Merge tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / drivers / pwm / pwm-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pwm.h>
17
18 #define CCMR_CHANNEL_SHIFT 8
19 #define CCMR_CHANNEL_MASK  0xFF
20 #define MAX_BREAKINPUT 2
21
22 struct stm32_pwm {
23         struct pwm_chip chip;
24         struct mutex lock; /* protect pwm config/enable */
25         struct clk *clk;
26         struct regmap *regmap;
27         u32 max_arr;
28         bool have_complementary_output;
29         u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
30 };
31
32 struct stm32_breakinput {
33         u32 index;
34         u32 level;
35         u32 filter;
36 };
37
38 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
39 {
40         return container_of(chip, struct stm32_pwm, chip);
41 }
42
43 static u32 active_channels(struct stm32_pwm *dev)
44 {
45         u32 ccer;
46
47         regmap_read(dev->regmap, TIM_CCER, &ccer);
48
49         return ccer & TIM_CCER_CCXE;
50 }
51
52 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
53 {
54         switch (ch) {
55         case 0:
56                 return regmap_write(dev->regmap, TIM_CCR1, value);
57         case 1:
58                 return regmap_write(dev->regmap, TIM_CCR2, value);
59         case 2:
60                 return regmap_write(dev->regmap, TIM_CCR3, value);
61         case 3:
62                 return regmap_write(dev->regmap, TIM_CCR4, value);
63         }
64         return -EINVAL;
65 }
66
67 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
68 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
69 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
70 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
71
72 /*
73  * Capture using PWM input mode:
74  *                              ___          ___
75  * TI[1, 2, 3 or 4]: ........._|   |________|
76  *                             ^0  ^1       ^2
77  *                              .   .        .
78  *                              .   .        XXXXX
79  *                              .   .   XXXXX     |
80  *                              .  XXXXX     .    |
81  *                            XXXXX .        .    |
82  * COUNTER:        ______XXXXX  .   .        .    |_XXX
83  *                 start^       .   .        .        ^stop
84  *                      .       .   .        .
85  *                      v       v   .        v
86  *                                  v
87  * CCR1/CCR3:       tx..........t0...........t2
88  * CCR2/CCR4:       tx..............t1.........
89  *
90  * DMA burst transfer:          |            |
91  *                              v            v
92  * DMA buffer:                  { t0, tx }   { t2, t1 }
93  * DMA done:                                 ^
94  *
95  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
96  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
97  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
98  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
100  *
101  * DMA done, compute:
102  * - Period     = t2 - t0
103  * - Duty cycle = t1 - t0
104  */
105 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
106                                  unsigned long tmo_ms, u32 *raw_prd,
107                                  u32 *raw_dty)
108 {
109         struct device *parent = priv->chip.dev->parent;
110         enum stm32_timers_dmas dma_id;
111         u32 ccen, ccr;
112         int ret;
113
114         /* Ensure registers have been updated, enable counter and capture */
115         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
116         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
117
118         /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
119         dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
120         ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
121         ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
122         regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
123
124         /*
125          * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
126          * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
127          * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
128          * or { CCR3, CCR4 }, { CCR3, CCR4 }
129          */
130         ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
131                                           2, tmo_ms);
132         if (ret)
133                 goto stop;
134
135         /* Period: t2 - t0 (take care of counter overflow) */
136         if (priv->capture[0] <= priv->capture[2])
137                 *raw_prd = priv->capture[2] - priv->capture[0];
138         else
139                 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
140
141         /* Duty cycle capture requires at least two capture units */
142         if (pwm->chip->npwm < 2)
143                 *raw_dty = 0;
144         else if (priv->capture[0] <= priv->capture[3])
145                 *raw_dty = priv->capture[3] - priv->capture[0];
146         else
147                 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
148
149         if (*raw_dty > *raw_prd) {
150                 /*
151                  * Race beetween PWM input and DMA: it may happen
152                  * falling edge triggers new capture on TI2/4 before DMA
153                  * had a chance to read CCR2/4. It means capture[1]
154                  * contains period + duty_cycle. So, subtract period.
155                  */
156                 *raw_dty -= *raw_prd;
157         }
158
159 stop:
160         regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
161         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
162
163         return ret;
164 }
165
166 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
167                              struct pwm_capture *result, unsigned long tmo_ms)
168 {
169         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
170         unsigned long long prd, div, dty;
171         unsigned long rate;
172         unsigned int psc = 0, icpsc, scale;
173         u32 raw_prd = 0, raw_dty = 0;
174         int ret = 0;
175
176         mutex_lock(&priv->lock);
177
178         if (active_channels(priv)) {
179                 ret = -EBUSY;
180                 goto unlock;
181         }
182
183         ret = clk_enable(priv->clk);
184         if (ret) {
185                 dev_err(priv->chip.dev, "failed to enable counter clock\n");
186                 goto unlock;
187         }
188
189         rate = clk_get_rate(priv->clk);
190         if (!rate) {
191                 ret = -EINVAL;
192                 goto clk_dis;
193         }
194
195         /* prescaler: fit timeout window provided by upper layer */
196         div = (unsigned long long)rate * (unsigned long long)tmo_ms;
197         do_div(div, MSEC_PER_SEC);
198         prd = div;
199         while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
200                 psc++;
201                 div = prd;
202                 do_div(div, psc + 1);
203         }
204         regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
205         regmap_write(priv->regmap, TIM_PSC, psc);
206
207         /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
208         regmap_update_bits(priv->regmap,
209                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
210                            TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
211                            TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
212                            TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
213
214         /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
215         regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
216                            TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
217                            TIM_CCER_CC2P : TIM_CCER_CC4P);
218
219         ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
220         if (ret)
221                 goto stop;
222
223         /*
224          * Got a capture. Try to improve accuracy at high rates:
225          * - decrease counter clock prescaler, scale up to max rate.
226          * - use input prescaler, capture once every /2 /4 or /8 edges.
227          */
228         if (raw_prd) {
229                 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
230
231                 scale = max_arr / min(max_arr, raw_prd);
232         } else {
233                 scale = priv->max_arr; /* bellow resolution, use max scale */
234         }
235
236         if (psc && scale > 1) {
237                 /* 2nd measure with new scale */
238                 psc /= scale;
239                 regmap_write(priv->regmap, TIM_PSC, psc);
240                 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
241                                             &raw_dty);
242                 if (ret)
243                         goto stop;
244         }
245
246         /* Compute intermediate period not to exceed timeout at low rates */
247         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
248         do_div(prd, rate);
249
250         for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
251                 /* input prescaler: also keep arbitrary margin */
252                 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
253                         break;
254                 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
255                         break;
256         }
257
258         if (!icpsc)
259                 goto done;
260
261         /* Last chance to improve period accuracy, using input prescaler */
262         regmap_update_bits(priv->regmap,
263                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
264                            TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
265                            FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
266                            FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
267
268         ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
269         if (ret)
270                 goto stop;
271
272         if (raw_dty >= (raw_prd >> icpsc)) {
273                 /*
274                  * We may fall here using input prescaler, when input
275                  * capture starts on high side (before falling edge).
276                  * Example with icpsc to capture on each 4 events:
277                  *
278                  *       start   1st capture                     2nd capture
279                  *         v     v                               v
280                  *         ___   _____   _____   _____   _____   ____
281                  * TI1..4     |__|    |__|    |__|    |__|    |__|
282                  *            v  v    .  .    .  .    .       v  v
283                  * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
284                  * icpsc2/4:  0       1       2       3       0
285                  *            v  v                            v  v
286                  * CCR1/3  ......t0..............................t2
287                  * CCR2/4  ..t1..............................t1'...
288                  *               .                            .  .
289                  * Capture0:     .<----------------------------->.
290                  * Capture1:     .<-------------------------->.  .
291                  *               .                            .  .
292                  * Period:       .<------>                    .  .
293                  * Low side:                                  .<>.
294                  *
295                  * Result:
296                  * - Period = Capture0 / icpsc
297                  * - Duty = Period - Low side = Period - (Capture0 - Capture1)
298                  */
299                 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
300         }
301
302 done:
303         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
304         result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
305         dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
306         result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
307 stop:
308         regmap_write(priv->regmap, TIM_CCER, 0);
309         regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
310         regmap_write(priv->regmap, TIM_PSC, 0);
311 clk_dis:
312         clk_disable(priv->clk);
313 unlock:
314         mutex_unlock(&priv->lock);
315
316         return ret;
317 }
318
319 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
320                             int duty_ns, int period_ns)
321 {
322         unsigned long long prd, div, dty;
323         unsigned int prescaler = 0;
324         u32 ccmr, mask, shift;
325
326         /* Period and prescaler values depends on clock rate */
327         div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
328
329         do_div(div, NSEC_PER_SEC);
330         prd = div;
331
332         while (div > priv->max_arr) {
333                 prescaler++;
334                 div = prd;
335                 do_div(div, prescaler + 1);
336         }
337
338         prd = div;
339
340         if (prescaler > MAX_TIM_PSC)
341                 return -EINVAL;
342
343         /*
344          * All channels share the same prescaler and counter so when two
345          * channels are active at the same time we can't change them
346          */
347         if (active_channels(priv) & ~(1 << ch * 4)) {
348                 u32 psc, arr;
349
350                 regmap_read(priv->regmap, TIM_PSC, &psc);
351                 regmap_read(priv->regmap, TIM_ARR, &arr);
352
353                 if ((psc != prescaler) || (arr != prd - 1))
354                         return -EBUSY;
355         }
356
357         regmap_write(priv->regmap, TIM_PSC, prescaler);
358         regmap_write(priv->regmap, TIM_ARR, prd - 1);
359         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
360
361         /* Calculate the duty cycles */
362         dty = prd * duty_ns;
363         do_div(dty, period_ns);
364
365         write_ccrx(priv, ch, dty);
366
367         /* Configure output mode */
368         shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
369         ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
370         mask = CCMR_CHANNEL_MASK << shift;
371
372         if (ch < 2)
373                 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
374         else
375                 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
376
377         regmap_update_bits(priv->regmap, TIM_BDTR,
378                            TIM_BDTR_MOE | TIM_BDTR_AOE,
379                            TIM_BDTR_MOE | TIM_BDTR_AOE);
380
381         return 0;
382 }
383
384 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
385                                   enum pwm_polarity polarity)
386 {
387         u32 mask;
388
389         mask = TIM_CCER_CC1P << (ch * 4);
390         if (priv->have_complementary_output)
391                 mask |= TIM_CCER_CC1NP << (ch * 4);
392
393         regmap_update_bits(priv->regmap, TIM_CCER, mask,
394                            polarity == PWM_POLARITY_NORMAL ? 0 : mask);
395
396         return 0;
397 }
398
399 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
400 {
401         u32 mask;
402         int ret;
403
404         ret = clk_enable(priv->clk);
405         if (ret)
406                 return ret;
407
408         /* Enable channel */
409         mask = TIM_CCER_CC1E << (ch * 4);
410         if (priv->have_complementary_output)
411                 mask |= TIM_CCER_CC1NE << (ch * 4);
412
413         regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
414
415         /* Make sure that registers are updated */
416         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
417
418         /* Enable controller */
419         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
420
421         return 0;
422 }
423
424 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
425 {
426         u32 mask;
427
428         /* Disable channel */
429         mask = TIM_CCER_CC1E << (ch * 4);
430         if (priv->have_complementary_output)
431                 mask |= TIM_CCER_CC1NE << (ch * 4);
432
433         regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
434
435         /* When all channels are disabled, we can disable the controller */
436         if (!active_channels(priv))
437                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
438
439         clk_disable(priv->clk);
440 }
441
442 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
443                            const struct pwm_state *state)
444 {
445         bool enabled;
446         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
447         int ret;
448
449         enabled = pwm->state.enabled;
450
451         if (enabled && !state->enabled) {
452                 stm32_pwm_disable(priv, pwm->hwpwm);
453                 return 0;
454         }
455
456         if (state->polarity != pwm->state.polarity)
457                 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
458
459         ret = stm32_pwm_config(priv, pwm->hwpwm,
460                                state->duty_cycle, state->period);
461         if (ret)
462                 return ret;
463
464         if (!enabled && state->enabled)
465                 ret = stm32_pwm_enable(priv, pwm->hwpwm);
466
467         return ret;
468 }
469
470 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
471                                   const struct pwm_state *state)
472 {
473         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
474         int ret;
475
476         /* protect common prescaler for all active channels */
477         mutex_lock(&priv->lock);
478         ret = stm32_pwm_apply(chip, pwm, state);
479         mutex_unlock(&priv->lock);
480
481         return ret;
482 }
483
484 static const struct pwm_ops stm32pwm_ops = {
485         .owner = THIS_MODULE,
486         .apply = stm32_pwm_apply_locked,
487         .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
488 };
489
490 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
491                                     int index, int level, int filter)
492 {
493         u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
494         int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
495         u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
496                                 : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
497         u32 bdtr = bke;
498
499         /*
500          * The both bits could be set since only one will be wrote
501          * due to mask value.
502          */
503         if (level)
504                 bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
505
506         bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
507
508         regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
509
510         regmap_read(priv->regmap, TIM_BDTR, &bdtr);
511
512         return (bdtr & bke) ? 0 : -EINVAL;
513 }
514
515 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
516                                        struct device_node *np)
517 {
518         struct stm32_breakinput breakinput[MAX_BREAKINPUT];
519         int nb, ret, i, array_size;
520
521         nb = of_property_count_elems_of_size(np, "st,breakinput",
522                                              sizeof(struct stm32_breakinput));
523
524         /*
525          * Because "st,breakinput" parameter is optional do not make probe
526          * failed if it doesn't exist.
527          */
528         if (nb <= 0)
529                 return 0;
530
531         if (nb > MAX_BREAKINPUT)
532                 return -EINVAL;
533
534         array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
535         ret = of_property_read_u32_array(np, "st,breakinput",
536                                          (u32 *)breakinput, array_size);
537         if (ret)
538                 return ret;
539
540         for (i = 0; i < nb && !ret; i++) {
541                 ret = stm32_pwm_set_breakinput(priv,
542                                                breakinput[i].index,
543                                                breakinput[i].level,
544                                                breakinput[i].filter);
545         }
546
547         return ret;
548 }
549
550 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
551 {
552         u32 ccer;
553
554         /*
555          * If complementary bit doesn't exist writing 1 will have no
556          * effect so we can detect it.
557          */
558         regmap_update_bits(priv->regmap,
559                            TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
560         regmap_read(priv->regmap, TIM_CCER, &ccer);
561         regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
562
563         priv->have_complementary_output = (ccer != 0);
564 }
565
566 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
567 {
568         u32 ccer;
569         int npwm = 0;
570
571         /*
572          * If channels enable bits don't exist writing 1 will have no
573          * effect so we can detect and count them.
574          */
575         regmap_update_bits(priv->regmap,
576                            TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
577         regmap_read(priv->regmap, TIM_CCER, &ccer);
578         regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
579
580         if (ccer & TIM_CCER_CC1E)
581                 npwm++;
582
583         if (ccer & TIM_CCER_CC2E)
584                 npwm++;
585
586         if (ccer & TIM_CCER_CC3E)
587                 npwm++;
588
589         if (ccer & TIM_CCER_CC4E)
590                 npwm++;
591
592         return npwm;
593 }
594
595 static int stm32_pwm_probe(struct platform_device *pdev)
596 {
597         struct device *dev = &pdev->dev;
598         struct device_node *np = dev->of_node;
599         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
600         struct stm32_pwm *priv;
601         int ret;
602
603         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
604         if (!priv)
605                 return -ENOMEM;
606
607         mutex_init(&priv->lock);
608         priv->regmap = ddata->regmap;
609         priv->clk = ddata->clk;
610         priv->max_arr = ddata->max_arr;
611         priv->chip.of_xlate = of_pwm_xlate_with_flags;
612         priv->chip.of_pwm_n_cells = 3;
613
614         if (!priv->regmap || !priv->clk)
615                 return -EINVAL;
616
617         ret = stm32_pwm_apply_breakinputs(priv, np);
618         if (ret)
619                 return ret;
620
621         stm32_pwm_detect_complementary(priv);
622
623         priv->chip.base = -1;
624         priv->chip.dev = dev;
625         priv->chip.ops = &stm32pwm_ops;
626         priv->chip.npwm = stm32_pwm_detect_channels(priv);
627
628         ret = pwmchip_add(&priv->chip);
629         if (ret < 0)
630                 return ret;
631
632         platform_set_drvdata(pdev, priv);
633
634         return 0;
635 }
636
637 static int stm32_pwm_remove(struct platform_device *pdev)
638 {
639         struct stm32_pwm *priv = platform_get_drvdata(pdev);
640         unsigned int i;
641
642         for (i = 0; i < priv->chip.npwm; i++)
643                 pwm_disable(&priv->chip.pwms[i]);
644
645         pwmchip_remove(&priv->chip);
646
647         return 0;
648 }
649
650 static const struct of_device_id stm32_pwm_of_match[] = {
651         { .compatible = "st,stm32-pwm", },
652         { /* end node */ },
653 };
654 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
655
656 static struct platform_driver stm32_pwm_driver = {
657         .probe  = stm32_pwm_probe,
658         .remove = stm32_pwm_remove,
659         .driver = {
660                 .name = "stm32-pwm",
661                 .of_match_table = stm32_pwm_of_match,
662         },
663 };
664 module_platform_driver(stm32_pwm_driver);
665
666 MODULE_ALIAS("platform:stm32-pwm");
667 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
668 MODULE_LICENSE("GPL v2");