1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) STMicroelectronics 2016
5 * Author: Gerald Baeza <gerald.baeza@st.com>
7 * Inspired by timer-stm32.c from Maxime Coquelin
8 * pwm-atmel.c from Bo Shen
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pwm.h>
18 #define CCMR_CHANNEL_SHIFT 8
19 #define CCMR_CHANNEL_MASK 0xFF
20 #define MAX_BREAKINPUT 2
24 struct mutex lock; /* protect pwm config/enable */
26 struct regmap *regmap;
28 bool have_complementary_output;
29 u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
32 struct stm32_breakinput {
38 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
40 return container_of(chip, struct stm32_pwm, chip);
43 static u32 active_channels(struct stm32_pwm *dev)
47 regmap_read(dev->regmap, TIM_CCER, &ccer);
49 return ccer & TIM_CCER_CCXE;
52 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
56 return regmap_write(dev->regmap, TIM_CCR1, value);
58 return regmap_write(dev->regmap, TIM_CCR2, value);
60 return regmap_write(dev->regmap, TIM_CCR3, value);
62 return regmap_write(dev->regmap, TIM_CCR4, value);
67 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
68 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
69 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
70 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
73 * Capture using PWM input mode:
75 * TI[1, 2, 3 or 4]: ........._| |________|
82 * COUNTER: ______XXXXX . . . |_XXX
87 * CCR1/CCR3: tx..........t0...........t2
88 * CCR2/CCR4: tx..............t1.........
90 * DMA burst transfer: | |
92 * DMA buffer: { t0, tx } { t2, t1 }
95 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
96 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
97 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
98 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103 * - Duty cycle = t1 - t0
105 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
106 unsigned long tmo_ms, u32 *raw_prd,
109 struct device *parent = priv->chip.dev->parent;
110 enum stm32_timers_dmas dma_id;
114 /* Ensure registers have been updated, enable counter and capture */
115 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
116 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
118 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
119 dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
120 ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
121 ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
122 regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
125 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
126 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
127 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
128 * or { CCR3, CCR4 }, { CCR3, CCR4 }
130 ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
135 /* Period: t2 - t0 (take care of counter overflow) */
136 if (priv->capture[0] <= priv->capture[2])
137 *raw_prd = priv->capture[2] - priv->capture[0];
139 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
141 /* Duty cycle capture requires at least two capture units */
142 if (pwm->chip->npwm < 2)
144 else if (priv->capture[0] <= priv->capture[3])
145 *raw_dty = priv->capture[3] - priv->capture[0];
147 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
149 if (*raw_dty > *raw_prd) {
151 * Race beetween PWM input and DMA: it may happen
152 * falling edge triggers new capture on TI2/4 before DMA
153 * had a chance to read CCR2/4. It means capture[1]
154 * contains period + duty_cycle. So, subtract period.
156 *raw_dty -= *raw_prd;
160 regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
161 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
166 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
167 struct pwm_capture *result, unsigned long tmo_ms)
169 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
170 unsigned long long prd, div, dty;
172 unsigned int psc = 0, icpsc, scale;
173 u32 raw_prd = 0, raw_dty = 0;
176 mutex_lock(&priv->lock);
178 if (active_channels(priv)) {
183 ret = clk_enable(priv->clk);
185 dev_err(priv->chip.dev, "failed to enable counter clock\n");
189 rate = clk_get_rate(priv->clk);
195 /* prescaler: fit timeout window provided by upper layer */
196 div = (unsigned long long)rate * (unsigned long long)tmo_ms;
197 do_div(div, MSEC_PER_SEC);
199 while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
202 do_div(div, psc + 1);
204 regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
205 regmap_write(priv->regmap, TIM_PSC, psc);
207 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
208 regmap_update_bits(priv->regmap,
209 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
210 TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
211 TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
212 TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
214 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
215 regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
216 TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
217 TIM_CCER_CC2P : TIM_CCER_CC4P);
219 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
224 * Got a capture. Try to improve accuracy at high rates:
225 * - decrease counter clock prescaler, scale up to max rate.
226 * - use input prescaler, capture once every /2 /4 or /8 edges.
229 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
231 scale = max_arr / min(max_arr, raw_prd);
233 scale = priv->max_arr; /* bellow resolution, use max scale */
236 if (psc && scale > 1) {
237 /* 2nd measure with new scale */
239 regmap_write(priv->regmap, TIM_PSC, psc);
240 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
246 /* Compute intermediate period not to exceed timeout at low rates */
247 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
250 for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
251 /* input prescaler: also keep arbitrary margin */
252 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
254 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
261 /* Last chance to improve period accuracy, using input prescaler */
262 regmap_update_bits(priv->regmap,
263 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
264 TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
265 FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
266 FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
268 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
272 if (raw_dty >= (raw_prd >> icpsc)) {
274 * We may fall here using input prescaler, when input
275 * capture starts on high side (before falling edge).
276 * Example with icpsc to capture on each 4 events:
278 * start 1st capture 2nd capture
280 * ___ _____ _____ _____ _____ ____
281 * TI1..4 |__| |__| |__| |__| |__|
283 * icpsc1/3: . 0 . 1 . 2 . 3 . 0
284 * icpsc2/4: 0 1 2 3 0
286 * CCR1/3 ......t0..............................t2
287 * CCR2/4 ..t1..............................t1'...
289 * Capture0: .<----------------------------->.
290 * Capture1: .<-------------------------->. .
292 * Period: .<------> . .
296 * - Period = Capture0 / icpsc
297 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
299 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
303 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
304 result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
305 dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
306 result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
308 regmap_write(priv->regmap, TIM_CCER, 0);
309 regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
310 regmap_write(priv->regmap, TIM_PSC, 0);
312 clk_disable(priv->clk);
314 mutex_unlock(&priv->lock);
319 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
320 int duty_ns, int period_ns)
322 unsigned long long prd, div, dty;
323 unsigned int prescaler = 0;
324 u32 ccmr, mask, shift;
326 /* Period and prescaler values depends on clock rate */
327 div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
329 do_div(div, NSEC_PER_SEC);
332 while (div > priv->max_arr) {
335 do_div(div, prescaler + 1);
340 if (prescaler > MAX_TIM_PSC)
344 * All channels share the same prescaler and counter so when two
345 * channels are active at the same time we can't change them
347 if (active_channels(priv) & ~(1 << ch * 4)) {
350 regmap_read(priv->regmap, TIM_PSC, &psc);
351 regmap_read(priv->regmap, TIM_ARR, &arr);
353 if ((psc != prescaler) || (arr != prd - 1))
357 regmap_write(priv->regmap, TIM_PSC, prescaler);
358 regmap_write(priv->regmap, TIM_ARR, prd - 1);
359 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
361 /* Calculate the duty cycles */
363 do_div(dty, period_ns);
365 write_ccrx(priv, ch, dty);
367 /* Configure output mode */
368 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
369 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
370 mask = CCMR_CHANNEL_MASK << shift;
373 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
375 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
377 regmap_update_bits(priv->regmap, TIM_BDTR,
378 TIM_BDTR_MOE | TIM_BDTR_AOE,
379 TIM_BDTR_MOE | TIM_BDTR_AOE);
384 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
385 enum pwm_polarity polarity)
389 mask = TIM_CCER_CC1P << (ch * 4);
390 if (priv->have_complementary_output)
391 mask |= TIM_CCER_CC1NP << (ch * 4);
393 regmap_update_bits(priv->regmap, TIM_CCER, mask,
394 polarity == PWM_POLARITY_NORMAL ? 0 : mask);
399 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
404 ret = clk_enable(priv->clk);
409 mask = TIM_CCER_CC1E << (ch * 4);
410 if (priv->have_complementary_output)
411 mask |= TIM_CCER_CC1NE << (ch * 4);
413 regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
415 /* Make sure that registers are updated */
416 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
418 /* Enable controller */
419 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
424 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
428 /* Disable channel */
429 mask = TIM_CCER_CC1E << (ch * 4);
430 if (priv->have_complementary_output)
431 mask |= TIM_CCER_CC1NE << (ch * 4);
433 regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
435 /* When all channels are disabled, we can disable the controller */
436 if (!active_channels(priv))
437 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
439 clk_disable(priv->clk);
442 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
443 const struct pwm_state *state)
446 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
449 enabled = pwm->state.enabled;
451 if (enabled && !state->enabled) {
452 stm32_pwm_disable(priv, pwm->hwpwm);
456 if (state->polarity != pwm->state.polarity)
457 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
459 ret = stm32_pwm_config(priv, pwm->hwpwm,
460 state->duty_cycle, state->period);
464 if (!enabled && state->enabled)
465 ret = stm32_pwm_enable(priv, pwm->hwpwm);
470 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
471 const struct pwm_state *state)
473 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
476 /* protect common prescaler for all active channels */
477 mutex_lock(&priv->lock);
478 ret = stm32_pwm_apply(chip, pwm, state);
479 mutex_unlock(&priv->lock);
484 static const struct pwm_ops stm32pwm_ops = {
485 .owner = THIS_MODULE,
486 .apply = stm32_pwm_apply_locked,
487 .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
490 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
491 int index, int level, int filter)
493 u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
494 int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
495 u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
496 : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
500 * The both bits could be set since only one will be wrote
504 bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
506 bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
508 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
510 regmap_read(priv->regmap, TIM_BDTR, &bdtr);
512 return (bdtr & bke) ? 0 : -EINVAL;
515 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
516 struct device_node *np)
518 struct stm32_breakinput breakinput[MAX_BREAKINPUT];
519 int nb, ret, i, array_size;
521 nb = of_property_count_elems_of_size(np, "st,breakinput",
522 sizeof(struct stm32_breakinput));
525 * Because "st,breakinput" parameter is optional do not make probe
526 * failed if it doesn't exist.
531 if (nb > MAX_BREAKINPUT)
534 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
535 ret = of_property_read_u32_array(np, "st,breakinput",
536 (u32 *)breakinput, array_size);
540 for (i = 0; i < nb && !ret; i++) {
541 ret = stm32_pwm_set_breakinput(priv,
544 breakinput[i].filter);
550 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
555 * If complementary bit doesn't exist writing 1 will have no
556 * effect so we can detect it.
558 regmap_update_bits(priv->regmap,
559 TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
560 regmap_read(priv->regmap, TIM_CCER, &ccer);
561 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
563 priv->have_complementary_output = (ccer != 0);
566 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
572 * If channels enable bits don't exist writing 1 will have no
573 * effect so we can detect and count them.
575 regmap_update_bits(priv->regmap,
576 TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
577 regmap_read(priv->regmap, TIM_CCER, &ccer);
578 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
580 if (ccer & TIM_CCER_CC1E)
583 if (ccer & TIM_CCER_CC2E)
586 if (ccer & TIM_CCER_CC3E)
589 if (ccer & TIM_CCER_CC4E)
595 static int stm32_pwm_probe(struct platform_device *pdev)
597 struct device *dev = &pdev->dev;
598 struct device_node *np = dev->of_node;
599 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
600 struct stm32_pwm *priv;
603 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
607 mutex_init(&priv->lock);
608 priv->regmap = ddata->regmap;
609 priv->clk = ddata->clk;
610 priv->max_arr = ddata->max_arr;
611 priv->chip.of_xlate = of_pwm_xlate_with_flags;
612 priv->chip.of_pwm_n_cells = 3;
614 if (!priv->regmap || !priv->clk)
617 ret = stm32_pwm_apply_breakinputs(priv, np);
621 stm32_pwm_detect_complementary(priv);
623 priv->chip.base = -1;
624 priv->chip.dev = dev;
625 priv->chip.ops = &stm32pwm_ops;
626 priv->chip.npwm = stm32_pwm_detect_channels(priv);
628 ret = pwmchip_add(&priv->chip);
632 platform_set_drvdata(pdev, priv);
637 static int stm32_pwm_remove(struct platform_device *pdev)
639 struct stm32_pwm *priv = platform_get_drvdata(pdev);
642 for (i = 0; i < priv->chip.npwm; i++)
643 pwm_disable(&priv->chip.pwms[i]);
645 pwmchip_remove(&priv->chip);
650 static const struct of_device_id stm32_pwm_of_match[] = {
651 { .compatible = "st,stm32-pwm", },
654 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
656 static struct platform_driver stm32_pwm_driver = {
657 .probe = stm32_pwm_probe,
658 .remove = stm32_pwm_remove,
661 .of_match_table = stm32_pwm_of_match,
664 module_platform_driver(stm32_pwm_driver);
666 MODULE_ALIAS("platform:stm32-pwm");
667 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
668 MODULE_LICENSE("GPL v2");