1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
8 * - When outputing the source clock directly, the PWM logic will be bypassed
9 * and the currently running period is not guaranteed to be completed
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pwm.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/time.h>
27 #define PWM_CTRL_REG 0x0
29 #define PWM_CH_PRD_BASE 0x4
30 #define PWM_CH_PRD_OFFSET 0x4
31 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
33 #define PWMCH_OFFSET 15
34 #define PWM_PRESCAL_MASK GENMASK(3, 0)
35 #define PWM_PRESCAL_OFF 0
37 #define PWM_ACT_STATE BIT(5)
38 #define PWM_CLK_GATING BIT(6)
39 #define PWM_MODE BIT(7)
40 #define PWM_PULSE BIT(8)
41 #define PWM_BYPASS BIT(9)
43 #define PWM_RDY_BASE 28
44 #define PWM_RDY_OFFSET 1
45 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
47 #define PWM_PRD(prd) (((prd) - 1) << 16)
48 #define PWM_PRD_MASK GENMASK(15, 0)
50 #define PWM_DTY_MASK GENMASK(15, 0)
52 #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
53 #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
54 #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
56 #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
58 static const u32 prescaler_table[] = {
74 0, /* Actually 1 but tested separately */
77 struct sun4i_pwm_data {
78 bool has_prescaler_bypass;
79 bool has_direct_mod_clk_output;
83 struct sun4i_pwm_chip {
87 struct reset_control *rst;
90 const struct sun4i_pwm_data *data;
93 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
95 return container_of(chip, struct sun4i_pwm_chip, chip);
98 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
101 return readl(chip->base + offset);
104 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
105 u32 val, unsigned long offset)
107 writel(val, chip->base + offset);
110 static int sun4i_pwm_get_state(struct pwm_chip *chip,
111 struct pwm_device *pwm,
112 struct pwm_state *state)
114 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
117 unsigned int prescaler;
119 clk_rate = clk_get_rate(sun4i_pwm->clk);
123 val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
126 * PWM chapter in H6 manual has a diagram which explains that if bypass
127 * bit is set, no other setting has any meaning. Even more, experiment
128 * proved that also enable bit is ignored in this case.
130 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131 sun4i_pwm->data->has_direct_mod_clk_output) {
132 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134 state->polarity = PWM_POLARITY_NORMAL;
135 state->enabled = true;
139 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140 sun4i_pwm->data->has_prescaler_bypass)
143 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
148 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149 state->polarity = PWM_POLARITY_NORMAL;
151 state->polarity = PWM_POLARITY_INVERSED;
153 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155 state->enabled = true;
157 state->enabled = false;
159 val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
161 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
164 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
170 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
171 const struct pwm_state *state,
172 u32 *dty, u32 *prd, unsigned int *prsclr,
175 u64 clk_rate, div = 0;
176 unsigned int prescaler = 0;
178 clk_rate = clk_get_rate(sun4i_pwm->clk);
180 *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
182 (state->period * clk_rate >= NSEC_PER_SEC) &&
183 (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
184 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
186 /* Skip calculation of other parameters if we bypass them */
190 if (sun4i_pwm->data->has_prescaler_bypass) {
191 /* First, test without any prescaler when available */
192 prescaler = PWM_PRESCAL_MASK;
194 * When not using any prescaler, the clock period in nanoseconds
195 * is not an integer so round it half up instead of
196 * truncating to get less surprising values.
198 div = clk_rate * state->period + NSEC_PER_SEC / 2;
199 do_div(div, NSEC_PER_SEC);
200 if (div - 1 > PWM_PRD_MASK)
204 if (prescaler == 0) {
205 /* Go up from the first divider */
206 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
207 unsigned int pval = prescaler_table[prescaler];
214 div = div * state->period;
215 do_div(div, NSEC_PER_SEC);
216 if (div - 1 <= PWM_PRD_MASK)
220 if (div - 1 > PWM_PRD_MASK)
225 div *= state->duty_cycle;
226 do_div(div, state->period);
233 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
234 const struct pwm_state *state)
236 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
237 struct pwm_state cstate;
238 u32 ctrl, duty = 0, period = 0, val;
240 unsigned int delay_us, prescaler = 0;
243 pwm_get_state(pwm, &cstate);
245 if (!cstate.enabled) {
246 ret = clk_prepare_enable(sun4i_pwm->clk);
248 dev_err(chip->dev, "failed to enable PWM clock\n");
253 ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
256 dev_err(chip->dev, "period exceeds the maximum value\n");
258 clk_disable_unprepare(sun4i_pwm->clk);
262 spin_lock(&sun4i_pwm->ctrl_lock);
263 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
265 if (sun4i_pwm->data->has_direct_mod_clk_output) {
267 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
268 /* We can skip other parameter */
269 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
270 spin_unlock(&sun4i_pwm->ctrl_lock);
274 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
277 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
278 /* Prescaler changed, the clock has to be gated */
279 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
280 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
282 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
283 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
286 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
287 sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
289 if (state->polarity != PWM_POLARITY_NORMAL)
290 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
297 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
301 spin_unlock(&sun4i_pwm->ctrl_lock);
306 /* We need a full period to elapse before disabling the channel. */
307 delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
308 if ((delay_us / 500) > MAX_UDELAY_MS)
309 msleep(delay_us / 1000 + 1);
311 usleep_range(delay_us, delay_us * 2);
313 spin_lock(&sun4i_pwm->ctrl_lock);
314 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
315 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
316 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
317 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
318 spin_unlock(&sun4i_pwm->ctrl_lock);
320 clk_disable_unprepare(sun4i_pwm->clk);
325 static const struct pwm_ops sun4i_pwm_ops = {
326 .apply = sun4i_pwm_apply,
327 .get_state = sun4i_pwm_get_state,
328 .owner = THIS_MODULE,
331 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
332 .has_prescaler_bypass = false,
336 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
337 .has_prescaler_bypass = true,
341 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
342 .has_prescaler_bypass = true,
346 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
347 .has_prescaler_bypass = true,
348 .has_direct_mod_clk_output = true,
352 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
353 .has_prescaler_bypass = true,
354 .has_direct_mod_clk_output = true,
358 static const struct of_device_id sun4i_pwm_dt_ids[] = {
360 .compatible = "allwinner,sun4i-a10-pwm",
361 .data = &sun4i_pwm_dual_nobypass,
363 .compatible = "allwinner,sun5i-a10s-pwm",
364 .data = &sun4i_pwm_dual_bypass,
366 .compatible = "allwinner,sun5i-a13-pwm",
367 .data = &sun4i_pwm_single_bypass,
369 .compatible = "allwinner,sun7i-a20-pwm",
370 .data = &sun4i_pwm_dual_bypass,
372 .compatible = "allwinner,sun8i-h3-pwm",
373 .data = &sun4i_pwm_single_bypass,
375 .compatible = "allwinner,sun50i-a64-pwm",
376 .data = &sun50i_a64_pwm_data,
378 .compatible = "allwinner,sun50i-h6-pwm",
379 .data = &sun50i_h6_pwm_data,
384 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
386 static int sun4i_pwm_probe(struct platform_device *pdev)
388 struct sun4i_pwm_chip *sun4ichip;
391 sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
395 sun4ichip->data = of_device_get_match_data(&pdev->dev);
396 if (!sun4ichip->data)
399 sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
400 if (IS_ERR(sun4ichip->base))
401 return PTR_ERR(sun4ichip->base);
404 * All hardware variants need a source clock that is divided and
405 * then feeds the counter that defines the output wave form. In the
406 * device tree this clock is either unnamed or called "mod".
407 * Some variants (e.g. H6) need another clock to access the
408 * hardware registers; this is called "bus".
409 * So we request "mod" first (and ignore the corner case that a
410 * parent provides a "mod" clock while the right one would be the
411 * unnamed one of the PWM device) and if this is not found we fall
412 * back to the first clock of the PWM.
414 sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
415 if (IS_ERR(sun4ichip->clk))
416 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
417 "get mod clock failed\n");
419 if (!sun4ichip->clk) {
420 sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
421 if (IS_ERR(sun4ichip->clk))
422 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
423 "get unnamed clock failed\n");
426 sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
427 if (IS_ERR(sun4ichip->bus_clk))
428 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
429 "get bus clock failed\n");
431 sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
432 if (IS_ERR(sun4ichip->rst))
433 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
434 "get reset failed\n");
437 ret = reset_control_deassert(sun4ichip->rst);
439 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
445 * We're keeping the bus clock on for the sake of simplicity.
446 * Actually it only needs to be on for hardware register accesses.
448 ret = clk_prepare_enable(sun4ichip->bus_clk);
450 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
455 sun4ichip->chip.dev = &pdev->dev;
456 sun4ichip->chip.ops = &sun4i_pwm_ops;
457 sun4ichip->chip.npwm = sun4ichip->data->npwm;
459 spin_lock_init(&sun4ichip->ctrl_lock);
461 ret = pwmchip_add(&sun4ichip->chip);
463 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
467 platform_set_drvdata(pdev, sun4ichip);
472 clk_disable_unprepare(sun4ichip->bus_clk);
474 reset_control_assert(sun4ichip->rst);
479 static void sun4i_pwm_remove(struct platform_device *pdev)
481 struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
483 pwmchip_remove(&sun4ichip->chip);
485 clk_disable_unprepare(sun4ichip->bus_clk);
486 reset_control_assert(sun4ichip->rst);
489 static struct platform_driver sun4i_pwm_driver = {
492 .of_match_table = sun4i_pwm_dt_ids,
494 .probe = sun4i_pwm_probe,
495 .remove_new = sun4i_pwm_remove,
497 module_platform_driver(sun4i_pwm_driver);
499 MODULE_ALIAS("platform:sun4i-pwm");
500 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
501 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
502 MODULE_LICENSE("GPL v2");