1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
8 * - When outputing the source clock directly, the PWM logic will be bypassed
9 * and the currently running period is not guaranteed to be completed
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/time.h>
28 #define PWM_CTRL_REG 0x0
30 #define PWM_CH_PRD_BASE 0x4
31 #define PWM_CH_PRD_OFFSET 0x4
32 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
34 #define PWMCH_OFFSET 15
35 #define PWM_PRESCAL_MASK GENMASK(3, 0)
36 #define PWM_PRESCAL_OFF 0
38 #define PWM_ACT_STATE BIT(5)
39 #define PWM_CLK_GATING BIT(6)
40 #define PWM_MODE BIT(7)
41 #define PWM_PULSE BIT(8)
42 #define PWM_BYPASS BIT(9)
44 #define PWM_RDY_BASE 28
45 #define PWM_RDY_OFFSET 1
46 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
48 #define PWM_PRD(prd) (((prd) - 1) << 16)
49 #define PWM_PRD_MASK GENMASK(15, 0)
51 #define PWM_DTY_MASK GENMASK(15, 0)
53 #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
54 #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
55 #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
57 #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
59 static const u32 prescaler_table[] = {
75 0, /* Actually 1 but tested separately */
78 struct sun4i_pwm_data {
79 bool has_prescaler_bypass;
80 bool has_direct_mod_clk_output;
84 struct sun4i_pwm_chip {
88 struct reset_control *rst;
91 const struct sun4i_pwm_data *data;
94 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
96 return container_of(chip, struct sun4i_pwm_chip, chip);
99 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100 unsigned long offset)
102 return readl(chip->base + offset);
105 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106 u32 val, unsigned long offset)
108 writel(val, chip->base + offset);
111 static void sun4i_pwm_get_state(struct pwm_chip *chip,
112 struct pwm_device *pwm,
113 struct pwm_state *state)
115 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
118 unsigned int prescaler;
120 clk_rate = clk_get_rate(sun4i_pwm->clk);
122 val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
125 * PWM chapter in H6 manual has a diagram which explains that if bypass
126 * bit is set, no other setting has any meaning. Even more, experiment
127 * proved that also enable bit is ignored in this case.
129 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
130 sun4i_pwm->data->has_direct_mod_clk_output) {
131 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
132 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
133 state->polarity = PWM_POLARITY_NORMAL;
134 state->enabled = true;
138 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
139 sun4i_pwm->data->has_prescaler_bypass)
142 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
147 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
148 state->polarity = PWM_POLARITY_NORMAL;
150 state->polarity = PWM_POLARITY_INVERSED;
152 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
153 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
154 state->enabled = true;
156 state->enabled = false;
158 val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
161 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
164 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
167 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
168 const struct pwm_state *state,
169 u32 *dty, u32 *prd, unsigned int *prsclr,
172 u64 clk_rate, div = 0;
173 unsigned int prescaler = 0;
175 clk_rate = clk_get_rate(sun4i_pwm->clk);
177 *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
179 (state->period * clk_rate >= NSEC_PER_SEC) &&
180 (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
181 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
183 /* Skip calculation of other parameters if we bypass them */
187 if (sun4i_pwm->data->has_prescaler_bypass) {
188 /* First, test without any prescaler when available */
189 prescaler = PWM_PRESCAL_MASK;
191 * When not using any prescaler, the clock period in nanoseconds
192 * is not an integer so round it half up instead of
193 * truncating to get less surprising values.
195 div = clk_rate * state->period + NSEC_PER_SEC / 2;
196 do_div(div, NSEC_PER_SEC);
197 if (div - 1 > PWM_PRD_MASK)
201 if (prescaler == 0) {
202 /* Go up from the first divider */
203 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
204 unsigned int pval = prescaler_table[prescaler];
211 div = div * state->period;
212 do_div(div, NSEC_PER_SEC);
213 if (div - 1 <= PWM_PRD_MASK)
217 if (div - 1 > PWM_PRD_MASK)
222 div *= state->duty_cycle;
223 do_div(div, state->period);
230 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
231 const struct pwm_state *state)
233 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
234 struct pwm_state cstate;
235 u32 ctrl, duty = 0, period = 0, val;
237 unsigned int delay_us, prescaler = 0;
240 pwm_get_state(pwm, &cstate);
242 if (!cstate.enabled) {
243 ret = clk_prepare_enable(sun4i_pwm->clk);
245 dev_err(chip->dev, "failed to enable PWM clock\n");
250 ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
253 dev_err(chip->dev, "period exceeds the maximum value\n");
255 clk_disable_unprepare(sun4i_pwm->clk);
259 spin_lock(&sun4i_pwm->ctrl_lock);
260 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
262 if (sun4i_pwm->data->has_direct_mod_clk_output) {
264 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
265 /* We can skip other parameter */
266 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
267 spin_unlock(&sun4i_pwm->ctrl_lock);
271 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
275 /* Prescaler changed, the clock has to be gated */
276 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
277 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
279 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
280 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
283 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
284 sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
286 if (state->polarity != PWM_POLARITY_NORMAL)
287 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
289 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
291 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
294 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
296 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
298 spin_unlock(&sun4i_pwm->ctrl_lock);
303 /* We need a full period to elapse before disabling the channel. */
304 delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
305 if ((delay_us / 500) > MAX_UDELAY_MS)
306 msleep(delay_us / 1000 + 1);
308 usleep_range(delay_us, delay_us * 2);
310 spin_lock(&sun4i_pwm->ctrl_lock);
311 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
312 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
313 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
314 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
315 spin_unlock(&sun4i_pwm->ctrl_lock);
317 clk_disable_unprepare(sun4i_pwm->clk);
322 static const struct pwm_ops sun4i_pwm_ops = {
323 .apply = sun4i_pwm_apply,
324 .get_state = sun4i_pwm_get_state,
325 .owner = THIS_MODULE,
328 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
329 .has_prescaler_bypass = false,
333 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
334 .has_prescaler_bypass = true,
338 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
339 .has_prescaler_bypass = true,
343 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
344 .has_prescaler_bypass = true,
345 .has_direct_mod_clk_output = true,
349 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
350 .has_prescaler_bypass = true,
351 .has_direct_mod_clk_output = true,
355 static const struct of_device_id sun4i_pwm_dt_ids[] = {
357 .compatible = "allwinner,sun4i-a10-pwm",
358 .data = &sun4i_pwm_dual_nobypass,
360 .compatible = "allwinner,sun5i-a10s-pwm",
361 .data = &sun4i_pwm_dual_bypass,
363 .compatible = "allwinner,sun5i-a13-pwm",
364 .data = &sun4i_pwm_single_bypass,
366 .compatible = "allwinner,sun7i-a20-pwm",
367 .data = &sun4i_pwm_dual_bypass,
369 .compatible = "allwinner,sun8i-h3-pwm",
370 .data = &sun4i_pwm_single_bypass,
372 .compatible = "allwinner,sun50i-a64-pwm",
373 .data = &sun50i_a64_pwm_data,
375 .compatible = "allwinner,sun50i-h6-pwm",
376 .data = &sun50i_h6_pwm_data,
381 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
383 static int sun4i_pwm_probe(struct platform_device *pdev)
385 struct sun4i_pwm_chip *sun4ichip;
388 sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
392 sun4ichip->data = of_device_get_match_data(&pdev->dev);
393 if (!sun4ichip->data)
396 sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
397 if (IS_ERR(sun4ichip->base))
398 return PTR_ERR(sun4ichip->base);
401 * All hardware variants need a source clock that is divided and
402 * then feeds the counter that defines the output wave form. In the
403 * device tree this clock is either unnamed or called "mod".
404 * Some variants (e.g. H6) need another clock to access the
405 * hardware registers; this is called "bus".
406 * So we request "mod" first (and ignore the corner case that a
407 * parent provides a "mod" clock while the right one would be the
408 * unnamed one of the PWM device) and if this is not found we fall
409 * back to the first clock of the PWM.
411 sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
412 if (IS_ERR(sun4ichip->clk))
413 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
414 "get mod clock failed\n");
416 if (!sun4ichip->clk) {
417 sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
418 if (IS_ERR(sun4ichip->clk))
419 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
420 "get unnamed clock failed\n");
423 sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
424 if (IS_ERR(sun4ichip->bus_clk))
425 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
426 "get bus clock failed\n");
428 sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
429 if (IS_ERR(sun4ichip->rst))
430 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
431 "get reset failed\n");
434 ret = reset_control_deassert(sun4ichip->rst);
436 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
442 * We're keeping the bus clock on for the sake of simplicity.
443 * Actually it only needs to be on for hardware register accesses.
445 ret = clk_prepare_enable(sun4ichip->bus_clk);
447 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
452 sun4ichip->chip.dev = &pdev->dev;
453 sun4ichip->chip.ops = &sun4i_pwm_ops;
454 sun4ichip->chip.npwm = sun4ichip->data->npwm;
456 spin_lock_init(&sun4ichip->ctrl_lock);
458 ret = pwmchip_add(&sun4ichip->chip);
460 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
464 platform_set_drvdata(pdev, sun4ichip);
469 clk_disable_unprepare(sun4ichip->bus_clk);
471 reset_control_assert(sun4ichip->rst);
476 static int sun4i_pwm_remove(struct platform_device *pdev)
478 struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
480 pwmchip_remove(&sun4ichip->chip);
482 clk_disable_unprepare(sun4ichip->bus_clk);
483 reset_control_assert(sun4ichip->rst);
488 static struct platform_driver sun4i_pwm_driver = {
491 .of_match_table = sun4i_pwm_dt_ids,
493 .probe = sun4i_pwm_probe,
494 .remove = sun4i_pwm_remove,
496 module_platform_driver(sun4i_pwm_driver);
498 MODULE_ALIAS("platform:sun4i-pwm");
499 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
500 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
501 MODULE_LICENSE("GPL v2");