clk: starfive: Add funtions of saving and restoring data about SYS, AON and STG
[platform/kernel/linux-starfive.git] / drivers / pwm / pwm-dwc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DesignWare PWM Controller driver
4  *
5  * Copyright (C) 2018-2020 Intel Corporation
6  *
7  * Author: Felipe Balbi (Intel)
8  * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9  * Author: Raymond Tan <raymond.tan@intel.com>
10  *
11  * Limitations:
12  * - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
13  *   periods are one or more input clock periods long.
14  */
15
16 #include <linux/bitops.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23
24 #define DWC_TIM_LD_CNT(n)       ((n) * 0x14)
25 #define DWC_TIM_LD_CNT2(n)      (((n) * 4) + 0xb0)
26 #define DWC_TIM_CUR_VAL(n)      (((n) * 0x14) + 0x04)
27 #define DWC_TIM_CTRL(n)         (((n) * 0x14) + 0x08)
28 #define DWC_TIM_EOI(n)          (((n) * 0x14) + 0x0c)
29 #define DWC_TIM_INT_STS(n)      (((n) * 0x14) + 0x10)
30
31 #define DWC_TIMERS_INT_STS      0xa0
32 #define DWC_TIMERS_EOI          0xa4
33 #define DWC_TIMERS_RAW_INT_STS  0xa8
34 #define DWC_TIMERS_COMP_VERSION 0xac
35
36 #define DWC_TIMERS_TOTAL        8
37 #define DWC_CLK_PERIOD_NS       10
38
39 /* Timer Control Register */
40 #define DWC_TIM_CTRL_EN         BIT(0)
41 #define DWC_TIM_CTRL_MODE       BIT(1)
42 #define DWC_TIM_CTRL_MODE_FREE  (0 << 1)
43 #define DWC_TIM_CTRL_MODE_USER  (1 << 1)
44 #define DWC_TIM_CTRL_INT_MASK   BIT(2)
45 #define DWC_TIM_CTRL_PWM        BIT(3)
46
47 struct dwc_pwm_ctx {
48         u32 cnt;
49         u32 cnt2;
50         u32 ctrl;
51 };
52
53 struct dwc_pwm {
54         struct pwm_chip chip;
55         void __iomem *base;
56         struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
57 };
58 #define to_dwc_pwm(p)   (container_of((p), struct dwc_pwm, chip))
59
60 static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
61 {
62         return readl(dwc->base + offset);
63 }
64
65 static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
66 {
67         writel(value, dwc->base + offset);
68 }
69
70 static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
71 {
72         u32 reg;
73
74         reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
75
76         if (enabled)
77                 reg |= DWC_TIM_CTRL_EN;
78         else
79                 reg &= ~DWC_TIM_CTRL_EN;
80
81         dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
82 }
83
84 static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
85                                      struct pwm_device *pwm,
86                                      const struct pwm_state *state)
87 {
88         u64 tmp;
89         u32 ctrl;
90         u32 high;
91         u32 low;
92
93         /*
94          * Calculate width of low and high period in terms of input clock
95          * periods and check are the result within HW limits between 1 and
96          * 2^32 periods.
97          */
98         tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
99         if (tmp < 1 || tmp > (1ULL << 32))
100                 return -ERANGE;
101         low = tmp - 1;
102
103         tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
104                                     DWC_CLK_PERIOD_NS);
105         if (tmp < 1 || tmp > (1ULL << 32))
106                 return -ERANGE;
107         high = tmp - 1;
108
109         /*
110          * Specification says timer usage flow is to disable timer, then
111          * program it followed by enable. It also says Load Count is loaded
112          * into timer after it is enabled - either after a disable or
113          * a reset. Based on measurements it happens also without disable
114          * whenever Load Count is updated. But follow the specification.
115          */
116         __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
117
118         /*
119          * Write Load Count and Load Count 2 registers. Former defines the
120          * width of low period and latter the width of high period in terms
121          * multiple of input clock periods:
122          * Width = ((Count + 1) * input clock period).
123          */
124         dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
125         dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
126
127         /*
128          * Set user-defined mode, timer reloads from Load Count registers
129          * when it counts down to 0.
130          * Set PWM mode, it makes output to toggle and width of low and high
131          * periods are set by Load Count registers.
132          */
133         ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
134         dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
135
136         /*
137          * Enable timer. Output starts from low period.
138          */
139         __dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
140
141         return 0;
142 }
143
144 static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
145                          const struct pwm_state *state)
146 {
147         struct dwc_pwm *dwc = to_dwc_pwm(chip);
148
149         if (state->polarity != PWM_POLARITY_INVERSED)
150                 return -EINVAL;
151
152         if (state->enabled) {
153                 if (!pwm->state.enabled)
154                         pm_runtime_get_sync(chip->dev);
155                 return __dwc_pwm_configure_timer(dwc, pwm, state);
156         } else {
157                 if (pwm->state.enabled) {
158                         __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
159                         pm_runtime_put_sync(chip->dev);
160                 }
161         }
162
163         return 0;
164 }
165
166 static void dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167                               struct pwm_state *state)
168 {
169         struct dwc_pwm *dwc = to_dwc_pwm(chip);
170         u64 duty, period;
171
172         pm_runtime_get_sync(chip->dev);
173
174         state->enabled = !!(dwc_pwm_readl(dwc,
175                                 DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
176
177         duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
178         duty += 1;
179         duty *= DWC_CLK_PERIOD_NS;
180         state->duty_cycle = duty;
181
182         period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
183         period += 1;
184         period *= DWC_CLK_PERIOD_NS;
185         period += duty;
186         state->period = period;
187
188         state->polarity = PWM_POLARITY_INVERSED;
189
190         pm_runtime_put_sync(chip->dev);
191 }
192
193 static const struct pwm_ops dwc_pwm_ops = {
194         .apply = dwc_pwm_apply,
195         .get_state = dwc_pwm_get_state,
196         .owner = THIS_MODULE,
197 };
198
199 static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
200 {
201         struct device *dev = &pci->dev;
202         struct dwc_pwm *dwc;
203         int ret;
204
205         dwc = devm_kzalloc(&pci->dev, sizeof(*dwc), GFP_KERNEL);
206         if (!dwc)
207                 return -ENOMEM;
208
209         ret = pcim_enable_device(pci);
210         if (ret) {
211                 dev_err(&pci->dev,
212                         "Failed to enable device (%pe)\n", ERR_PTR(ret));
213                 return ret;
214         }
215
216         pci_set_master(pci);
217
218         ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
219         if (ret) {
220                 dev_err(&pci->dev,
221                         "Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
222                 return ret;
223         }
224
225         dwc->base = pcim_iomap_table(pci)[0];
226         if (!dwc->base) {
227                 dev_err(&pci->dev, "Base address missing\n");
228                 return -ENOMEM;
229         }
230
231         pci_set_drvdata(pci, dwc);
232
233         dwc->chip.dev = dev;
234         dwc->chip.ops = &dwc_pwm_ops;
235         dwc->chip.npwm = DWC_TIMERS_TOTAL;
236
237         ret = pwmchip_add(&dwc->chip);
238         if (ret)
239                 return ret;
240
241         pm_runtime_put(dev);
242         pm_runtime_allow(dev);
243
244         return 0;
245 }
246
247 static void dwc_pwm_remove(struct pci_dev *pci)
248 {
249         struct dwc_pwm *dwc = pci_get_drvdata(pci);
250
251         pm_runtime_forbid(&pci->dev);
252         pm_runtime_get_noresume(&pci->dev);
253
254         pwmchip_remove(&dwc->chip);
255 }
256
257 #ifdef CONFIG_PM_SLEEP
258 static int dwc_pwm_suspend(struct device *dev)
259 {
260         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
261         struct dwc_pwm *dwc = pci_get_drvdata(pdev);
262         int i;
263
264         for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
265                 if (dwc->chip.pwms[i].state.enabled) {
266                         dev_err(dev, "PWM %u in use by consumer (%s)\n",
267                                 i, dwc->chip.pwms[i].label);
268                         return -EBUSY;
269                 }
270                 dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
271                 dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
272                 dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
273         }
274
275         return 0;
276 }
277
278 static int dwc_pwm_resume(struct device *dev)
279 {
280         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
281         struct dwc_pwm *dwc = pci_get_drvdata(pdev);
282         int i;
283
284         for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
285                 dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
286                 dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
287                 dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
288         }
289
290         return 0;
291 }
292 #endif
293
294 static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
295
296 static const struct pci_device_id dwc_pwm_id_table[] = {
297         { PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
298         {  }    /* Terminating Entry */
299 };
300 MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
301
302 static struct pci_driver dwc_pwm_driver = {
303         .name = "pwm-dwc",
304         .probe = dwc_pwm_probe,
305         .remove = dwc_pwm_remove,
306         .id_table = dwc_pwm_id_table,
307         .driver = {
308                 .pm = &dwc_pwm_pm_ops,
309         },
310 };
311
312 module_pci_driver(dwc_pwm_driver);
313
314 MODULE_AUTHOR("Felipe Balbi (Intel)");
315 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
316 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
317 MODULE_DESCRIPTION("DesignWare PWM Controller");
318 MODULE_LICENSE("GPL");