Merge tag 'block-5.14-2021-08-27' of git://git.kernel.dk/linux-block
[platform/kernel/linux-rpi.git] / drivers / pwm / pwm-sifive.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG               0x0
24 #define PWM_SIFIVE_PWMCOUNT             0x8
25 #define PWM_SIFIVE_PWMS                 0x10
26 #define PWM_SIFIVE_PWMCMP0              0x20
27
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP            BIT(28)
38
39 /* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
40 #define PWM_SIFIVE_SIZE_PWMCMP          4
41 #define PWM_SIFIVE_CMPWIDTH             16
42 #define PWM_SIFIVE_DEFAULT_PERIOD       10000000
43
44 struct pwm_sifive_ddata {
45         struct pwm_chip chip;
46         struct mutex lock; /* lock to protect user_count */
47         struct notifier_block notifier;
48         struct clk *clk;
49         void __iomem *regs;
50         unsigned int real_period;
51         unsigned int approx_period;
52         int user_count;
53 };
54
55 static inline
56 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
57 {
58         return container_of(c, struct pwm_sifive_ddata, chip);
59 }
60
61 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
62 {
63         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
64
65         mutex_lock(&ddata->lock);
66         ddata->user_count++;
67         mutex_unlock(&ddata->lock);
68
69         return 0;
70 }
71
72 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
73 {
74         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
75
76         mutex_lock(&ddata->lock);
77         ddata->user_count--;
78         mutex_unlock(&ddata->lock);
79 }
80
81 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82                                     unsigned long rate)
83 {
84         unsigned long long num;
85         unsigned long scale_pow;
86         int scale;
87         u32 val;
88         /*
89          * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90          * period length is using pwmscale which provides the number of bits the
91          * counter is shifted before being feed to the comparators. A period
92          * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93          * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94          */
95         scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96         scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97
98         val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99               FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100         writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101
102         /* As scale <= 15 the shift operation cannot overflow. */
103         num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104         ddata->real_period = div64_ul(num, rate);
105         dev_dbg(ddata->chip.dev,
106                 "New real_period = %u ns\n", ddata->real_period);
107 }
108
109 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110                                  struct pwm_state *state)
111 {
112         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113         u32 duty, val;
114
115         duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
116                      pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
117
118         state->enabled = duty > 0;
119
120         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
121         if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
122                 state->enabled = false;
123
124         state->period = ddata->real_period;
125         state->duty_cycle =
126                 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
127         state->polarity = PWM_POLARITY_INVERSED;
128 }
129
130 static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
131 {
132         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
133         int ret;
134
135         if (enable) {
136                 ret = clk_enable(ddata->clk);
137                 if (ret) {
138                         dev_err(ddata->chip.dev, "Enable clk failed\n");
139                         return ret;
140                 }
141         }
142
143         if (!enable)
144                 clk_disable(ddata->clk);
145
146         return 0;
147 }
148
149 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
150                             const struct pwm_state *state)
151 {
152         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
153         struct pwm_state cur_state;
154         unsigned int duty_cycle;
155         unsigned long long num;
156         bool enabled;
157         int ret = 0;
158         u32 frac;
159
160         if (state->polarity != PWM_POLARITY_INVERSED)
161                 return -EINVAL;
162
163         ret = clk_enable(ddata->clk);
164         if (ret) {
165                 dev_err(ddata->chip.dev, "Enable clk failed\n");
166                 return ret;
167         }
168
169         mutex_lock(&ddata->lock);
170         cur_state = pwm->state;
171         enabled = cur_state.enabled;
172
173         duty_cycle = state->duty_cycle;
174         if (!state->enabled)
175                 duty_cycle = 0;
176
177         /*
178          * The problem of output producing mixed setting as mentioned at top,
179          * occurs here. To minimize the window for this problem, we are
180          * calculating the register values first and then writing them
181          * consecutively
182          */
183         num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
184         frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
185         /* The hardware cannot generate a 100% duty cycle */
186         frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
187
188         if (state->period != ddata->approx_period) {
189                 if (ddata->user_count != 1) {
190                         ret = -EBUSY;
191                         goto exit;
192                 }
193                 ddata->approx_period = state->period;
194                 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
195         }
196
197         writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
198                pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
199
200         if (state->enabled != enabled)
201                 pwm_sifive_enable(chip, state->enabled);
202
203 exit:
204         clk_disable(ddata->clk);
205         mutex_unlock(&ddata->lock);
206         return ret;
207 }
208
209 static const struct pwm_ops pwm_sifive_ops = {
210         .request = pwm_sifive_request,
211         .free = pwm_sifive_free,
212         .get_state = pwm_sifive_get_state,
213         .apply = pwm_sifive_apply,
214         .owner = THIS_MODULE,
215 };
216
217 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
218                                      unsigned long event, void *data)
219 {
220         struct clk_notifier_data *ndata = data;
221         struct pwm_sifive_ddata *ddata =
222                 container_of(nb, struct pwm_sifive_ddata, notifier);
223
224         if (event == POST_RATE_CHANGE)
225                 pwm_sifive_update_clock(ddata, ndata->new_rate);
226
227         return NOTIFY_OK;
228 }
229
230 static int pwm_sifive_probe(struct platform_device *pdev)
231 {
232         struct device *dev = &pdev->dev;
233         struct pwm_sifive_ddata *ddata;
234         struct pwm_chip *chip;
235         int ret;
236
237         ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
238         if (!ddata)
239                 return -ENOMEM;
240
241         mutex_init(&ddata->lock);
242         chip = &ddata->chip;
243         chip->dev = dev;
244         chip->ops = &pwm_sifive_ops;
245         chip->npwm = 4;
246
247         ddata->regs = devm_platform_ioremap_resource(pdev, 0);
248         if (IS_ERR(ddata->regs))
249                 return PTR_ERR(ddata->regs);
250
251         ddata->clk = devm_clk_get(dev, NULL);
252         if (IS_ERR(ddata->clk))
253                 return dev_err_probe(dev, PTR_ERR(ddata->clk),
254                                      "Unable to find controller clock\n");
255
256         ret = clk_prepare_enable(ddata->clk);
257         if (ret) {
258                 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
259                 return ret;
260         }
261
262         /* Watch for changes to underlying clock frequency */
263         ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
264         ret = clk_notifier_register(ddata->clk, &ddata->notifier);
265         if (ret) {
266                 dev_err(dev, "failed to register clock notifier: %d\n", ret);
267                 goto disable_clk;
268         }
269
270         ret = pwmchip_add(chip);
271         if (ret < 0) {
272                 dev_err(dev, "cannot register PWM: %d\n", ret);
273                 goto unregister_clk;
274         }
275
276         platform_set_drvdata(pdev, ddata);
277         dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
278
279         return 0;
280
281 unregister_clk:
282         clk_notifier_unregister(ddata->clk, &ddata->notifier);
283 disable_clk:
284         clk_disable_unprepare(ddata->clk);
285
286         return ret;
287 }
288
289 static int pwm_sifive_remove(struct platform_device *dev)
290 {
291         struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
292         bool is_enabled = false;
293         struct pwm_device *pwm;
294         int ret, ch;
295
296         for (ch = 0; ch < ddata->chip.npwm; ch++) {
297                 pwm = &ddata->chip.pwms[ch];
298                 if (pwm->state.enabled) {
299                         is_enabled = true;
300                         break;
301                 }
302         }
303         if (is_enabled)
304                 clk_disable(ddata->clk);
305
306         clk_disable_unprepare(ddata->clk);
307         ret = pwmchip_remove(&ddata->chip);
308         clk_notifier_unregister(ddata->clk, &ddata->notifier);
309
310         return ret;
311 }
312
313 static const struct of_device_id pwm_sifive_of_match[] = {
314         { .compatible = "sifive,pwm0" },
315         {},
316 };
317 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
318
319 static struct platform_driver pwm_sifive_driver = {
320         .probe = pwm_sifive_probe,
321         .remove = pwm_sifive_remove,
322         .driver = {
323                 .name = "pwm-sifive",
324                 .of_match_table = pwm_sifive_of_match,
325         },
326 };
327 module_platform_driver(pwm_sifive_driver);
328
329 MODULE_DESCRIPTION("SiFive PWM driver");
330 MODULE_LICENSE("GPL v2");