1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * drivers/pwm/pwm-tegra.c
5 * Tegra pulse-width-modulation controller driver
7 * Copyright (c) 2010-2020, NVIDIA Corporation.
8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
10 * Overview of Tegra Pulse Width Modulator Register:
11 * 1. 13-bit: Frequency division (SCALE)
12 * 2. 8-bit : Pulse division (DUTY)
13 * 3. 1-bit : Enable bit
15 * The PWM clock frequency is divided by 256 before subdividing it based
16 * on the programmable frequency division value to generate the required
17 * frequency for PWM output. The maximum output frequency that can be
18 * achieved is (max rate of source clock) / 256.
19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20 * 408 MHz/256 = 1.6 MHz.
21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24 * To achieve 100% duty cycle, program Bit [24] of this register to
25 * 1’b1. In which case the other bits [23:16] are set to don't care.
28 * - When PWM is disabled, the output is driven to inactive.
29 * - It does not allow the current PWM period to complete and
32 * - If the register is reconfigured while PWM is running,
33 * it does not complete the currently running period.
35 * - If the user input duty is beyond acceptible limits,
36 * -EINVAL is returned.
39 #include <linux/clk.h>
40 #include <linux/err.h>
42 #include <linux/module.h>
44 #include <linux/of_device.h>
45 #include <linux/pm_opp.h>
46 #include <linux/pwm.h>
47 #include <linux/platform_device.h>
48 #include <linux/pinctrl/consumer.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/slab.h>
51 #include <linux/reset.h>
53 #include <soc/tegra/common.h>
55 #define PWM_ENABLE (1 << 31)
56 #define PWM_DUTY_WIDTH 8
57 #define PWM_DUTY_SHIFT 16
58 #define PWM_SCALE_WIDTH 13
59 #define PWM_SCALE_SHIFT 0
61 struct tegra_pwm_soc {
62 unsigned int num_channels;
64 /* Maximum IP frequency for given SoCs */
65 unsigned long max_frequency;
68 struct tegra_pwm_chip {
73 struct reset_control*rst;
75 unsigned long clk_rate;
76 unsigned long min_period_ns;
80 const struct tegra_pwm_soc *soc;
83 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
85 return container_of(chip, struct tegra_pwm_chip, chip);
88 static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
90 return readl(pc->regs + (offset << 4));
93 static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
95 writel(value, pc->regs + (offset << 4));
98 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
99 int duty_ns, int period_ns)
101 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
102 unsigned long long c = duty_ns;
103 unsigned long rate, required_clk_rate;
108 * Convert from duty_ns / period_ns to a fixed number of duty ticks
109 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
110 * nearest integer during division.
112 c *= (1 << PWM_DUTY_WIDTH);
113 c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
115 val = (u32)c << PWM_DUTY_SHIFT;
118 * min period = max clock limit >> PWM_DUTY_WIDTH
120 if (period_ns < pc->min_period_ns)
124 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
125 * cycles at the PWM clock rate will take period_ns nanoseconds.
127 * num_channels: If single instance of PWM controller has multiple
128 * channels (e.g. Tegra210 or older) then it is not possible to
129 * configure separate clock rates to each of the channels, in such
130 * case the value stored during probe will be referred.
132 * If every PWM controller instance has one channel respectively, i.e.
133 * nums_channels == 1 then only the clock rate can be modified
134 * dynamically (e.g. Tegra186 or Tegra194).
136 if (pc->soc->num_channels == 1) {
138 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
139 * with the maximum possible rate that the controller can
140 * provide. Any further lower value can be derived by setting
143 * required_clk_rate is a reference rate for source clock and
144 * it is derived based on user requested period. By setting the
145 * source clock rate as required_clk_rate, PWM controller will
146 * be able to configure the requested period.
149 (NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
151 err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
155 /* Store the new rate for further references */
156 pc->clk_rate = clk_get_rate(pc->clk);
159 /* Consider precision in PWM_SCALE_WIDTH rate calculation */
160 rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
161 (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
164 * Since the actual PWM divider is the register's frequency divider
165 * field plus 1, we need to decrement to get the correct value to
166 * write to the register.
174 * Make sure that the rate will fit in the register's frequency
177 if (rate >> PWM_SCALE_WIDTH)
180 val |= rate << PWM_SCALE_SHIFT;
183 * If the PWM channel is disabled, make sure to turn on the clock
184 * before writing the register. Otherwise, keep it enabled.
186 if (!pwm_is_enabled(pwm)) {
187 err = pm_runtime_resume_and_get(pc->dev);
193 pwm_writel(pc, pwm->hwpwm, val);
196 * If the PWM is not enabled, turn the clock off again to save power.
198 if (!pwm_is_enabled(pwm))
199 pm_runtime_put(pc->dev);
204 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
206 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
210 rc = pm_runtime_resume_and_get(pc->dev);
214 val = pwm_readl(pc, pwm->hwpwm);
216 pwm_writel(pc, pwm->hwpwm, val);
221 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
223 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
226 val = pwm_readl(pc, pwm->hwpwm);
228 pwm_writel(pc, pwm->hwpwm, val);
230 pm_runtime_put_sync(pc->dev);
233 static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
234 const struct pwm_state *state)
237 bool enabled = pwm->state.enabled;
239 if (state->polarity != PWM_POLARITY_NORMAL)
242 if (!state->enabled) {
244 tegra_pwm_disable(chip, pwm);
249 err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
254 err = tegra_pwm_enable(chip, pwm);
259 static const struct pwm_ops tegra_pwm_ops = {
260 .apply = tegra_pwm_apply,
261 .owner = THIS_MODULE,
264 static int tegra_pwm_probe(struct platform_device *pdev)
266 struct tegra_pwm_chip *pc;
269 pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
273 pc->soc = of_device_get_match_data(&pdev->dev);
274 pc->dev = &pdev->dev;
276 pc->regs = devm_platform_ioremap_resource(pdev, 0);
277 if (IS_ERR(pc->regs))
278 return PTR_ERR(pc->regs);
280 platform_set_drvdata(pdev, pc);
282 pc->clk = devm_clk_get(&pdev->dev, NULL);
284 return PTR_ERR(pc->clk);
286 ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
290 pm_runtime_enable(&pdev->dev);
291 ret = pm_runtime_resume_and_get(&pdev->dev);
295 /* Set maximum frequency of the IP */
296 ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
298 dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
303 * The requested and configured frequency may differ due to
304 * clock register resolutions. Get the configured frequency
305 * so that PWM period can be calculated more accurately.
307 pc->clk_rate = clk_get_rate(pc->clk);
309 /* Set minimum limit of PWM period for the IP */
311 (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
313 pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
314 if (IS_ERR(pc->rst)) {
315 ret = PTR_ERR(pc->rst);
316 dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
320 reset_control_deassert(pc->rst);
322 pc->chip.dev = &pdev->dev;
323 pc->chip.ops = &tegra_pwm_ops;
324 pc->chip.npwm = pc->soc->num_channels;
326 ret = pwmchip_add(&pc->chip);
328 dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
329 reset_control_assert(pc->rst);
333 pm_runtime_put(&pdev->dev);
337 pm_runtime_put_sync_suspend(&pdev->dev);
338 pm_runtime_force_suspend(&pdev->dev);
342 static int tegra_pwm_remove(struct platform_device *pdev)
344 struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
346 pwmchip_remove(&pc->chip);
348 reset_control_assert(pc->rst);
350 pm_runtime_force_suspend(&pdev->dev);
355 static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
357 struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
360 clk_disable_unprepare(pc->clk);
362 err = pinctrl_pm_select_sleep_state(dev);
364 clk_prepare_enable(pc->clk);
371 static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
373 struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
376 err = pinctrl_pm_select_default_state(dev);
380 err = clk_prepare_enable(pc->clk);
382 pinctrl_pm_select_sleep_state(dev);
389 static const struct tegra_pwm_soc tegra20_pwm_soc = {
391 .max_frequency = 48000000UL,
394 static const struct tegra_pwm_soc tegra186_pwm_soc = {
396 .max_frequency = 102000000UL,
399 static const struct tegra_pwm_soc tegra194_pwm_soc = {
401 .max_frequency = 408000000UL,
404 static const struct of_device_id tegra_pwm_of_match[] = {
405 { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
406 { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
407 { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
410 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
412 static const struct dev_pm_ops tegra_pwm_pm_ops = {
413 SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
415 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
416 pm_runtime_force_resume)
419 static struct platform_driver tegra_pwm_driver = {
422 .of_match_table = tegra_pwm_of_match,
423 .pm = &tegra_pwm_pm_ops,
425 .probe = tegra_pwm_probe,
426 .remove = tegra_pwm_remove,
429 module_platform_driver(tegra_pwm_driver);
431 MODULE_LICENSE("GPL");
432 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
433 MODULE_DESCRIPTION("Tegra PWM controller driver");
434 MODULE_ALIAS("platform:tegra-pwm");