brd: Support for BLKFLSBUF
[platform/kernel/linux-rpi.git] / drivers / pwm / pwm-sifive.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG               0x0
24 #define PWM_SIFIVE_PWMCOUNT             0x8
25 #define PWM_SIFIVE_PWMS                 0x10
26 #define PWM_SIFIVE_PWMCMP(i)            (0x20 + 4 * (i))
27
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP            BIT(28)
38
39 #define PWM_SIFIVE_CMPWIDTH             16
40 #define PWM_SIFIVE_DEFAULT_PERIOD       10000000
41
42 struct pwm_sifive_ddata {
43         struct pwm_chip chip;
44         struct mutex lock; /* lock to protect user_count */
45         struct notifier_block notifier;
46         struct clk *clk;
47         void __iomem *regs;
48         unsigned int real_period;
49         unsigned int approx_period;
50         int user_count;
51 };
52
53 static inline
54 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
55 {
56         return container_of(c, struct pwm_sifive_ddata, chip);
57 }
58
59 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
60 {
61         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
62
63         mutex_lock(&ddata->lock);
64         ddata->user_count++;
65         mutex_unlock(&ddata->lock);
66
67         return 0;
68 }
69
70 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
71 {
72         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
73
74         mutex_lock(&ddata->lock);
75         ddata->user_count--;
76         mutex_unlock(&ddata->lock);
77 }
78
79 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
80                                     unsigned long rate)
81 {
82         unsigned long long num;
83         unsigned long scale_pow;
84         int scale;
85         u32 val;
86         /*
87          * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
88          * period length is using pwmscale which provides the number of bits the
89          * counter is shifted before being feed to the comparators. A period
90          * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
91          * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
92          */
93         scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
94         scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
95
96         val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
97               FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
98         writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
99
100         /* As scale <= 15 the shift operation cannot overflow. */
101         num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
102         ddata->real_period = div64_ul(num, rate);
103         dev_dbg(ddata->chip.dev,
104                 "New real_period = %u ns\n", ddata->real_period);
105 }
106
107 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
108                                  struct pwm_state *state)
109 {
110         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
111         u32 duty, val;
112
113         duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
114
115         state->enabled = duty > 0;
116
117         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
118         if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
119                 state->enabled = false;
120
121         state->period = ddata->real_period;
122         state->duty_cycle =
123                 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
124         state->polarity = PWM_POLARITY_INVERSED;
125 }
126
127 static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
128 {
129         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
130         int ret;
131
132         if (enable) {
133                 ret = clk_enable(ddata->clk);
134                 if (ret) {
135                         dev_err(ddata->chip.dev, "Enable clk failed\n");
136                         return ret;
137                 }
138         }
139
140         if (!enable)
141                 clk_disable(ddata->clk);
142
143         return 0;
144 }
145
146 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
147                             const struct pwm_state *state)
148 {
149         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
150         struct pwm_state cur_state;
151         unsigned int duty_cycle;
152         unsigned long long num;
153         bool enabled;
154         int ret = 0;
155         u32 frac;
156
157         if (state->polarity != PWM_POLARITY_INVERSED)
158                 return -EINVAL;
159
160         ret = clk_enable(ddata->clk);
161         if (ret) {
162                 dev_err(ddata->chip.dev, "Enable clk failed\n");
163                 return ret;
164         }
165
166         mutex_lock(&ddata->lock);
167         cur_state = pwm->state;
168         enabled = cur_state.enabled;
169
170         duty_cycle = state->duty_cycle;
171         if (!state->enabled)
172                 duty_cycle = 0;
173
174         /*
175          * The problem of output producing mixed setting as mentioned at top,
176          * occurs here. To minimize the window for this problem, we are
177          * calculating the register values first and then writing them
178          * consecutively
179          */
180         num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
181         frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
182         /* The hardware cannot generate a 100% duty cycle */
183         frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
184
185         if (state->period != ddata->approx_period) {
186                 if (ddata->user_count != 1) {
187                         ret = -EBUSY;
188                         goto exit;
189                 }
190                 ddata->approx_period = state->period;
191                 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
192         }
193
194         writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
195
196         if (state->enabled != enabled)
197                 pwm_sifive_enable(chip, state->enabled);
198
199 exit:
200         clk_disable(ddata->clk);
201         mutex_unlock(&ddata->lock);
202         return ret;
203 }
204
205 static const struct pwm_ops pwm_sifive_ops = {
206         .request = pwm_sifive_request,
207         .free = pwm_sifive_free,
208         .get_state = pwm_sifive_get_state,
209         .apply = pwm_sifive_apply,
210         .owner = THIS_MODULE,
211 };
212
213 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
214                                      unsigned long event, void *data)
215 {
216         struct clk_notifier_data *ndata = data;
217         struct pwm_sifive_ddata *ddata =
218                 container_of(nb, struct pwm_sifive_ddata, notifier);
219
220         if (event == POST_RATE_CHANGE) {
221                 mutex_lock(&ddata->lock);
222                 pwm_sifive_update_clock(ddata, ndata->new_rate);
223                 mutex_unlock(&ddata->lock);
224         }
225
226         return NOTIFY_OK;
227 }
228
229 static int pwm_sifive_probe(struct platform_device *pdev)
230 {
231         struct device *dev = &pdev->dev;
232         struct pwm_sifive_ddata *ddata;
233         struct pwm_chip *chip;
234         int ret;
235         u32 val;
236         unsigned int enabled_pwms = 0, enabled_clks = 1;
237
238         ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
239         if (!ddata)
240                 return -ENOMEM;
241
242         mutex_init(&ddata->lock);
243         chip = &ddata->chip;
244         chip->dev = dev;
245         chip->ops = &pwm_sifive_ops;
246         chip->npwm = 4;
247
248         ddata->regs = devm_platform_ioremap_resource(pdev, 0);
249         if (IS_ERR(ddata->regs))
250                 return PTR_ERR(ddata->regs);
251
252         ddata->clk = devm_clk_get(dev, NULL);
253         if (IS_ERR(ddata->clk))
254                 return dev_err_probe(dev, PTR_ERR(ddata->clk),
255                                      "Unable to find controller clock\n");
256
257         ret = clk_prepare_enable(ddata->clk);
258         if (ret) {
259                 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
260                 return ret;
261         }
262
263         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
264         if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
265                 unsigned int i;
266
267                 for (i = 0; i < chip->npwm; ++i) {
268                         val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
269                         if (val > 0)
270                                 ++enabled_pwms;
271                 }
272         }
273
274         /* The clk should be on once for each running PWM. */
275         if (enabled_pwms) {
276                 while (enabled_clks < enabled_pwms) {
277                         /* This is not expected to fail as the clk is already on */
278                         ret = clk_enable(ddata->clk);
279                         if (unlikely(ret)) {
280                                 dev_err_probe(dev, ret, "Failed to enable clk\n");
281                                 goto disable_clk;
282                         }
283                         ++enabled_clks;
284                 }
285         } else {
286                 clk_disable(ddata->clk);
287                 enabled_clks = 0;
288         }
289
290         /* Watch for changes to underlying clock frequency */
291         ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
292         ret = clk_notifier_register(ddata->clk, &ddata->notifier);
293         if (ret) {
294                 dev_err(dev, "failed to register clock notifier: %d\n", ret);
295                 goto disable_clk;
296         }
297
298         ret = pwmchip_add(chip);
299         if (ret < 0) {
300                 dev_err(dev, "cannot register PWM: %d\n", ret);
301                 goto unregister_clk;
302         }
303
304         platform_set_drvdata(pdev, ddata);
305         dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
306
307         return 0;
308
309 unregister_clk:
310         clk_notifier_unregister(ddata->clk, &ddata->notifier);
311 disable_clk:
312         while (enabled_clks) {
313                 clk_disable(ddata->clk);
314                 --enabled_clks;
315         }
316         clk_unprepare(ddata->clk);
317
318         return ret;
319 }
320
321 static int pwm_sifive_remove(struct platform_device *dev)
322 {
323         struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
324         struct pwm_device *pwm;
325         int ch;
326
327         pwmchip_remove(&ddata->chip);
328         clk_notifier_unregister(ddata->clk, &ddata->notifier);
329
330         for (ch = 0; ch < ddata->chip.npwm; ch++) {
331                 pwm = &ddata->chip.pwms[ch];
332                 if (pwm->state.enabled)
333                         clk_disable(ddata->clk);
334         }
335
336         clk_unprepare(ddata->clk);
337
338         return 0;
339 }
340
341 static const struct of_device_id pwm_sifive_of_match[] = {
342         { .compatible = "sifive,pwm0" },
343         {},
344 };
345 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
346
347 static struct platform_driver pwm_sifive_driver = {
348         .probe = pwm_sifive_probe,
349         .remove = pwm_sifive_remove,
350         .driver = {
351                 .name = "pwm-sifive",
352                 .of_match_table = pwm_sifive_of_match,
353         },
354 };
355 module_platform_driver(pwm_sifive_driver);
356
357 MODULE_DESCRIPTION("SiFive PWM driver");
358 MODULE_LICENSE("GPL v2");