         spin_unlock(&rio_global_list_lock);
857         return rdev;
858 }
859 EXPORT_SYMBOL_GPL(rio_get_comptag);
860
861 /**
862  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
863  * @rdev: Pointer to RIO device control structure
864  * @pnum: Switch port number to set LOCKOUT bit
865  * @lock: Operation : set (=1) or clear (=0)
866  */
867 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
868 {
869         u32 regval;
870
871         rio_read_config_32(rdev,
872                 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
873                 &regval);
874         if (lock)
875                 regval |= RIO_PORT_N_CTL_LOCKOUT;
876         else
877                 regval &= ~RIO_PORT_N_CTL_LOCKOUT;
878
879         rio_write_config_32(rdev,
880                 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
881                 regval);
882         return 0;
883 }
884 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
885
886 /**
887  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
888  * given port
889  * @port: Master port associated with the RIO network
890  * @local: local=1 select local port otherwise a far device is reached
891  * @destid: Destination ID of the device to check host bit
892  * @hopcount: Number of hops to reach the target
893  * @port_num: Port (-number on switch) to enable on a far end device
894  *
895  * Returns 0 or 1 from on General Control Command and Status Register
896  * (EXT_PTR+0x3C)
897  */
898 int rio_enable_rx_tx_port(struct rio_mport *port,
899                           int local, u16 destid,
900                           u8 hopcount, u8 port_num)
901 {
902 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
903         u32 regval;
904         u32 ext_ftr_ptr;
905         u32 rmap;
906
907         /*
908         * enable rx input tx output port
909         */
910         pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
911                  "%d, port_num = %d)\n", local, destid, hopcount, port_num);
912
913         ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
914                                             hopcount, &rmap);
915
916         if (local) {
917                 rio_local_read_config_32(port,
918                                 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
919                                 &regval);
920         } else {
921                 if (rio_mport_read_config_32(port, destid, hopcount,
922                         ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
923                                 &regval) < 0)
924                         return -EIO;
925         }
926
927         regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
928
929         if (local) {
930                 rio_local_write_config_32(port,
931                         ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
932         } else {
933                 if (rio_mport_write_config_32(port, destid, hopcount,
934                         ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
935                                 regval) < 0)
936                         return -EIO;
937         }
938 #endif
939         return 0;
940 }
941 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
942
943
944 /**
945  * rio_chk_dev_route - Validate route to the specified device.
946  * @rdev:  RIO device failed to respond
947  * @nrdev: Last active device on the route to rdev
948  * @npnum: nrdev's port number on the route to rdev
949  *
950  * Follows a route to the specified RIO device to determine the last available
951  * device (and corresponding RIO port) on the route.
952  */
953 static int
954 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
955 {
956         u32 result;
957         int p_port, rc = -EIO;
958         struct rio_dev *prev = NULL;
959
960         /* Find switch with failed RIO link */
961         while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
962                 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
963                         prev = rdev->prev;
964                         break;
965                 }
966                 rdev = rdev->prev;
967         }
968
969         if (!prev)
970                 goto err_out;
971
972         p_port = prev->rswitch->route_table[rdev->destid];
973
974         if (p_port != RIO_INVALID_ROUTE) {
975                 pr_debug("RIO: link failed on [%s]-P%d\n",
976                          rio_name(prev), p_port);
977                 *nrdev = prev;
978                 *npnum = p_port;
979                 rc = 0;
980         } else
981                 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
982 err_out:
983         return rc;
984 }
985
986 /**
987  * rio_mport_chk_dev_access - Validate access to the specified device.
988  * @mport: Master port to send transactions
989  * @destid: Device destination ID in network
990  * @hopcount: Number of hops into the network
991  */
992 int
993 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
994 {
995         int i = 0;
996         u32 tmp;
997
998         while (rio_mport_read_config_32(mport, destid, hopcount,
999                                         RIO_DEV_ID_CAR, &tmp)) {
1000                 i++;
1001                 if (i == RIO_MAX_CHK_RETRY)
1002                         return -EIO;
1003                 mdelay(1);
1004         }
1005
1006         return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009
1010 /**
1011  * rio_chk_dev_access - Validate access to the specified device.
1012  * @rdev: Pointer to RIO device control structure
1013  */
1014 static int rio_chk_dev_access(struct rio_dev *rdev)
1015 {
1016         return rio_mport_chk_dev_access(rdev->net->hport,
1017                                         rdev->destid, rdev->hopcount);
1018 }
1019
1020 /**
1021  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022  *                        returns link-response (if requested).
1023  * @rdev: RIO devive to issue Input-status command
1024  * @pnum: Device port number to issue the command
1025  * @lnkresp: Response from a link partner
1026  */
1027 static int
1028 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029 {
1030         u32 regval;
1031         int checkcount;
1032
1033         if (lnkresp) {
1034                 /* Read from link maintenance response register
1035                  * to clear valid bit */
1036                 rio_read_config_32(rdev,
1037                         RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038                         &regval);
1039                 udelay(50);
1040         }
1041
1042         /* Issue Input-status command */
1043         rio_write_config_32(rdev,
1044                 RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045                 RIO_MNT_REQ_CMD_IS);
1046
1047         /* Exit if the response is not expected */
1048         if (!lnkresp)
1049                 return 0;
1050
1051         checkcount = 3;
1052         while (checkcount--) {
1053                 udelay(50);
1054                 rio_read_config_32(rdev,
1055                         RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056                         &regval);
1057                 if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058                         *lnkresp = regval;
1059                         return 0;
1060                 }
1061         }
1062
1063         return -EIO;
1064 }
1065
1066 /**
1067  * rio_clr_err_stopped - Clears port Error-stopped states.
1068  * @rdev: Pointer to RIO device control structure
1069  * @pnum: Switch port number to clear errors
1070  * @err_status: port error status (if 0 reads register from device)
1071  *
1072  * TODO: Currently this routine is not compatible with recovery process
1073  * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074  * to implement universal recovery process that is compatible full range
1075  * off available devices.
1076  * IDT gen3 switch driver now implements HW-specific error handler that
1077  * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078  */
1079 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080 {
1081         struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082         u32 regval;
1083         u32 far_ackid, far_linkstat, near_ackid;
1084
1085         if (err_status == 0)
1086                 rio_read_config_32(rdev,
1087                         RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088                         &err_status);
1089
1090         if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091                 pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092                 /*
1093                  * Send a Link-Request/Input-Status control symbol
1094                  */
1095                 if (rio_get_input_status(rdev, pnum, &regval)) {
1096                         pr_debug("RIO_EM: Input-status response timeout\n");
1097                         goto rd_err;
1098                 }
1099
1100                 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101                          pnum, regval);
1102                 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103                 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104                 rio_read_config_32(rdev,
1105                         RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106                         &regval);
1107                 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108                 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109                 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110                          " near_ackID=0x%02x\n",
1111                         pnum, far_ackid, far_linkstat, near_ackid);
1112
1113                 /*
1114                  * If required, synchronize ackIDs of near and
1115                  * far sides.
1116                  */
1117                 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118                     (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119                         /* Align near outstanding/outbound ackIDs with
1120                          * far inbound.
1121                          */
1122                         rio_write_config_32(rdev,
1123                                 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124                                 (near_ackid << 24) |
1125                                         (far_ackid << 8) | far_ackid);
1126                         /* Align far outstanding/outbound ackIDs with
1127                          * near inbound.
1128                          */
1129                         far_ackid++;
1130                         if (!nextdev) {
1131                                 pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132                                 goto rd_err;
1133                         }
1134
1135                         rio_write_config_32(nextdev,
1136                                 RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137                                         RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138                                 (far_ackid << 24) |
1139                                 (near_ackid << 8) | near_ackid);
1140                 }
1141 rd_err:
1142                 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143                                    &err_status);
1144                 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145         }
1146
1147         if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148                 pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149                 rio_get_input_status(nextdev,
1150                                      RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151                 udelay(50);
1152
1153                 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154                                    &err_status);
1155                 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156         }
1157
1158         return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159                               RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160 }
1161
1162 /**
1163  * rio_inb_pwrite_handler - inbound port-write message handler
1164  * @mport:  mport device associated with port-write
1165  * @pw_msg: pointer to inbound port-write message
1166  *
1167  * Processes an inbound port-write message. Returns 0 if the request
1168  * has been satisfied.
1169  */
1170 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171 {
1172         struct rio_dev *rdev;
1173         u32 err_status, em_perrdet, em_ltlerrdet;
1174         int rc, portnum;
1175         struct rio_pwrite *pwrite;
1176
1177 #ifdef DEBUG_PW
1178         {
1179                 u32 i;
1180
1181                 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182                 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183                         pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184                                 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185                                 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186                 }
1187         }
1188 #endif
1189
1190         rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191         if (rdev) {
1192                 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193         } else {
1194                 pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195                         __func__, pw_msg->em.comptag);
1196         }
1197
1198         /* Call a device-specific handler (if it is registered for the device).
1199          * This may be the service for endpoints that send device-specific
1200          * port-write messages. End-point messages expected to be handled
1201          * completely by EP specific device driver.
1202          * For switches rc==0 signals that no standard processing required.
1203          */
1204         if (rdev && rdev->pwcback) {
1205                 rc = rdev->pwcback(rdev, pw_msg, 0);
1206                 if (rc == 0)
1207                         return 0;
1208         }
1209
1210         mutex_lock(&mport->lock);
1211         list_for_each_entry(pwrite, &mport->pwrites, node)
1212                 pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213         mutex_unlock(&mport->lock);
1214
1215         if (!rdev)
1216                 return 0;
1217
1218         /*
1219          * FIXME: The code below stays as it was before for now until we decide
1220          * how to do default PW handling in combination with per-mport callbacks
1221          */
1222
1223         portnum = pw_msg->em.is_port & 0xFF;
1224
1225         /* Check if device and route to it are functional:
1226          * Sometimes devices may send PW message(s) just before being
1227          * powered down (or link being lost).
1228          */
1229         if (rio_chk_dev_access(rdev)) {
1230                 pr_debug("RIO: device access failed - get link partner\n");
1231                 /* Scan route to the device and identify failed link.
1232                  * This will replace device and port reported in PW message.
1233                  * PW message should not be used after this point.
1234                  */
1235                 if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236                         pr_err("RIO: Route trace for %s failed\n",
1237                                 rio_name(rdev));
1238                         return -EIO;
1239                 }
1240                 pw_msg = NULL;
1241         }
1242
1243         /* For End-point devices processing stops here */
1244         if (!(rdev->pef & RIO_PEF_SWITCH))
1245                 return 0;
1246
1247         if (rdev->phys_efptr == 0) {
1248                 pr_err("RIO_PW: Bad switch initialization for %s\n",
1249                         rio_name(rdev));
1250                 return 0;
1251         }
1252
1253         /*
1254          * Process the port-write notification from switch
1255          */
1256         if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257                 rdev->rswitch->ops->em_handle(rdev, portnum);
1258
1259         rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260                            &err_status);
1261         pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262
1263         if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264
1265                 if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266                         rdev->rswitch->port_ok |= (1 << portnum);
1267                         rio_set_port_lockout(rdev, portnum, 0);
1268                         /* Schedule Insertion Service */
1269                         pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270                                rio_name(rdev), portnum);
1271                 }
1272
1273                 /* Clear error-stopped states (if reported).
1274                  * Depending on the link partner state, two attempts
1275                  * may be needed for successful recovery.
1276                  */
1277                 if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278                                   RIO_PORT_N_ERR_STS_INP_ES)) {
1279                         if (rio_clr_err_stopped(rdev, portnum, err_status))
1280                                 rio_clr_err_stopped(rdev, portnum, 0);
1281                 }
1282         }  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283
1284                 if (rdev->rswitch->port_ok & (1 << portnum)) {
1285                         rdev->rswitch->port_ok &= ~(1 << portnum);
1286                         rio_set_port_lockout(rdev, portnum, 1);
1287
1288                         if (rdev->phys_rmap == 1) {
1289                         rio_write_config_32(rdev,
1290                                 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1291                                 RIO_PORT_N_ACK_CLEAR);
1292                         } else {
1293                                 rio_write_config_32(rdev,
1294                                         RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295                                         RIO_PORT_N_OB_ACK_CLEAR);
1296                                 rio_write_config_32(rdev,
1297                                         RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298                                         0);
1299                         }
1300
1301                         /* Schedule Extraction Service */
1302                         pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303                                rio_name(rdev), portnum);
1304                 }
1305         }
1306
1307         rio_read_config_32(rdev,
1308                 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309         if (em_perrdet) {
1310                 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311                          portnum, em_perrdet);
1312                 /* Clear EM Port N Error Detect CSR */
1313                 rio_write_config_32(rdev,
1314                         rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315         }
1316
1317         rio_read_config_32(rdev,
1318                 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319         if (em_ltlerrdet) {
1320                 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321                          em_ltlerrdet);
1322                 /* Clear EM L/T Layer Error Detect CSR */
1323                 rio_write_config_32(rdev,
1324                         rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325         }
1326
1327         /* Clear remaining error bits and Port-Write Pending bit */
1328         rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329                             err_status);
1330
1331         return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334
1335 /**
1336  * rio_mport_get_efb - get pointer to next extended features block
1337  * @port: Master port to issue transaction
1338  * @local: Indicate a local master port or remote device access
1339  * @destid: Destination ID of the device
1340  * @hopcount: Number of switch hops to the device
1341  * @from: Offset of  current Extended Feature block header (if 0 starts
1342  * from ExtFeaturePtr)
1343  */
1344 u32
1345 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346                       u8 hopcount, u32 from)
1347 {
1348         u32 reg_val;
1349
1350         if (from == 0) {
1351                 if (local)
1352                         rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353                                                  &reg_val);
1354                 else
1355                         rio_mport_read_config_32(port, destid, hopcount,
1356                                                  RIO_ASM_INFO_CAR, &reg_val);
1357                 return reg_val & RIO_EXT_FTR_PTR_MASK;
1358         } else {
1359                 if (local)
1360                         rio_local_read_config_32(port, from, &reg_val);
1361                 else
1362                         rio_mport_read_config_32(port, destid, hopcount,
1363                                                  from, &reg_val);
1364                 return RIO_GET_BLOCK_ID(reg_val);
1365         }
1366 }
1367 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368
1369 /**
1370  * rio_mport_get_feature - query for devices' extended features
1371  * @port: Master port to issue transaction
1372  * @local: Indicate a local master port or remote device access
1373  * @destid: Destination ID of the device
1374  * @hopcount: Number of switch hops to the device
1375  * @ftr: Extended feature code
1376  *
1377  * Tell if a device supports a given RapidIO capability.
1378  * Returns the offset of the requested extended feature
1379  * block within the device's RIO configuration space or
1380  * 0 in case the device does not support it.
1381  */
1382 u32
1383 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384                       u8 hopcount, int ftr)
1385 {
1386         u32 asm_info, ext_ftr_ptr, ftr_header;
1387
1388         if (local)
1389                 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390         else
1391                 rio_mport_read_config_32(port, destid, hopcount,
1392                                          RIO_ASM_INFO_CAR, &asm_info);
1393
1394         ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395
1396         while (ext_ftr_ptr) {
1397                 if (local)
1398                         rio_local_read_config_32(port, ext_ftr_ptr,
1399                                                  &ftr_header);
1400                 else
1401                         rio_mport_read_config_32(port, destid, hopcount,
1402                                                  ext_ftr_ptr, &ftr_header);
1403                 if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404                         return ext_ftr_ptr;
1405
1406                 ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407                 if (!ext_ftr_ptr)
1408                         break;
1409         }
1410
1411         return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414
1415 /**
1416  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1417  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1418  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1419  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1420  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1421  * @from: Previous RIO device found in search, or %NULL for new search
1422  *
1423  * Iterates through the list of known RIO devices. If a RIO device is
1424  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1425  * count to the device is incrememted and a pointer to its device
1426  * structure is returned. Otherwise, %NULL is returned. A new search
1427  * is initiated by passing %NULL to the @from argument. Otherwise, if
1428  * @from is not %NULL, searches continue from next device on the global
1429  * list. The reference count for @from is always decremented if it is
1430  * not %NULL.
1431  */
1432 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1433                             u16 asm_vid, u16 asm_did, struct rio_dev *from)
1434 {
1435         struct list_head *n;
1436         struct rio_dev *rdev;
1437
1438         WARN_ON(in_interrupt());
1439         spin_lock(&rio_global_list_lock);
1440         n = from ? from->global_list.next : rio_devices.next;
1441
1442         while (n && (n != &rio_devices)) {
1443                 rdev = rio_dev_g(n);
1444                 if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1445                     (did == RIO_ANY_ID || rdev->did == did) &&
1446                     (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1447                     (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1448                         goto exit;
1449                 n = n->next;
1450         }
1451         rdev = NULL;
1452       exit:
1453         rio_dev_put(from);
1454         rdev = rio_dev_get(rdev);
1455         spin_unlock(&rio_global_list_lock);
1456         return rdev;
1457 }
1458 EXPORT_SYMBOL_GPL(rio_get_asm);
1459
1460 /**
1461  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1462  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1463  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1464  * @from: Previous RIO device found in search, or %NULL for new search
1465  *
1466  * Iterates through the list of known RIO devices. If a RIO device is
1467  * found with a matching @vid and @did, the reference count to the
1468  * device is incrememted and a pointer to its device structure is returned.
1469  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1470  * to the @from argument. Otherwise, if @from is not %NULL, searches
1471  * continue from next device on the global list. The reference count for
1472  * @from is always decremented if it is not %NULL.
1473  */
1474 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1475 {
1476         return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1477 }
1478 EXPORT_SYMBOL_GPL(rio_get_device);
1479
1480 /**
1481  * rio_std_route_add_entry - Add switch route table entry using standard
1482  *   registers defined in RIO specification rev.1.3
1483  * @mport: Master port to issue transaction
1484  * @destid: Destination ID of the device
1485  * @hopcount: Number of switch hops to the device
1486  * @table: routing table ID (global or port-specific)
1487  * @route_destid: destID entry in the RT
1488  * @route_port: destination port for specified destID
1489  */
1490 static int
1491 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1492                         u16 table, u16 route_destid, u8 route_port)
1493 {
1494         if (table == RIO_GLOBAL_TABLE) {
1495                 rio_mport_write_config_32(mport, destid, hopcount,
1496                                 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1497                                 (u32)route_destid);
1498                 rio_mport_write_config_32(mport, destid, hopcount,
1499                                 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1500                                 (u32)route_port);
1501         }
1502
1503         udelay(10);
1504         return 0;
1505 }
1506
1507 /**
1508  * rio_std_route_get_entry - Read switch route table entry (port number)
1509  *   associated with specified destID using standard registers defined in RIO
1510  *   specification rev.1.3
1511  * @mport: Master port to issue transaction
1512  * @destid: Destination ID of the device
1513  * @hopcount: Number of switch hops to the device
1514  * @table: routing table ID (global or port-specific)
1515  * @route_destid: destID entry in the RT
1516  * @route_port: returned destination port for specified destID
1517  */
1518 static int
1519 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1520                         u16 table, u16 route_destid, u8 *route_port)
1521 {
1522         u32 result;
1523
1524         if (table == RIO_GLOBAL_TABLE) {
1525                 rio_mport_write_config_32(mport, destid, hopcount,
1526                                 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1527                 rio_mport_read_config_32(mport, destid, hopcount,
1528                                 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1529
1530                 *route_port = (u8)result;
1531         }
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * rio_std_route_clr_table - Clear swotch route table using standard registers
1538  *   defined in RIO specification rev.1.3.
1539  * @mport: Master port to issue transaction
1540  * @destid: Destination ID of the device
1541  * @hopcount: Number of switch hops to the device
1542  * @table: routing table ID (global or port-specific)
1543  */
1544 static int
1545 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1546                         u16 table)
1547 {
1548         u32 max_destid = 0xff;
1549         u32 i, pef, id_inc = 1, ext_cfg = 0;
1550         u32 port_sel = RIO_INVALID_ROUTE;
1551
1552         if (table == RIO_GLOBAL_TABLE) {
1553                 rio_mport_read_config_32(mport, destid, hopcount,
1554                                          RIO_PEF_CAR, &pef);
1555
1556                 if (mport->sys_size) {
1557                         rio_mport_read_config_32(mport, destid, hopcount,
1558                                                  RIO_SWITCH_RT_LIMIT,
1559                                                  &max_destid);
1560                         max_destid &= RIO_RT_MAX_DESTID;
1561                 }
1562
1563                 if (pef & RIO_PEF_EXT_RT) {
1564                         ext_cfg = 0x80000000;
1565                         id_inc = 4;
1566                         port_sel = (RIO_INVALID_ROUTE << 24) |
1567                                    (RIO_INVALID_ROUTE << 16) |
1568                                    (RIO_INVALID_ROUTE << 8) |
1569                                    RIO_INVALID_ROUTE;
1570                 }
1571
1572                 for (i = 0; i <= max_destid;) {
1573                         rio_mport_write_config_32(mport, destid, hopcount,
1574                                         RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1575                                         ext_cfg | i);
1576                         rio_mport_write_config_32(mport, destid, hopcount,
1577                                         RIO_STD_RTE_CONF_PORT_SEL_CSR,
1578                                         port_sel);
1579                         i += id_inc;
1580                 }
1581         }
1582
1583         udelay(10);
1584         return 0;
1585 }
1586
1587 /**
1588  * rio_lock_device - Acquires host device lock for specified device
1589  * @port: Master port to send transaction
1590  * @destid: Destination ID for device/switch
1591  * @hopcount: Hopcount to reach switch
1592  * @wait_ms: Max wait time in msec (0 = no timeout)
1593  *
1594  * Attepts to acquire host device lock for specified device
1595  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1596  */
1597 int rio_lock_device(struct rio_mport *port, u16 destid,
1598                     u8 hopcount, int wait_ms)
1599 {
1600         u32 result;
1601         int tcnt = 0;
1602
1603         /* Attempt to acquire device lock */
1604         rio_mport_write_config_32(port, destid, hopcount,
1605                                   RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1606         rio_mport_read_config_32(port, destid, hopcount,
1607                                  RIO_HOST_DID_LOCK_CSR, &result);
1608
1609         while (result != port->host_deviceid) {
1610                 if (wait_ms != 0 && tcnt == wait_ms) {
1611                         pr_debug("RIO: timeout when locking device %x:%x\n",
1612                                 destid, hopcount);
1613                         return -EINVAL;
1614                 }
1615
1616                 /* Delay a bit */
1617                 mdelay(1);
1618                 tcnt++;
1619                 /* Try to acquire device lock again */
1620                 rio_mport_write_config_32(port, destid,
1621                         hopcount,
1622                         RIO_HOST_DID_LOCK_CSR,
1623                         port->host_deviceid);
1624                 rio_mport_read_config_32(port, destid,
1625                         hopcount,
1626                         RIO_HOST_DID_LOCK_CSR, &result);
1627         }
1628
1629         return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(rio_lock_device);
1632
1633 /**
1634  * rio_unlock_device - Releases host device lock for specified device
1635  * @port: Master port to send transaction
1636  * @destid: Destination ID for device/switch
1637  * @hopcount: Hopcount to reach switch
1638  *
1639  * Returns 0 if device lock released or EINVAL if fails.
1640  */
1641 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1642 {
1643         u32 result;
1644
1645         /* Release device lock */
1646         rio_mport_write_config_32(port, destid,
1647                                   hopcount,
1648                                   RIO_HOST_DID_LOCK_CSR,
1649                                   port->host_deviceid);
1650         rio_mport_read_config_32(port, destid, hopcount,
1651                 RIO_HOST_DID_LOCK_CSR, &result);
1652         if ((result & 0xffff) != 0xffff) {
1653                 pr_debug("RIO: badness when releasing device lock %x:%x\n",
1654                          destid, hopcount);
1655                 return -EINVAL;
1656         }
1657
1658         return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(rio_unlock_device);
1661
1662 /**
1663  * rio_route_add_entry- Add a route entry to a switch routing table
1664  * @rdev: RIO device
1665  * @table: Routing table ID
1666  * @route_destid: Destination ID to be routed
1667  * @route_port: Port number to be routed
1668  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1669  *
1670  * If available calls the switch specific add_entry() method to add a route
1671  * entry into a switch routing table. Otherwise uses standard RT update method
1672  * as defined by RapidIO specification. A specific routing table can be selected
1673  * using the @table argument if a switch has per port routing tables or
1674  * the standard (or global) table may be used by passing
1675  * %RIO_GLOBAL_TABLE in @table.
1676  *
1677  * Returns %0 on success or %-EINVAL on failure.
1678  */
1679 int rio_route_add_entry(struct rio_dev *rdev,
1680                         u16 table, u16 route_destid, u8 route_port, int lock)
1681 {
1682         int rc = -EINVAL;
1683         struct rio_switch_ops *ops = rdev->rswitch->ops;
1684
1685         if (lock) {
1686                 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1687                                      rdev->hopcount, 1000);
1688                 if (rc)
1689                         return rc;
1690         }
1691
1692         spin_lock(&rdev->rswitch->lock);
1693
1694         if (!ops || !ops->add_entry) {
1695                 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1696                                              rdev->hopcount, table,
1697                                              route_destid, route_port);
1698         } else if (try_module_get(ops->owner)) {
1699                 rc = ops->add_entry(rdev->net->hport, rdev->destid,
1700                                     rdev->hopcount, table, route_destid,
1701                                     route_port);
1702                 module_put(ops->owner);
1703         }
1704
1705         spin_unlock(&rdev->rswitch->lock);
1706
1707         if (lock)
1708                 rio_unlock_device(rdev->net->hport, rdev->destid,
1709                                   rdev->hopcount);
1710
1711         return rc;
1712 }
1713 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1714
1715 /**
1716  * rio_route_get_entry- Read an entry from a switch routing table
1717  * @rdev: RIO device
1718  * @table: Routing table ID
1719  * @route_destid: Destination ID to be routed
1720  * @route_port: Pointer to read port number into
1721  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1722  *
1723  * If available calls the switch specific get_entry() method to fetch a route
1724  * entry from a switch routing table. Otherwise uses standard RT read method
1725  * as defined by RapidIO specification. A specific routing table can be selected
1726  * using the @table argument if a switch has per port routing tables or
1727  * the standard (or global) table may be used by passing
1728  * %RIO_GLOBAL_TABLE in @table.
1729  *
1730  * Returns %0 on success or %-EINVAL on failure.
1731  */
1732 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1733                         u16 route_destid, u8 *route_port, int lock)
1734 {
1735         int rc = -EINVAL;
1736         struct rio_switch_ops *ops = rdev->rswitch->ops;
1737
1738         if (lock) {
1739                 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1740                                      rdev->hopcount, 1000);
1741                 if (rc)
1742                         return rc;
1743         }
1744
1745         spin_lock(&rdev->rswitch->lock);
1746
1747         if (!ops || !ops->get_entry) {
1748                 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1749                                              rdev->hopcount, table,
1750                                              route_destid, route_port);
1751         } else if (try_module_get(ops->owner)) {
1752                 rc = ops->get_entry(rdev->net->hport, rdev->destid,
1753                                     rdev->hopcount, table, route_destid,
1754                                     route_port);
1755                 module_put(ops->owner);
1756         }
1757
1758         spin_unlock(&rdev->rswitch->lock);
1759
1760         if (lock)
1761                 rio_unlock_device(rdev->net->hport, rdev->destid,
1762                                   rdev->hopcount);
1763         return rc;
1764 }
1765 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1766
1767 /**
1768  * rio_route_clr_table - Clear a switch routing table
1769  * @rdev: RIO device
1770  * @table: Routing table ID
1771  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1772  *
1773  * If available calls the switch specific clr_table() method to clear a switch
1774  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1775  * specification. A specific routing table can be selected using the @table
1776  * argument if a switch has per port routing tables or the standard (or global)
1777  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1778  *
1779  * Returns %0 on success or %-EINVAL on failure.
1780  */
1781 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1782 {
1783         int rc = -EINVAL;
1784         struct rio_switch_ops *ops = rdev->rswitch->ops;
1785
1786         if (lock) {
1787                 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1788                                      rdev->hopcount, 1000);
1789                 if (rc)
1790                         return rc;
1791         }
1792
1793         spin_lock(&rdev->rswitch->lock);
1794
1795         if (!ops || !ops->clr_table) {
1796                 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1797                                              rdev->hopcount, table);
1798         } else if (try_module_get(ops->owner)) {
1799                 rc = ops->clr_table(rdev->net->hport, rdev->destid,
1800                                     rdev->hopcount, table);
1801
1802                 module_put(ops->owner);
1803         }
1804
1805         spin_unlock(&rdev->rswitch->lock);
1806
1807         if (lock)
1808                 rio_unlock_device(rdev->net->hport, rdev->destid,
1809                                   rdev->hopcount);
1810
1811         return rc;
1812 }
1813 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1814
1815 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1816
1817 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1818 {
1819         struct rio_mport *mport = arg;
1820
1821         /* Check that DMA device belongs to the right MPORT */
1822         return mport == container_of(chan->device, struct rio_mport, dma);
1823 }
1824
1825 /**
1826  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1827  *   with specified local RapidIO mport device.
1828  * @mport: RIO mport to perform DMA data transfers
1829  *
1830  * Returns pointer to allocated DMA channel or NULL if failed.
1831  */
1832 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1833 {
1834         dma_cap_mask_t mask;
1835
1836         dma_cap_zero(mask);
1837         dma_cap_set(DMA_SLAVE, mask);
1838         return dma_request_channel(mask, rio_chan_filter, mport);
1839 }
1840 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1841
1842 /**
1843  * rio_request_dma - request RapidIO capable DMA channel that supports
1844  *   specified target RapidIO device.
1845  * @rdev: RIO device associated with DMA transfer
1846  *
1847  * Returns pointer to allocated DMA channel or NULL if failed.
1848  */
1849 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1850 {
1851         return rio_request_mport_dma(rdev->net->hport);
1852 }
1853 EXPORT_SYMBOL_GPL(rio_request_dma);
1854
1855 /**
1856  * rio_release_dma - release specified DMA channel
1857  * @dchan: DMA channel to release
1858  */
1859 void rio_release_dma(struct dma_chan *dchan)
1860 {
1861         dma_release_channel(dchan);
1862 }
1863 EXPORT_SYMBOL_GPL(rio_release_dma);
1864
1865 /**
1866  * rio_dma_prep_xfer - RapidIO specific wrapper
1867  *   for device_prep_slave_sg callback defined by DMAENGINE.
1868  * @dchan: DMA channel to configure
1869  * @destid: target RapidIO device destination ID
1870  * @data: RIO specific data descriptor
1871  * @direction: DMA data transfer direction (TO or FROM the device)
1872  * @flags: dmaengine defined flags
1873  *
1874  * Initializes RapidIO capable DMA channel for the specified data transfer.
1875  * Uses DMA channel private extension to pass information related to remote
1876  * target RIO device.
1877  *
1878  * Returns: pointer to DMA transaction descriptor if successful,
1879  *          error-valued pointer or NULL if failed.
1880  */
1881 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1882         u16 destid, struct rio_dma_data *data,
1883         enum dma_transfer_direction direction, unsigned long flags)
1884 {
1885         struct rio_dma_ext rio_ext;
1886
1887         if (!dchan->device->device_prep_slave_sg) {
1888                 pr_err("%s: prep_rio_sg == NULL\n", __func__);
1889                 return NULL;
1890         }
1891
1892         rio_ext.destid = destid;
1893         rio_ext.rio_addr_u = data->rio_addr_u;
1894         rio_ext.rio_addr = data->rio_addr;
1895         rio_ext.wr_type = data->wr_type;
1896
1897         return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1898                                      direction, flags, &rio_ext);
1899 }
1900 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1901
1902 /**
1903  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1904  *   for device_prep_slave_sg callback defined by DMAENGINE.
1905  * @rdev: RIO device control structure
1906  * @dchan: DMA channel to configure
1907  * @data: RIO specific data descriptor
1908  * @direction: DMA data transfer direction (TO or FROM the device)
1909  * @flags: dmaengine defined flags
1910  *
1911  * Initializes RapidIO capable DMA channel for the specified data transfer.
1912  * Uses DMA channel private extension to pass information related to remote
1913  * target RIO device.
1914  *
1915  * Returns: pointer to DMA transaction descriptor if successful,
1916  *          error-valued pointer or NULL if failed.
1917  */
1918 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1919         struct dma_chan *dchan, struct rio_dma_data *data,
1920         enum dma_transfer_direction direction, unsigned long flags)
1921 {
1922         return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1923 }
1924 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1925
1926 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1927
1928 /**
1929  * rio_find_mport - find RIO mport by its ID
1930  * @mport_id: number (ID) of mport device
1931  *
1932  * Given a RIO mport number, the desired mport is located
1933  * in the global list of mports. If the mport is found, a pointer to its
1934  * data structure is returned.  If no mport is found, %NULL is returned.
1935  */
1936 struct rio_mport *rio_find_mport(int mport_id)
1937 {
1938         struct rio_mport *port;
1939
1940         mutex_lock(&rio_mport_list_lock);
1941         list_for_each_entry(port, &rio_mports, node) {
1942                 if (port->id == mport_id)
1943                         goto found;
1944         }
1945         port = NULL;
1946 found:
1947         mutex_unlock(&rio_mport_list_lock);
1948
1949         return port;
1950 }
1951
1952 /**
1953  * rio_register_scan - enumeration/discovery method registration interface
1954  * @mport_id: mport device ID for which fabric scan routine has to be set
1955  *            (RIO_MPORT_ANY = set for all available mports)
1956  * @scan_ops: enumeration/discovery operations structure
1957  *
1958  * Registers enumeration/discovery operations with RapidIO subsystem and
1959  * attaches it to the specified mport device (or all available mports
1960  * if RIO_MPORT_ANY is specified).
1961  *
1962  * Returns error if the mport already has an enumerator attached to it.
1963  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1964  */
1965 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1966 {
1967         struct rio_mport *port;
1968         struct rio_scan_node *scan;
1969         int rc = 0;
1970
1971         pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1972
1973         if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1974             !scan_ops)
1975                 return -EINVAL;
1976
1977         mutex_lock(&rio_mport_list_lock);
1978
1979         /*
1980          * Check if there is another enumerator already registered for
1981          * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1982          * for the same mport ID are not supported.
1983          */
1984         list_for_each_entry(scan, &rio_scans, node) {
1985                 if (scan->mport_id == mport_id) {
1986                         rc = -EBUSY;
1987                         goto err_out;
1988                 }
1989         }
1990
1991         /*
1992          * Allocate and initialize new scan registration node.
1993          */
1994         scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1995         if (!scan) {
1996                 rc = -ENOMEM;
1997                 goto err_out;
1998         }
1999
2000         scan->mport_id = mport_id;
2001         scan->ops = scan_ops;
2002
2003         /*
2004          * Traverse the list of registered mports to attach this new scan.
2005          *
2006          * The new scan with matching mport ID overrides any previously attached
2007          * scan assuming that old scan (if any) is the default one (based on the
2008          * enumerator registration check above).
2009          * If the new scan is the global one, it will be attached only to mports
2010          * that do not have their own individual operations already attached.
2011          */
2012         list_for_each_entry(port, &rio_mports, node) {
2013                 if (port->id == mport_id) {
2014                         port->nscan = scan_ops;
2015                         break;
2016                 } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2017                         port->nscan = scan_ops;
2018         }
2019
2020         list_add_tail(&scan->node, &rio_scans);
2021
2022 err_out:
2023         mutex_unlock(&rio_mport_list_lock);
2024
2025         return rc;
2026 }
2027 EXPORT_SYMBOL_GPL(rio_register_scan);
2028
2029 /**
2030  * rio_unregister_scan - removes enumeration/discovery method from mport
2031  * @mport_id: mport device ID for which fabric scan routine has to be
2032  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2033  *            the specified scan_ops)
2034  * @scan_ops: enumeration/discovery operations structure
2035  *
2036  * Removes enumeration or discovery method assigned to the specified mport
2037  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2038  * all mports that have them attached.
2039  */
2040 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2041 {
2042         struct rio_mport *port;
2043         struct rio_scan_node *scan;
2044
2045         pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2046
2047         if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2048                 return -EINVAL;
2049
2050         mutex_lock(&rio_mport_list_lock);
2051
2052         list_for_each_entry(port, &rio_mports, node)
2053                 if (port->id == mport_id ||
2054                     (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2055                         port->nscan = NULL;
2056
2057         list_for_each_entry(scan, &rio_scans, node) {
2058                 if (scan->mport_id == mport_id) {
2059                         list_del(&scan->node);
2060                         kfree(scan);
2061                         break;
2062                 }
2063         }
2064
2065         mutex_unlock(&rio_mport_list_lock);
2066
2067         return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2070
2071 /**
2072  * rio_mport_scan - execute enumeration/discovery on the specified mport
2073  * @mport_id: number (ID) of mport device
2074  */
2075 int rio_mport_scan(int mport_id)
2076 {
2077         struct rio_mport *port = NULL;
2078         int rc;
2079
2080         mutex_lock(&rio_mport_list_lock);
2081         list_for_each_entry(port, &rio_mports, node) {
2082                 if (port->id == mport_id)
2083                         goto found;
2084         }
2085         mutex_unlock(&rio_mport_list_lock);
2086         return -ENODEV;
2087 found:
2088         if (!port->nscan) {
2089                 mutex_unlock(&rio_mport_list_lock);
2090                 return -EINVAL;
2091         }
2092
2093         if (!try_module_get(port->nscan->owner)) {
2094                 mutex_unlock(&rio_mport_list_lock);
2095                 return -ENODEV;
2096         }
2097
2098         mutex_unlock(&rio_mport_list_lock);
2099
2100         if (port->host_deviceid >= 0)
2101                 rc = port->nscan->enumerate(port, 0);
2102         else
2103                 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2104
2105         module_put(port->nscan->owner);
2106         return rc;
2107 }
2108
2109 static void rio_fixup_device(struct rio_dev *dev)
2110 {
2111 }
2112
2113 static int rio_init(void)
2114 {
2115         struct rio_dev *dev = NULL;
2116
2117         while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2118                 rio_fixup_device(dev);
2119         }
2120         return 0;
2121 }
2122
2123 static struct workqueue_struct *rio_wq;
2124
2125 struct rio_disc_work {
2126         struct work_struct      work;
2127         struct rio_mport        *mport;
2128 };
2129
2130 static void disc_work_handler(struct work_struct *_work)
2131 {
2132         struct rio_disc_work *work;
2133
2134         work = container_of(_work, struct rio_disc_work, work);
2135         pr_debug("RIO: discovery work for mport %d %s\n",
2136                  work->mport->id, work->mport->name);
2137         if (try_module_get(work->mport->nscan->owner)) {
2138                 work->mport->nscan->discover(work->mport, 0);
2139                 module_put(work->mport->nscan->owner);
2140         }
2141 }
2142
2143 int rio_init_mports(void)
2144 {
2145         struct rio_mport *port;
2146         struct rio_disc_work *work;
2147         int n = 0;
2148
2149         if (!next_portid)
2150                 return -ENODEV;
2151
2152         /*
2153          * First, run enumerations and check if we need to perform discovery
2154          * on any of the registered mports.
2155          */
2156         mutex_lock(&rio_mport_list_lock);
2157         list_for_each_entry(port, &rio_mports, node) {
2158                 if (port->host_deviceid >= 0) {
2159                         if (port->nscan && try_module_get(port->nscan->owner)) {
2160                                 port->nscan->enumerate(port, 0);
2161                                 module_put(port->nscan->owner);
2162                         }
2163                 } else
2164                         n++;
2165         }
2166         mutex_unlock(&rio_mport_list_lock);
2167
2168         if (!n)
2169                 goto no_disc;
2170
2171         /*
2172          * If we have mports that require discovery schedule a discovery work
2173          * for each of them. If the code below fails to allocate needed
2174          * resources, exit without error to keep results of enumeration
2175          * process (if any).
2176          * TODO: Implement restart of discovery process for all or
2177          * individual discovering mports.
2178          */
2179         rio_wq = alloc_workqueue("riodisc", 0, 0);
2180         if (!rio_wq) {
2181                 pr_err("RIO: unable allocate rio_wq\n");
2182                 goto no_disc;
2183         }
2184
2185         work = kcalloc(n, sizeof *work, GFP_KERNEL);
2186         if (!work) {
2187                 destroy_workqueue(rio_wq);
2188                 goto no_disc;
2189         }
2190
2191         n = 0;
2192         mutex_lock(&rio_mport_list_lock);
2193         list_for_each_entry(port, &rio_mports, node) {
2194                 if (port->host_deviceid < 0 && port->nscan) {
2195                         work[n].mport = port;
2196                         INIT_WORK(&work[n].work, disc_work_handler);
2197                         queue_work(rio_wq, &work[n].work);
2198                         n++;
2199                 }
2200         }
2201
2202         flush_workqueue(rio_wq);
2203         mutex_unlock(&rio_mport_list_lock);
2204         pr_debug("RIO: destroy discovery workqueue\n");
2205         destroy_workqueue(rio_wq);
2206         kfree(work);
2207
2208 no_disc:
2209         rio_init();
2210
2211         return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(rio_init_mports);
2214
2215 static int rio_get_hdid(int index)
2216 {
2217         if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2218                 return -1;
2219
2220         return hdid[index];
2221 }
2222
2223 int rio_mport_initialize(struct rio_mport *mport)
2224 {
2225         if (next_portid >= RIO_MAX_MPORTS) {
2226                 pr_err("RIO: reached specified max number of mports\n");
2227                 return -ENODEV;
2228         }
2229
2230         atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2231         mport->id = next_portid++;
2232         mport->host_deviceid = rio_get_hdid(mport->id);
2233         mport->nscan = NULL;
2234         mutex_init(&mport->lock);
2235         mport->pwe_refcnt = 0;
2236         INIT_LIST_HEAD(&mport->pwrites);
2237
2238         return 0;
2239 }
2240 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2241
2242 int rio_register_mport(struct rio_mport *port)
2243 {
2244         struct rio_scan_node *scan = NULL;
2245         int res = 0;
2246
2247         mutex_lock(&rio_mport_list_lock);
2248
2249         /*
2250          * Check if there are any registered enumeration/discovery operations
2251          * that have to be attached to the added mport.
2252          */
2253         list_for_each_entry(scan, &rio_scans, node) {
2254                 if (port->id == scan->mport_id ||
2255                     scan->mport_id == RIO_MPORT_ANY) {
2256                         port->nscan = scan->ops;
2257                         if (port->id == scan->mport_id)
2258                                 break;
2259                 }
2260         }
2261
2262         list_add_tail(&port->node, &rio_mports);
2263         mutex_unlock(&rio_mport_list_lock);
2264
2265         dev_set_name(&port->dev, "rapidio%d", port->id);
2266         port->dev.class = &rio_mport_class;
2267         atomic_set(&port->state, RIO_DEVICE_RUNNING);
2268
2269         res = device_register(&port->dev);
2270         if (res)
2271                 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2272                         port->id, res);
2273         else
2274                 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2275
2276         return res;
2277 }
2278 EXPORT_SYMBOL_GPL(rio_register_mport);
2279
2280 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2281 {
2282         struct rio_dev *rdev = to_rio_dev(dev);
2283
2284         if (dev->bus == &rio_bus_type)
2285                 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2286         return 0;
2287 }
2288
2289 static int rio_net_remove_children(struct rio_net *net)
2290 {
2291         /*
2292          * Unregister all RapidIO devices residing on this net (this will
2293          * invoke notification of registered subsystem interfaces as well).
2294          */
2295         device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2296         return 0;
2297 }
2298
2299 int rio_unregister_mport(struct rio_mport *port)
2300 {
2301         pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2302
2303         /* Transition mport to the SHUTDOWN state */
2304         if (atomic_cmpxchg(&port->state,
2305                            RIO_DEVICE_RUNNING,
2306                            RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2307                 pr_err("RIO: %s unexpected state transition for mport %s\n",
2308                         __func__, port->name);
2309         }
2310
2311         if (port->net && port->net->hport == port) {
2312                 rio_net_remove_children(port->net);
2313                 rio_free_net(port->net);
2314         }
2315
2316         /*
2317          * Unregister all RapidIO devices attached to this mport (this will
2318          * invoke notification of registered subsystem interfaces as well).
2319          */
2320         mutex_lock(&rio_mport_list_lock);
2321         list_del(&port->node);
2322         mutex_unlock(&rio_mport_list_lock);
2323         device_unregister(&port->dev);
2324
2325         return 0;
2326 }
2327 EXPORT_SYMBOL_GPL(rio_unregister_mport);