Merge branch 'for-6.3/hid-sensor' into for-linus
[platform/kernel/linux-starfive.git] / drivers / pwm / pwm-lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12
13 #include <linux/bits.h>
14 #include <linux/delay.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/time.h>
21
22 #define DEFAULT_SYMBOL_NAMESPACE PWM_LPSS
23
24 #include "pwm-lpss.h"
25
26 #define PWM                             0x00000000
27 #define PWM_ENABLE                      BIT(31)
28 #define PWM_SW_UPDATE                   BIT(30)
29 #define PWM_BASE_UNIT_SHIFT             8
30 #define PWM_ON_TIME_DIV_MASK            GENMASK(7, 0)
31
32 /* Size of each PWM register space if multiple */
33 #define PWM_SIZE                        0x400
34
35 /* BayTrail */
36 const struct pwm_lpss_boardinfo pwm_lpss_byt_info = {
37         .clk_rate = 25000000,
38         .npwm = 1,
39         .base_unit_bits = 16,
40 };
41 EXPORT_SYMBOL_GPL(pwm_lpss_byt_info);
42
43 /* Braswell */
44 const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = {
45         .clk_rate = 19200000,
46         .npwm = 1,
47         .base_unit_bits = 16,
48         .other_devices_aml_touches_pwm_regs = true,
49 };
50 EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info);
51
52 /* Broxton */
53 const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = {
54         .clk_rate = 19200000,
55         .npwm = 4,
56         .base_unit_bits = 22,
57         .bypass = true,
58 };
59 EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info);
60
61 /* Tangier */
62 const struct pwm_lpss_boardinfo pwm_lpss_tng_info = {
63         .clk_rate = 19200000,
64         .npwm = 4,
65         .base_unit_bits = 22,
66 };
67 EXPORT_SYMBOL_GPL(pwm_lpss_tng_info);
68
69 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
70 {
71         return container_of(chip, struct pwm_lpss_chip, chip);
72 }
73
74 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
75 {
76         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
77
78         return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
79 }
80
81 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
82 {
83         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
84
85         writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
86 }
87
88 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
89 {
90         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
91         const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
92         const unsigned int ms = 500 * USEC_PER_MSEC;
93         u32 val;
94         int err;
95
96         /*
97          * PWM Configuration register has SW_UPDATE bit that is set when a new
98          * configuration is written to the register. The bit is automatically
99          * cleared at the start of the next output cycle by the IP block.
100          *
101          * If one writes a new configuration to the register while it still has
102          * the bit enabled, PWM may freeze. That is, while one can still write
103          * to the register, it won't have an effect. Thus, we try to sleep long
104          * enough that the bit gets cleared and make sure the bit is not
105          * enabled while we update the configuration.
106          */
107         err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
108         if (err)
109                 dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
110
111         return err;
112 }
113
114 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
115 {
116         if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
117                 dev_err(pwm->chip->dev, "PWM_SW_UPDATE is still set, skipping update\n");
118                 return -EBUSY;
119         }
120
121         return 0;
122 }
123
124 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
125                              int duty_ns, int period_ns)
126 {
127         unsigned long long on_time_div;
128         unsigned long c = lpwm->info->clk_rate, base_unit_range;
129         unsigned long long base_unit, freq = NSEC_PER_SEC;
130         u32 ctrl;
131
132         do_div(freq, period_ns);
133
134         /*
135          * The equation is:
136          * base_unit = round(base_unit_range * freq / c)
137          */
138         base_unit_range = BIT(lpwm->info->base_unit_bits);
139         freq *= base_unit_range;
140
141         base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
142         /* base_unit must not be 0 and we also want to avoid overflowing it */
143         base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
144
145         on_time_div = 255ULL * duty_ns;
146         do_div(on_time_div, period_ns);
147         on_time_div = 255ULL - on_time_div;
148
149         ctrl = pwm_lpss_read(pwm);
150         ctrl &= ~PWM_ON_TIME_DIV_MASK;
151         ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
152         ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
153         ctrl |= on_time_div;
154
155         pwm_lpss_write(pwm, ctrl);
156         pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
157 }
158
159 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
160 {
161         if (cond)
162                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
163 }
164
165 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
166                                    struct pwm_device *pwm,
167                                    const struct pwm_state *state)
168 {
169         int ret;
170
171         ret = pwm_lpss_is_updating(pwm);
172         if (ret)
173                 return ret;
174
175         pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
176         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
177         ret = pwm_lpss_wait_for_update(pwm);
178         if (ret)
179                 return ret;
180
181         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
182         return 0;
183 }
184
185 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
186                           const struct pwm_state *state)
187 {
188         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
189         int ret = 0;
190
191         if (state->enabled) {
192                 if (!pwm_is_enabled(pwm)) {
193                         pm_runtime_get_sync(chip->dev);
194                         ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
195                         if (ret)
196                                 pm_runtime_put(chip->dev);
197                 } else {
198                         ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
199                 }
200         } else if (pwm_is_enabled(pwm)) {
201                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
202                 pm_runtime_put(chip->dev);
203         }
204
205         return ret;
206 }
207
208 static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
209                               struct pwm_state *state)
210 {
211         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
212         unsigned long base_unit_range;
213         unsigned long long base_unit, freq, on_time_div;
214         u32 ctrl;
215
216         pm_runtime_get_sync(chip->dev);
217
218         base_unit_range = BIT(lpwm->info->base_unit_bits);
219
220         ctrl = pwm_lpss_read(pwm);
221         on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
222         base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
223
224         freq = base_unit * lpwm->info->clk_rate;
225         do_div(freq, base_unit_range);
226         if (freq == 0)
227                 state->period = NSEC_PER_SEC;
228         else
229                 state->period = NSEC_PER_SEC / (unsigned long)freq;
230
231         on_time_div *= state->period;
232         do_div(on_time_div, 255);
233         state->duty_cycle = on_time_div;
234
235         state->polarity = PWM_POLARITY_NORMAL;
236         state->enabled = !!(ctrl & PWM_ENABLE);
237
238         pm_runtime_put(chip->dev);
239
240         return 0;
241 }
242
243 static const struct pwm_ops pwm_lpss_ops = {
244         .apply = pwm_lpss_apply,
245         .get_state = pwm_lpss_get_state,
246         .owner = THIS_MODULE,
247 };
248
249 struct pwm_lpss_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base,
250                                           const struct pwm_lpss_boardinfo *info)
251 {
252         struct pwm_lpss_chip *lpwm;
253         unsigned long c;
254         int i, ret;
255         u32 ctrl;
256
257         if (WARN_ON(info->npwm > LPSS_MAX_PWMS))
258                 return ERR_PTR(-ENODEV);
259
260         lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
261         if (!lpwm)
262                 return ERR_PTR(-ENOMEM);
263
264         lpwm->regs = base;
265         lpwm->info = info;
266
267         c = lpwm->info->clk_rate;
268         if (!c)
269                 return ERR_PTR(-EINVAL);
270
271         lpwm->chip.dev = dev;
272         lpwm->chip.ops = &pwm_lpss_ops;
273         lpwm->chip.npwm = info->npwm;
274
275         ret = devm_pwmchip_add(dev, &lpwm->chip);
276         if (ret) {
277                 dev_err(dev, "failed to add PWM chip: %d\n", ret);
278                 return ERR_PTR(ret);
279         }
280
281         for (i = 0; i < lpwm->info->npwm; i++) {
282                 ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
283                 if (ctrl & PWM_ENABLE)
284                         pm_runtime_get(dev);
285         }
286
287         return lpwm;
288 }
289 EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe);
290
291 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
292 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
293 MODULE_LICENSE("GPL v2");