pwm: sifive: Call pwm_sifive_update_clock() while mutex is held
[platform/kernel/linux-starfive.git] / drivers / pwm / pwm-sifive.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG               0x0
24 #define PWM_SIFIVE_PWMCOUNT             0x8
25 #define PWM_SIFIVE_PWMS                 0x10
26 #define PWM_SIFIVE_PWMCMP(i)            (0x20 + 4 * (i))
27
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP            BIT(28)
38
39 #define PWM_SIFIVE_CMPWIDTH             16
40 #define PWM_SIFIVE_DEFAULT_PERIOD       10000000
41
42 struct pwm_sifive_ddata {
43         struct pwm_chip chip;
44         struct mutex lock; /* lock to protect user_count and approx_period */
45         struct notifier_block notifier;
46         struct clk *clk;
47         void __iomem *regs;
48         unsigned int real_period;
49         unsigned int approx_period;
50         int user_count;
51 };
52
53 static inline
54 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
55 {
56         return container_of(c, struct pwm_sifive_ddata, chip);
57 }
58
59 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
60 {
61         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
62
63         mutex_lock(&ddata->lock);
64         ddata->user_count++;
65         mutex_unlock(&ddata->lock);
66
67         return 0;
68 }
69
70 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
71 {
72         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
73
74         mutex_lock(&ddata->lock);
75         ddata->user_count--;
76         mutex_unlock(&ddata->lock);
77 }
78
79 /* Called holding ddata->lock */
80 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
81                                     unsigned long rate)
82 {
83         unsigned long long num;
84         unsigned long scale_pow;
85         int scale;
86         u32 val;
87         /*
88          * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
89          * period length is using pwmscale which provides the number of bits the
90          * counter is shifted before being feed to the comparators. A period
91          * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
92          * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
93          */
94         scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
95         scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
96
97         val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
98               FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
99         writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
100
101         /* As scale <= 15 the shift operation cannot overflow. */
102         num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
103         ddata->real_period = div64_ul(num, rate);
104         dev_dbg(ddata->chip.dev,
105                 "New real_period = %u ns\n", ddata->real_period);
106 }
107
108 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
109                                  struct pwm_state *state)
110 {
111         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
112         u32 duty, val;
113
114         duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
115
116         state->enabled = duty > 0;
117
118         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
119         if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
120                 state->enabled = false;
121
122         state->period = ddata->real_period;
123         state->duty_cycle =
124                 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
125         state->polarity = PWM_POLARITY_INVERSED;
126 }
127
128 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
129                             const struct pwm_state *state)
130 {
131         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
132         struct pwm_state cur_state;
133         unsigned int duty_cycle;
134         unsigned long long num;
135         bool enabled;
136         int ret = 0;
137         u32 frac;
138
139         if (state->polarity != PWM_POLARITY_INVERSED)
140                 return -EINVAL;
141
142         cur_state = pwm->state;
143         enabled = cur_state.enabled;
144
145         duty_cycle = state->duty_cycle;
146         if (!state->enabled)
147                 duty_cycle = 0;
148
149         /*
150          * The problem of output producing mixed setting as mentioned at top,
151          * occurs here. To minimize the window for this problem, we are
152          * calculating the register values first and then writing them
153          * consecutively
154          */
155         num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
156         frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
157         /* The hardware cannot generate a 100% duty cycle */
158         frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
159
160         mutex_lock(&ddata->lock);
161         if (state->period != ddata->approx_period) {
162                 if (ddata->user_count != 1) {
163                         mutex_unlock(&ddata->lock);
164                         return -EBUSY;
165                 }
166                 ddata->approx_period = state->period;
167                 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
168         }
169         mutex_unlock(&ddata->lock);
170
171         /*
172          * If the PWM is enabled the clk is already on. So only enable it
173          * conditionally to have it on exactly once afterwards independent of
174          * the PWM state.
175          */
176         if (!enabled) {
177                 ret = clk_enable(ddata->clk);
178                 if (ret) {
179                         dev_err(ddata->chip.dev, "Enable clk failed\n");
180                         return ret;
181                 }
182         }
183
184         writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
185
186         if (!state->enabled)
187                 clk_disable(ddata->clk);
188
189         return 0;
190 }
191
192 static const struct pwm_ops pwm_sifive_ops = {
193         .request = pwm_sifive_request,
194         .free = pwm_sifive_free,
195         .get_state = pwm_sifive_get_state,
196         .apply = pwm_sifive_apply,
197         .owner = THIS_MODULE,
198 };
199
200 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
201                                      unsigned long event, void *data)
202 {
203         struct clk_notifier_data *ndata = data;
204         struct pwm_sifive_ddata *ddata =
205                 container_of(nb, struct pwm_sifive_ddata, notifier);
206
207         if (event == POST_RATE_CHANGE) {
208                 mutex_lock(&ddata->lock);
209                 pwm_sifive_update_clock(ddata, ndata->new_rate);
210                 mutex_unlock(&ddata->lock);
211         }
212
213         return NOTIFY_OK;
214 }
215
216 static int pwm_sifive_probe(struct platform_device *pdev)
217 {
218         struct device *dev = &pdev->dev;
219         struct pwm_sifive_ddata *ddata;
220         struct pwm_chip *chip;
221         int ret;
222         u32 val;
223         unsigned int enabled_pwms = 0, enabled_clks = 1;
224
225         ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
226         if (!ddata)
227                 return -ENOMEM;
228
229         mutex_init(&ddata->lock);
230         chip = &ddata->chip;
231         chip->dev = dev;
232         chip->ops = &pwm_sifive_ops;
233         chip->npwm = 4;
234
235         ddata->regs = devm_platform_ioremap_resource(pdev, 0);
236         if (IS_ERR(ddata->regs))
237                 return PTR_ERR(ddata->regs);
238
239         ddata->clk = devm_clk_get(dev, NULL);
240         if (IS_ERR(ddata->clk))
241                 return dev_err_probe(dev, PTR_ERR(ddata->clk),
242                                      "Unable to find controller clock\n");
243
244         ret = clk_prepare_enable(ddata->clk);
245         if (ret) {
246                 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
247                 return ret;
248         }
249
250         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
251         if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
252                 unsigned int i;
253
254                 for (i = 0; i < chip->npwm; ++i) {
255                         val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
256                         if (val > 0)
257                                 ++enabled_pwms;
258                 }
259         }
260
261         /* The clk should be on once for each running PWM. */
262         if (enabled_pwms) {
263                 while (enabled_clks < enabled_pwms) {
264                         /* This is not expected to fail as the clk is already on */
265                         ret = clk_enable(ddata->clk);
266                         if (unlikely(ret)) {
267                                 dev_err_probe(dev, ret, "Failed to enable clk\n");
268                                 goto disable_clk;
269                         }
270                         ++enabled_clks;
271                 }
272         } else {
273                 clk_disable(ddata->clk);
274                 enabled_clks = 0;
275         }
276
277         /* Watch for changes to underlying clock frequency */
278         ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
279         ret = clk_notifier_register(ddata->clk, &ddata->notifier);
280         if (ret) {
281                 dev_err(dev, "failed to register clock notifier: %d\n", ret);
282                 goto disable_clk;
283         }
284
285         ret = pwmchip_add(chip);
286         if (ret < 0) {
287                 dev_err(dev, "cannot register PWM: %d\n", ret);
288                 goto unregister_clk;
289         }
290
291         platform_set_drvdata(pdev, ddata);
292         dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
293
294         return 0;
295
296 unregister_clk:
297         clk_notifier_unregister(ddata->clk, &ddata->notifier);
298 disable_clk:
299         while (enabled_clks) {
300                 clk_disable(ddata->clk);
301                 --enabled_clks;
302         }
303         clk_unprepare(ddata->clk);
304
305         return ret;
306 }
307
308 static int pwm_sifive_remove(struct platform_device *dev)
309 {
310         struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
311         struct pwm_device *pwm;
312         int ch;
313
314         pwmchip_remove(&ddata->chip);
315         clk_notifier_unregister(ddata->clk, &ddata->notifier);
316
317         for (ch = 0; ch < ddata->chip.npwm; ch++) {
318                 pwm = &ddata->chip.pwms[ch];
319                 if (pwm->state.enabled)
320                         clk_disable(ddata->clk);
321         }
322
323         clk_unprepare(ddata->clk);
324
325         return 0;
326 }
327
328 static const struct of_device_id pwm_sifive_of_match[] = {
329         { .compatible = "sifive,pwm0" },
330         {},
331 };
332 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
333
334 static struct platform_driver pwm_sifive_driver = {
335         .probe = pwm_sifive_probe,
336         .remove = pwm_sifive_remove,
337         .driver = {
338                 .name = "pwm-sifive",
339                 .of_match_table = pwm_sifive_of_match,
340         },
341 };
342 module_platform_driver(pwm_sifive_driver);
343
344 MODULE_DESCRIPTION("SiFive PWM driver");
345 MODULE_LICENSE("GPL v2");