1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
8 * - When outputing the source clock directly, the PWM logic will be bypassed
9 * and the currently running period is not guaranteed to be completed
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/time.h>
28 #define PWM_CTRL_REG 0x0
30 #define PWM_CH_PRD_BASE 0x4
31 #define PWM_CH_PRD_OFFSET 0x4
32 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
34 #define PWMCH_OFFSET 15
35 #define PWM_PRESCAL_MASK GENMASK(3, 0)
36 #define PWM_PRESCAL_OFF 0
38 #define PWM_ACT_STATE BIT(5)
39 #define PWM_CLK_GATING BIT(6)
40 #define PWM_MODE BIT(7)
41 #define PWM_PULSE BIT(8)
42 #define PWM_BYPASS BIT(9)
44 #define PWM_RDY_BASE 28
45 #define PWM_RDY_OFFSET 1
46 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
48 #define PWM_PRD(prd) (((prd) - 1) << 16)
49 #define PWM_PRD_MASK GENMASK(15, 0)
51 #define PWM_DTY_MASK GENMASK(15, 0)
53 #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
54 #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
55 #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
57 #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
59 static const u32 prescaler_table[] = {
75 0, /* Actually 1 but tested separately */
78 struct sun4i_pwm_data {
79 bool has_prescaler_bypass;
80 bool has_direct_mod_clk_output;
84 struct sun4i_pwm_chip {
88 struct reset_control *rst;
91 const struct sun4i_pwm_data *data;
94 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
96 return container_of(chip, struct sun4i_pwm_chip, chip);
99 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100 unsigned long offset)
102 return readl(chip->base + offset);
105 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106 u32 val, unsigned long offset)
108 writel(val, chip->base + offset);
111 static int sun4i_pwm_get_state(struct pwm_chip *chip,
112 struct pwm_device *pwm,
113 struct pwm_state *state)
115 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
118 unsigned int prescaler;
120 clk_rate = clk_get_rate(sun4i_pwm->clk);
124 val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
127 * PWM chapter in H6 manual has a diagram which explains that if bypass
128 * bit is set, no other setting has any meaning. Even more, experiment
129 * proved that also enable bit is ignored in this case.
131 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
132 sun4i_pwm->data->has_direct_mod_clk_output) {
133 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
134 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
135 state->polarity = PWM_POLARITY_NORMAL;
136 state->enabled = true;
140 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
141 sun4i_pwm->data->has_prescaler_bypass)
144 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
149 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
150 state->polarity = PWM_POLARITY_NORMAL;
152 state->polarity = PWM_POLARITY_INVERSED;
154 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
155 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
156 state->enabled = true;
158 state->enabled = false;
160 val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
162 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
163 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
165 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
166 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
171 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
172 const struct pwm_state *state,
173 u32 *dty, u32 *prd, unsigned int *prsclr,
176 u64 clk_rate, div = 0;
177 unsigned int prescaler = 0;
179 clk_rate = clk_get_rate(sun4i_pwm->clk);
181 *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
183 (state->period * clk_rate >= NSEC_PER_SEC) &&
184 (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
185 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
187 /* Skip calculation of other parameters if we bypass them */
191 if (sun4i_pwm->data->has_prescaler_bypass) {
192 /* First, test without any prescaler when available */
193 prescaler = PWM_PRESCAL_MASK;
195 * When not using any prescaler, the clock period in nanoseconds
196 * is not an integer so round it half up instead of
197 * truncating to get less surprising values.
199 div = clk_rate * state->period + NSEC_PER_SEC / 2;
200 do_div(div, NSEC_PER_SEC);
201 if (div - 1 > PWM_PRD_MASK)
205 if (prescaler == 0) {
206 /* Go up from the first divider */
207 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
208 unsigned int pval = prescaler_table[prescaler];
215 div = div * state->period;
216 do_div(div, NSEC_PER_SEC);
217 if (div - 1 <= PWM_PRD_MASK)
221 if (div - 1 > PWM_PRD_MASK)
226 div *= state->duty_cycle;
227 do_div(div, state->period);
234 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
235 const struct pwm_state *state)
237 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
238 struct pwm_state cstate;
239 u32 ctrl, duty = 0, period = 0, val;
241 unsigned int delay_us, prescaler = 0;
244 pwm_get_state(pwm, &cstate);
246 if (!cstate.enabled) {
247 ret = clk_prepare_enable(sun4i_pwm->clk);
249 dev_err(chip->dev, "failed to enable PWM clock\n");
254 ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
257 dev_err(chip->dev, "period exceeds the maximum value\n");
259 clk_disable_unprepare(sun4i_pwm->clk);
263 spin_lock(&sun4i_pwm->ctrl_lock);
264 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
266 if (sun4i_pwm->data->has_direct_mod_clk_output) {
268 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
269 /* We can skip other parameter */
270 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
271 spin_unlock(&sun4i_pwm->ctrl_lock);
275 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
278 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
279 /* Prescaler changed, the clock has to be gated */
280 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
281 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
283 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
284 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
287 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
288 sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
290 if (state->polarity != PWM_POLARITY_NORMAL)
291 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
293 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
295 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
298 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
300 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
302 spin_unlock(&sun4i_pwm->ctrl_lock);
307 /* We need a full period to elapse before disabling the channel. */
308 delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
309 if ((delay_us / 500) > MAX_UDELAY_MS)
310 msleep(delay_us / 1000 + 1);
312 usleep_range(delay_us, delay_us * 2);
314 spin_lock(&sun4i_pwm->ctrl_lock);
315 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
316 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
317 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
318 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
319 spin_unlock(&sun4i_pwm->ctrl_lock);
321 clk_disable_unprepare(sun4i_pwm->clk);
326 static const struct pwm_ops sun4i_pwm_ops = {
327 .apply = sun4i_pwm_apply,
328 .get_state = sun4i_pwm_get_state,
329 .owner = THIS_MODULE,
332 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
333 .has_prescaler_bypass = false,
337 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
338 .has_prescaler_bypass = true,
342 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
343 .has_prescaler_bypass = true,
347 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
348 .has_prescaler_bypass = true,
349 .has_direct_mod_clk_output = true,
353 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
354 .has_prescaler_bypass = true,
355 .has_direct_mod_clk_output = true,
359 static const struct of_device_id sun4i_pwm_dt_ids[] = {
361 .compatible = "allwinner,sun4i-a10-pwm",
362 .data = &sun4i_pwm_dual_nobypass,
364 .compatible = "allwinner,sun5i-a10s-pwm",
365 .data = &sun4i_pwm_dual_bypass,
367 .compatible = "allwinner,sun5i-a13-pwm",
368 .data = &sun4i_pwm_single_bypass,
370 .compatible = "allwinner,sun7i-a20-pwm",
371 .data = &sun4i_pwm_dual_bypass,
373 .compatible = "allwinner,sun8i-h3-pwm",
374 .data = &sun4i_pwm_single_bypass,
376 .compatible = "allwinner,sun50i-a64-pwm",
377 .data = &sun50i_a64_pwm_data,
379 .compatible = "allwinner,sun50i-h6-pwm",
380 .data = &sun50i_h6_pwm_data,
385 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
387 static int sun4i_pwm_probe(struct platform_device *pdev)
389 struct sun4i_pwm_chip *sun4ichip;
392 sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
396 sun4ichip->data = of_device_get_match_data(&pdev->dev);
397 if (!sun4ichip->data)
400 sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
401 if (IS_ERR(sun4ichip->base))
402 return PTR_ERR(sun4ichip->base);
405 * All hardware variants need a source clock that is divided and
406 * then feeds the counter that defines the output wave form. In the
407 * device tree this clock is either unnamed or called "mod".
408 * Some variants (e.g. H6) need another clock to access the
409 * hardware registers; this is called "bus".
410 * So we request "mod" first (and ignore the corner case that a
411 * parent provides a "mod" clock while the right one would be the
412 * unnamed one of the PWM device) and if this is not found we fall
413 * back to the first clock of the PWM.
415 sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
416 if (IS_ERR(sun4ichip->clk))
417 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
418 "get mod clock failed\n");
420 if (!sun4ichip->clk) {
421 sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
422 if (IS_ERR(sun4ichip->clk))
423 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
424 "get unnamed clock failed\n");
427 sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
428 if (IS_ERR(sun4ichip->bus_clk))
429 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
430 "get bus clock failed\n");
432 sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
433 if (IS_ERR(sun4ichip->rst))
434 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
435 "get reset failed\n");
438 ret = reset_control_deassert(sun4ichip->rst);
440 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
446 * We're keeping the bus clock on for the sake of simplicity.
447 * Actually it only needs to be on for hardware register accesses.
449 ret = clk_prepare_enable(sun4ichip->bus_clk);
451 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
456 sun4ichip->chip.dev = &pdev->dev;
457 sun4ichip->chip.ops = &sun4i_pwm_ops;
458 sun4ichip->chip.npwm = sun4ichip->data->npwm;
460 spin_lock_init(&sun4ichip->ctrl_lock);
462 ret = pwmchip_add(&sun4ichip->chip);
464 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
468 platform_set_drvdata(pdev, sun4ichip);
473 clk_disable_unprepare(sun4ichip->bus_clk);
475 reset_control_assert(sun4ichip->rst);
480 static void sun4i_pwm_remove(struct platform_device *pdev)
482 struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
484 pwmchip_remove(&sun4ichip->chip);
486 clk_disable_unprepare(sun4ichip->bus_clk);
487 reset_control_assert(sun4ichip->rst);
490 static struct platform_driver sun4i_pwm_driver = {
493 .of_match_table = sun4i_pwm_dt_ids,
495 .probe = sun4i_pwm_probe,
496 .remove_new = sun4i_pwm_remove,
498 module_platform_driver(sun4i_pwm_driver);
500 MODULE_ALIAS("platform:sun4i-pwm");
501 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
502 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
503 MODULE_LICENSE("GPL v2");