drm/vc4: txp: Protect device resources
[platform/kernel/linux-starfive.git] / drivers / pwm / pwm-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22
23 struct stm32_breakinput {
24         u32 index;
25         u32 level;
26         u32 filter;
27 };
28
29 struct stm32_pwm {
30         struct pwm_chip chip;
31         struct mutex lock; /* protect pwm config/enable */
32         struct clk *clk;
33         struct regmap *regmap;
34         u32 max_arr;
35         bool have_complementary_output;
36         struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
37         unsigned int num_breakinputs;
38         u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
39 };
40
41 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
42 {
43         return container_of(chip, struct stm32_pwm, chip);
44 }
45
46 static u32 active_channels(struct stm32_pwm *dev)
47 {
48         u32 ccer;
49
50         regmap_read(dev->regmap, TIM_CCER, &ccer);
51
52         return ccer & TIM_CCER_CCXE;
53 }
54
55 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
56 {
57         switch (ch) {
58         case 0:
59                 return regmap_write(dev->regmap, TIM_CCR1, value);
60         case 1:
61                 return regmap_write(dev->regmap, TIM_CCR2, value);
62         case 2:
63                 return regmap_write(dev->regmap, TIM_CCR3, value);
64         case 3:
65                 return regmap_write(dev->regmap, TIM_CCR4, value);
66         }
67         return -EINVAL;
68 }
69
70 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
71 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
72 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
73 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
74
75 /*
76  * Capture using PWM input mode:
77  *                              ___          ___
78  * TI[1, 2, 3 or 4]: ........._|   |________|
79  *                             ^0  ^1       ^2
80  *                              .   .        .
81  *                              .   .        XXXXX
82  *                              .   .   XXXXX     |
83  *                              .  XXXXX     .    |
84  *                            XXXXX .        .    |
85  * COUNTER:        ______XXXXX  .   .        .    |_XXX
86  *                 start^       .   .        .        ^stop
87  *                      .       .   .        .
88  *                      v       v   .        v
89  *                                  v
90  * CCR1/CCR3:       tx..........t0...........t2
91  * CCR2/CCR4:       tx..............t1.........
92  *
93  * DMA burst transfer:          |            |
94  *                              v            v
95  * DMA buffer:                  { t0, tx }   { t2, t1 }
96  * DMA done:                                 ^
97  *
98  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103  *
104  * DMA done, compute:
105  * - Period     = t2 - t0
106  * - Duty cycle = t1 - t0
107  */
108 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
109                                  unsigned long tmo_ms, u32 *raw_prd,
110                                  u32 *raw_dty)
111 {
112         struct device *parent = priv->chip.dev->parent;
113         enum stm32_timers_dmas dma_id;
114         u32 ccen, ccr;
115         int ret;
116
117         /* Ensure registers have been updated, enable counter and capture */
118         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
119         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
120
121         /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122         dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
123         ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
124         ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
125         regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
126
127         /*
128          * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129          * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130          * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131          * or { CCR3, CCR4 }, { CCR3, CCR4 }
132          */
133         ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134                                           2, tmo_ms);
135         if (ret)
136                 goto stop;
137
138         /* Period: t2 - t0 (take care of counter overflow) */
139         if (priv->capture[0] <= priv->capture[2])
140                 *raw_prd = priv->capture[2] - priv->capture[0];
141         else
142                 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
143
144         /* Duty cycle capture requires at least two capture units */
145         if (pwm->chip->npwm < 2)
146                 *raw_dty = 0;
147         else if (priv->capture[0] <= priv->capture[3])
148                 *raw_dty = priv->capture[3] - priv->capture[0];
149         else
150                 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
151
152         if (*raw_dty > *raw_prd) {
153                 /*
154                  * Race beetween PWM input and DMA: it may happen
155                  * falling edge triggers new capture on TI2/4 before DMA
156                  * had a chance to read CCR2/4. It means capture[1]
157                  * contains period + duty_cycle. So, subtract period.
158                  */
159                 *raw_dty -= *raw_prd;
160         }
161
162 stop:
163         regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
164         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
165
166         return ret;
167 }
168
169 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
170                              struct pwm_capture *result, unsigned long tmo_ms)
171 {
172         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
173         unsigned long long prd, div, dty;
174         unsigned long rate;
175         unsigned int psc = 0, icpsc, scale;
176         u32 raw_prd = 0, raw_dty = 0;
177         int ret = 0;
178
179         mutex_lock(&priv->lock);
180
181         if (active_channels(priv)) {
182                 ret = -EBUSY;
183                 goto unlock;
184         }
185
186         ret = clk_enable(priv->clk);
187         if (ret) {
188                 dev_err(priv->chip.dev, "failed to enable counter clock\n");
189                 goto unlock;
190         }
191
192         rate = clk_get_rate(priv->clk);
193         if (!rate) {
194                 ret = -EINVAL;
195                 goto clk_dis;
196         }
197
198         /* prescaler: fit timeout window provided by upper layer */
199         div = (unsigned long long)rate * (unsigned long long)tmo_ms;
200         do_div(div, MSEC_PER_SEC);
201         prd = div;
202         while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
203                 psc++;
204                 div = prd;
205                 do_div(div, psc + 1);
206         }
207         regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
208         regmap_write(priv->regmap, TIM_PSC, psc);
209
210         /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
211         regmap_update_bits(priv->regmap,
212                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
213                            TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
214                            TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
215                            TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
216
217         /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
218         regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
219                            TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
220                            TIM_CCER_CC2P : TIM_CCER_CC4P);
221
222         ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
223         if (ret)
224                 goto stop;
225
226         /*
227          * Got a capture. Try to improve accuracy at high rates:
228          * - decrease counter clock prescaler, scale up to max rate.
229          * - use input prescaler, capture once every /2 /4 or /8 edges.
230          */
231         if (raw_prd) {
232                 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
233
234                 scale = max_arr / min(max_arr, raw_prd);
235         } else {
236                 scale = priv->max_arr; /* bellow resolution, use max scale */
237         }
238
239         if (psc && scale > 1) {
240                 /* 2nd measure with new scale */
241                 psc /= scale;
242                 regmap_write(priv->regmap, TIM_PSC, psc);
243                 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
244                                             &raw_dty);
245                 if (ret)
246                         goto stop;
247         }
248
249         /* Compute intermediate period not to exceed timeout at low rates */
250         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
251         do_div(prd, rate);
252
253         for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
254                 /* input prescaler: also keep arbitrary margin */
255                 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
256                         break;
257                 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
258                         break;
259         }
260
261         if (!icpsc)
262                 goto done;
263
264         /* Last chance to improve period accuracy, using input prescaler */
265         regmap_update_bits(priv->regmap,
266                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
267                            TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
268                            FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
269                            FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
270
271         ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
272         if (ret)
273                 goto stop;
274
275         if (raw_dty >= (raw_prd >> icpsc)) {
276                 /*
277                  * We may fall here using input prescaler, when input
278                  * capture starts on high side (before falling edge).
279                  * Example with icpsc to capture on each 4 events:
280                  *
281                  *       start   1st capture                     2nd capture
282                  *         v     v                               v
283                  *         ___   _____   _____   _____   _____   ____
284                  * TI1..4     |__|    |__|    |__|    |__|    |__|
285                  *            v  v    .  .    .  .    .       v  v
286                  * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
287                  * icpsc2/4:  0       1       2       3       0
288                  *            v  v                            v  v
289                  * CCR1/3  ......t0..............................t2
290                  * CCR2/4  ..t1..............................t1'...
291                  *               .                            .  .
292                  * Capture0:     .<----------------------------->.
293                  * Capture1:     .<-------------------------->.  .
294                  *               .                            .  .
295                  * Period:       .<------>                    .  .
296                  * Low side:                                  .<>.
297                  *
298                  * Result:
299                  * - Period = Capture0 / icpsc
300                  * - Duty = Period - Low side = Period - (Capture0 - Capture1)
301                  */
302                 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
303         }
304
305 done:
306         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
307         result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
308         dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
309         result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
310 stop:
311         regmap_write(priv->regmap, TIM_CCER, 0);
312         regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
313         regmap_write(priv->regmap, TIM_PSC, 0);
314 clk_dis:
315         clk_disable(priv->clk);
316 unlock:
317         mutex_unlock(&priv->lock);
318
319         return ret;
320 }
321
322 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
323                             int duty_ns, int period_ns)
324 {
325         unsigned long long prd, div, dty;
326         unsigned int prescaler = 0;
327         u32 ccmr, mask, shift;
328
329         /* Period and prescaler values depends on clock rate */
330         div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
331
332         do_div(div, NSEC_PER_SEC);
333         prd = div;
334
335         while (div > priv->max_arr) {
336                 prescaler++;
337                 div = prd;
338                 do_div(div, prescaler + 1);
339         }
340
341         prd = div;
342
343         if (prescaler > MAX_TIM_PSC)
344                 return -EINVAL;
345
346         /*
347          * All channels share the same prescaler and counter so when two
348          * channels are active at the same time we can't change them
349          */
350         if (active_channels(priv) & ~(1 << ch * 4)) {
351                 u32 psc, arr;
352
353                 regmap_read(priv->regmap, TIM_PSC, &psc);
354                 regmap_read(priv->regmap, TIM_ARR, &arr);
355
356                 if ((psc != prescaler) || (arr != prd - 1))
357                         return -EBUSY;
358         }
359
360         regmap_write(priv->regmap, TIM_PSC, prescaler);
361         regmap_write(priv->regmap, TIM_ARR, prd - 1);
362         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
363
364         /* Calculate the duty cycles */
365         dty = prd * duty_ns;
366         do_div(dty, period_ns);
367
368         write_ccrx(priv, ch, dty);
369
370         /* Configure output mode */
371         shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
372         ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
373         mask = CCMR_CHANNEL_MASK << shift;
374
375         if (ch < 2)
376                 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
377         else
378                 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
379
380         regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE);
381
382         return 0;
383 }
384
385 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
386                                   enum pwm_polarity polarity)
387 {
388         u32 mask;
389
390         mask = TIM_CCER_CC1P << (ch * 4);
391         if (priv->have_complementary_output)
392                 mask |= TIM_CCER_CC1NP << (ch * 4);
393
394         regmap_update_bits(priv->regmap, TIM_CCER, mask,
395                            polarity == PWM_POLARITY_NORMAL ? 0 : mask);
396
397         return 0;
398 }
399
400 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
401 {
402         u32 mask;
403         int ret;
404
405         ret = clk_enable(priv->clk);
406         if (ret)
407                 return ret;
408
409         /* Enable channel */
410         mask = TIM_CCER_CC1E << (ch * 4);
411         if (priv->have_complementary_output)
412                 mask |= TIM_CCER_CC1NE << (ch * 4);
413
414         regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
415
416         /* Make sure that registers are updated */
417         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
418
419         /* Enable controller */
420         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
421
422         return 0;
423 }
424
425 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
426 {
427         u32 mask;
428
429         /* Disable channel */
430         mask = TIM_CCER_CC1E << (ch * 4);
431         if (priv->have_complementary_output)
432                 mask |= TIM_CCER_CC1NE << (ch * 4);
433
434         regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
435
436         /* When all channels are disabled, we can disable the controller */
437         if (!active_channels(priv))
438                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
439
440         clk_disable(priv->clk);
441 }
442
443 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
444                            const struct pwm_state *state)
445 {
446         bool enabled;
447         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
448         int ret;
449
450         enabled = pwm->state.enabled;
451
452         if (enabled && !state->enabled) {
453                 stm32_pwm_disable(priv, pwm->hwpwm);
454                 return 0;
455         }
456
457         if (state->polarity != pwm->state.polarity)
458                 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
459
460         ret = stm32_pwm_config(priv, pwm->hwpwm,
461                                state->duty_cycle, state->period);
462         if (ret)
463                 return ret;
464
465         if (!enabled && state->enabled)
466                 ret = stm32_pwm_enable(priv, pwm->hwpwm);
467
468         return ret;
469 }
470
471 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
472                                   const struct pwm_state *state)
473 {
474         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
475         int ret;
476
477         /* protect common prescaler for all active channels */
478         mutex_lock(&priv->lock);
479         ret = stm32_pwm_apply(chip, pwm, state);
480         mutex_unlock(&priv->lock);
481
482         return ret;
483 }
484
485 static const struct pwm_ops stm32pwm_ops = {
486         .owner = THIS_MODULE,
487         .apply = stm32_pwm_apply_locked,
488         .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
489 };
490
491 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
492                                     const struct stm32_breakinput *bi)
493 {
494         u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
495         u32 bke = TIM_BDTR_BKE(bi->index);
496         u32 bkp = TIM_BDTR_BKP(bi->index);
497         u32 bkf = TIM_BDTR_BKF(bi->index);
498         u32 mask = bkf | bkp | bke;
499         u32 bdtr;
500
501         bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
502
503         if (bi->level)
504                 bdtr |= bkp;
505
506         regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
507
508         regmap_read(priv->regmap, TIM_BDTR, &bdtr);
509
510         return (bdtr & bke) ? 0 : -EINVAL;
511 }
512
513 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
514 {
515         unsigned int i;
516         int ret;
517
518         for (i = 0; i < priv->num_breakinputs; i++) {
519                 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
520                 if (ret < 0)
521                         return ret;
522         }
523
524         return 0;
525 }
526
527 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
528                                        struct device_node *np)
529 {
530         int nb, ret, array_size;
531         unsigned int i;
532
533         nb = of_property_count_elems_of_size(np, "st,breakinput",
534                                              sizeof(struct stm32_breakinput));
535
536         /*
537          * Because "st,breakinput" parameter is optional do not make probe
538          * failed if it doesn't exist.
539          */
540         if (nb <= 0)
541                 return 0;
542
543         if (nb > MAX_BREAKINPUT)
544                 return -EINVAL;
545
546         priv->num_breakinputs = nb;
547         array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
548         ret = of_property_read_u32_array(np, "st,breakinput",
549                                          (u32 *)priv->breakinputs, array_size);
550         if (ret)
551                 return ret;
552
553         for (i = 0; i < priv->num_breakinputs; i++) {
554                 if (priv->breakinputs[i].index > 1 ||
555                     priv->breakinputs[i].level > 1 ||
556                     priv->breakinputs[i].filter > 15)
557                         return -EINVAL;
558         }
559
560         return stm32_pwm_apply_breakinputs(priv);
561 }
562
563 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
564 {
565         u32 ccer;
566
567         /*
568          * If complementary bit doesn't exist writing 1 will have no
569          * effect so we can detect it.
570          */
571         regmap_update_bits(priv->regmap,
572                            TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
573         regmap_read(priv->regmap, TIM_CCER, &ccer);
574         regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
575
576         priv->have_complementary_output = (ccer != 0);
577 }
578
579 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
580 {
581         u32 ccer;
582         int npwm = 0;
583
584         /*
585          * If channels enable bits don't exist writing 1 will have no
586          * effect so we can detect and count them.
587          */
588         regmap_update_bits(priv->regmap,
589                            TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
590         regmap_read(priv->regmap, TIM_CCER, &ccer);
591         regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
592
593         if (ccer & TIM_CCER_CC1E)
594                 npwm++;
595
596         if (ccer & TIM_CCER_CC2E)
597                 npwm++;
598
599         if (ccer & TIM_CCER_CC3E)
600                 npwm++;
601
602         if (ccer & TIM_CCER_CC4E)
603                 npwm++;
604
605         return npwm;
606 }
607
608 static int stm32_pwm_probe(struct platform_device *pdev)
609 {
610         struct device *dev = &pdev->dev;
611         struct device_node *np = dev->of_node;
612         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
613         struct stm32_pwm *priv;
614         int ret;
615
616         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
617         if (!priv)
618                 return -ENOMEM;
619
620         mutex_init(&priv->lock);
621         priv->regmap = ddata->regmap;
622         priv->clk = ddata->clk;
623         priv->max_arr = ddata->max_arr;
624
625         if (!priv->regmap || !priv->clk)
626                 return -EINVAL;
627
628         ret = stm32_pwm_probe_breakinputs(priv, np);
629         if (ret)
630                 return ret;
631
632         stm32_pwm_detect_complementary(priv);
633
634         priv->chip.dev = dev;
635         priv->chip.ops = &stm32pwm_ops;
636         priv->chip.npwm = stm32_pwm_detect_channels(priv);
637
638         ret = pwmchip_add(&priv->chip);
639         if (ret < 0)
640                 return ret;
641
642         platform_set_drvdata(pdev, priv);
643
644         return 0;
645 }
646
647 static int stm32_pwm_remove(struct platform_device *pdev)
648 {
649         struct stm32_pwm *priv = platform_get_drvdata(pdev);
650         unsigned int i;
651
652         for (i = 0; i < priv->chip.npwm; i++)
653                 pwm_disable(&priv->chip.pwms[i]);
654
655         pwmchip_remove(&priv->chip);
656
657         return 0;
658 }
659
660 static int __maybe_unused stm32_pwm_suspend(struct device *dev)
661 {
662         struct stm32_pwm *priv = dev_get_drvdata(dev);
663         unsigned int i;
664         u32 ccer, mask;
665
666         /* Look for active channels */
667         ccer = active_channels(priv);
668
669         for (i = 0; i < priv->chip.npwm; i++) {
670                 mask = TIM_CCER_CC1E << (i * 4);
671                 if (ccer & mask) {
672                         dev_err(dev, "PWM %u still in use by consumer %s\n",
673                                 i, priv->chip.pwms[i].label);
674                         return -EBUSY;
675                 }
676         }
677
678         return pinctrl_pm_select_sleep_state(dev);
679 }
680
681 static int __maybe_unused stm32_pwm_resume(struct device *dev)
682 {
683         struct stm32_pwm *priv = dev_get_drvdata(dev);
684         int ret;
685
686         ret = pinctrl_pm_select_default_state(dev);
687         if (ret)
688                 return ret;
689
690         /* restore breakinput registers that may have been lost in low power */
691         return stm32_pwm_apply_breakinputs(priv);
692 }
693
694 static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
695
696 static const struct of_device_id stm32_pwm_of_match[] = {
697         { .compatible = "st,stm32-pwm", },
698         { /* end node */ },
699 };
700 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
701
702 static struct platform_driver stm32_pwm_driver = {
703         .probe  = stm32_pwm_probe,
704         .remove = stm32_pwm_remove,
705         .driver = {
706                 .name = "stm32-pwm",
707                 .of_match_table = stm32_pwm_of_match,
708                 .pm = &stm32_pwm_pm_ops,
709         },
710 };
711 module_platform_driver(stm32_pwm_driver);
712
713 MODULE_ALIAS("platform:stm32-pwm");
714 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
715 MODULE_LICENSE("GPL v2");