1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Generic pwmlib implementation
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
21 #include <dt-bindings/pwm/pwm.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
37 return radix_tree_lookup(&pwm_tree, pwm);
40 static int alloc_pwms(unsigned int count)
44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
47 if (start + count > MAX_PWMS)
53 static void free_pwms(struct pwm_chip *chip)
57 for (i = 0; i < chip->npwm; i++) {
58 struct pwm_device *pwm = &chip->pwms[i];
60 radix_tree_delete(&pwm_tree, pwm->pwm);
63 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
71 struct pwm_chip *chip;
76 mutex_lock(&pwm_lock);
78 list_for_each_entry(chip, &pwm_chips, list) {
79 const char *chip_name = dev_name(chip->dev);
81 if (chip_name && strcmp(chip_name, name) == 0) {
82 mutex_unlock(&pwm_lock);
87 mutex_unlock(&pwm_lock);
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
96 if (test_bit(PWMF_REQUESTED, &pwm->flags))
99 if (!try_module_get(pwm->chip->ops->owner))
102 if (pwm->chip->ops->request) {
103 err = pwm->chip->ops->request(pwm->chip, pwm);
105 module_put(pwm->chip->ops->owner);
110 if (pwm->chip->ops->get_state) {
111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 trace_pwm_get(pwm, &pwm->state);
114 if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 pwm->last = pwm->state;
118 set_bit(PWMF_REQUESTED, &pwm->flags);
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
127 struct pwm_device *pwm;
129 if (pc->of_pwm_n_cells < 2)
130 return ERR_PTR(-EINVAL);
132 /* flags in the third cell are optional */
133 if (args->args_count < 2)
134 return ERR_PTR(-EINVAL);
136 if (args->args[0] >= pc->npwm)
137 return ERR_PTR(-EINVAL);
139 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
143 pwm->args.period = args->args[1];
144 pwm->args.polarity = PWM_POLARITY_NORMAL;
146 if (pc->of_pwm_n_cells >= 3) {
147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 pwm->args.polarity = PWM_POLARITY_INVERSED;
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
158 struct pwm_device *pwm;
160 if (pc->of_pwm_n_cells < 1)
161 return ERR_PTR(-EINVAL);
163 /* validate that one cell is specified, optionally with flags */
164 if (args->args_count != 1 && args->args_count != 2)
165 return ERR_PTR(-EINVAL);
167 pwm = pwm_request_from_chip(pc, 0, NULL);
171 pwm->args.period = args->args[0];
172 pwm->args.polarity = PWM_POLARITY_NORMAL;
174 if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
175 pwm->args.polarity = PWM_POLARITY_INVERSED;
179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
181 static void of_pwmchip_add(struct pwm_chip *chip)
183 if (!chip->dev || !chip->dev->of_node)
186 if (!chip->of_xlate) {
189 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
193 chip->of_xlate = of_pwm_xlate_with_flags;
194 chip->of_pwm_n_cells = pwm_cells;
197 of_node_get(chip->dev->of_node);
200 static void of_pwmchip_remove(struct pwm_chip *chip)
203 of_node_put(chip->dev->of_node);
207 * pwm_set_chip_data() - set private chip data for a PWM
209 * @data: pointer to chip-specific data
211 * Returns: 0 on success or a negative error code on failure.
213 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
218 pwm->chip_data = data;
222 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
225 * pwm_get_chip_data() - get private chip data for a PWM
228 * Returns: A pointer to the chip-private data for the PWM device.
230 void *pwm_get_chip_data(struct pwm_device *pwm)
232 return pwm ? pwm->chip_data : NULL;
234 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
236 static bool pwm_ops_check(const struct pwm_chip *chip)
239 const struct pwm_ops *ops = chip->ops;
241 /* driver supports legacy, non-atomic operation */
242 if (ops->config && ops->enable && ops->disable) {
243 if (IS_ENABLED(CONFIG_PWM_DEBUG))
245 "Driver needs updating to atomic API\n");
253 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
255 "Please implement the .get_state() callback\n");
261 * pwmchip_add() - register a new PWM chip
262 * @chip: the PWM chip to add
264 * Register a new PWM chip.
266 * Returns: 0 on success or a negative error code on failure.
268 int pwmchip_add(struct pwm_chip *chip)
270 struct pwm_device *pwm;
274 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
277 if (!pwm_ops_check(chip))
280 mutex_lock(&pwm_lock);
282 ret = alloc_pwms(chip->npwm);
288 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
294 for (i = 0; i < chip->npwm; i++) {
295 pwm = &chip->pwms[i];
298 pwm->pwm = chip->base + i;
301 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
304 bitmap_set(allocated_pwms, chip->base, chip->npwm);
306 INIT_LIST_HEAD(&chip->list);
307 list_add(&chip->list, &pwm_chips);
311 if (IS_ENABLED(CONFIG_OF))
312 of_pwmchip_add(chip);
315 mutex_unlock(&pwm_lock);
318 pwmchip_sysfs_export(chip);
322 EXPORT_SYMBOL_GPL(pwmchip_add);
325 * pwmchip_remove() - remove a PWM chip
326 * @chip: the PWM chip to remove
328 * Removes a PWM chip. This function may return busy if the PWM chip provides
329 * a PWM device that is still requested.
331 * Returns: 0 on success or a negative error code on failure.
333 void pwmchip_remove(struct pwm_chip *chip)
335 pwmchip_sysfs_unexport(chip);
337 mutex_lock(&pwm_lock);
339 list_del_init(&chip->list);
341 if (IS_ENABLED(CONFIG_OF))
342 of_pwmchip_remove(chip);
346 mutex_unlock(&pwm_lock);
348 EXPORT_SYMBOL_GPL(pwmchip_remove);
350 static void devm_pwmchip_remove(void *data)
352 struct pwm_chip *chip = data;
354 pwmchip_remove(chip);
357 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
361 ret = pwmchip_add(chip);
365 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
367 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
370 * pwm_request() - request a PWM device
371 * @pwm: global PWM device index
372 * @label: PWM device label
374 * This function is deprecated, use pwm_get() instead.
376 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
379 struct pwm_device *pwm_request(int pwm, const char *label)
381 struct pwm_device *dev;
384 if (pwm < 0 || pwm >= MAX_PWMS)
385 return ERR_PTR(-EINVAL);
387 mutex_lock(&pwm_lock);
389 dev = pwm_to_device(pwm);
391 dev = ERR_PTR(-EPROBE_DEFER);
395 err = pwm_device_request(dev, label);
400 mutex_unlock(&pwm_lock);
404 EXPORT_SYMBOL_GPL(pwm_request);
407 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
409 * @index: per-chip index of the PWM to request
410 * @label: a literal description string of this PWM
412 * Returns: A pointer to the PWM device at the given index of the given PWM
413 * chip. A negative error code is returned if the index is not valid for the
414 * specified PWM chip or if the PWM device cannot be requested.
416 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
420 struct pwm_device *pwm;
423 if (!chip || index >= chip->npwm)
424 return ERR_PTR(-EINVAL);
426 mutex_lock(&pwm_lock);
427 pwm = &chip->pwms[index];
429 err = pwm_device_request(pwm, label);
433 mutex_unlock(&pwm_lock);
436 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
439 * pwm_free() - free a PWM device
442 * This function is deprecated, use pwm_put() instead.
444 void pwm_free(struct pwm_device *pwm)
448 EXPORT_SYMBOL_GPL(pwm_free);
450 static void pwm_apply_state_debug(struct pwm_device *pwm,
451 const struct pwm_state *state)
453 struct pwm_state *last = &pwm->last;
454 struct pwm_chip *chip = pwm->chip;
455 struct pwm_state s1, s2;
458 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
461 /* No reasonable diagnosis possible without .get_state() */
462 if (!chip->ops->get_state)
466 * *state was just applied. Read out the hardware state and do some
470 chip->ops->get_state(chip, pwm, &s1);
471 trace_pwm_get(pwm, &s1);
474 * The lowlevel driver either ignored .polarity (which is a bug) or as
475 * best effort inverted .polarity and fixed .duty_cycle respectively.
476 * Undo this inversion and fixup for further tests.
478 if (s1.enabled && s1.polarity != state->polarity) {
479 s2.polarity = state->polarity;
480 s2.duty_cycle = s1.period - s1.duty_cycle;
481 s2.period = s1.period;
482 s2.enabled = s1.enabled;
487 if (s2.polarity != state->polarity &&
488 state->duty_cycle < state->period)
489 dev_warn(chip->dev, ".apply ignored .polarity\n");
491 if (state->enabled &&
492 last->polarity == state->polarity &&
493 last->period > s2.period &&
494 last->period <= state->period)
496 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
497 state->period, s2.period, last->period);
499 if (state->enabled && state->period < s2.period)
501 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
502 state->period, s2.period);
504 if (state->enabled &&
505 last->polarity == state->polarity &&
506 last->period == s2.period &&
507 last->duty_cycle > s2.duty_cycle &&
508 last->duty_cycle <= state->duty_cycle)
510 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
511 state->duty_cycle, state->period,
512 s2.duty_cycle, s2.period,
513 last->duty_cycle, last->period);
515 if (state->enabled && state->duty_cycle < s2.duty_cycle)
517 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
518 state->duty_cycle, state->period,
519 s2.duty_cycle, s2.period);
521 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
523 "requested disabled, but yielded enabled with duty > 0\n");
525 /* reapply the state that the driver reported being configured. */
526 err = chip->ops->apply(chip, pwm, &s1);
529 dev_err(chip->dev, "failed to reapply current setting\n");
533 trace_pwm_apply(pwm, &s1);
535 chip->ops->get_state(chip, pwm, last);
536 trace_pwm_get(pwm, last);
538 /* reapplication of the current state should give an exact match */
539 if (s1.enabled != last->enabled ||
540 s1.polarity != last->polarity ||
541 (s1.enabled && s1.period != last->period) ||
542 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
544 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
545 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
546 last->enabled, last->polarity, last->duty_cycle,
551 static int pwm_apply_legacy(struct pwm_chip *chip, struct pwm_device *pwm,
552 const struct pwm_state *state)
555 struct pwm_state initial_state = pwm->state;
557 if (state->polarity != pwm->state.polarity) {
558 if (!chip->ops->set_polarity)
562 * Changing the polarity of a running PWM is only allowed when
563 * the PWM driver implements ->apply().
565 if (pwm->state.enabled) {
566 chip->ops->disable(chip, pwm);
569 * Update pwm->state already here in case
570 * .set_polarity() or another callback depend on that.
572 pwm->state.enabled = false;
575 err = chip->ops->set_polarity(chip, pwm, state->polarity);
579 pwm->state.polarity = state->polarity;
582 if (!state->enabled) {
583 if (pwm->state.enabled)
584 chip->ops->disable(chip, pwm);
590 * We cannot skip calling ->config even if state->period ==
591 * pwm->state.period && state->duty_cycle == pwm->state.duty_cycle
592 * because we might have exited early in the last call to
593 * pwm_apply_state because of !state->enabled and so the two values in
594 * pwm->state might not be configured in hardware.
596 err = chip->ops->config(pwm->chip, pwm,
602 pwm->state.period = state->period;
603 pwm->state.duty_cycle = state->duty_cycle;
605 if (!pwm->state.enabled) {
606 err = chip->ops->enable(chip, pwm);
614 pwm->state = initial_state;
619 * pwm_apply_state() - atomically apply a new state to a PWM device
621 * @state: new state to apply
623 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
625 struct pwm_chip *chip;
629 * Some lowlevel driver's implementations of .apply() make use of
630 * mutexes, also with some drivers only returning when the new
631 * configuration is active calling pwm_apply_state() from atomic context
632 * is a bad idea. So make it explicit that calling this function might
637 if (!pwm || !state || !state->period ||
638 state->duty_cycle > state->period)
643 if (state->period == pwm->state.period &&
644 state->duty_cycle == pwm->state.duty_cycle &&
645 state->polarity == pwm->state.polarity &&
646 state->enabled == pwm->state.enabled &&
647 state->usage_power == pwm->state.usage_power)
650 if (chip->ops->apply)
651 err = chip->ops->apply(chip, pwm, state);
653 err = pwm_apply_legacy(chip, pwm, state);
657 trace_pwm_apply(pwm, state);
662 * only do this after pwm->state was applied as some
663 * implementations of .get_state depend on this
665 pwm_apply_state_debug(pwm, state);
669 EXPORT_SYMBOL_GPL(pwm_apply_state);
672 * pwm_capture() - capture and report a PWM signal
674 * @result: structure to fill with capture result
675 * @timeout: time to wait, in milliseconds, before giving up on capture
677 * Returns: 0 on success or a negative error code on failure.
679 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
680 unsigned long timeout)
684 if (!pwm || !pwm->chip->ops)
687 if (!pwm->chip->ops->capture)
690 mutex_lock(&pwm_lock);
691 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
692 mutex_unlock(&pwm_lock);
696 EXPORT_SYMBOL_GPL(pwm_capture);
699 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
702 * This function will adjust the PWM config to the PWM arguments provided
703 * by the DT or PWM lookup table. This is particularly useful to adapt
704 * the bootloader config to the Linux one.
706 int pwm_adjust_config(struct pwm_device *pwm)
708 struct pwm_state state;
709 struct pwm_args pargs;
711 pwm_get_args(pwm, &pargs);
712 pwm_get_state(pwm, &state);
715 * If the current period is zero it means that either the PWM driver
716 * does not support initial state retrieval or the PWM has not yet
719 * In either case, we setup the new period and polarity, and assign a
723 state.duty_cycle = 0;
724 state.period = pargs.period;
725 state.polarity = pargs.polarity;
727 return pwm_apply_state(pwm, &state);
731 * Adjust the PWM duty cycle/period based on the period value provided
734 if (pargs.period != state.period) {
735 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
737 do_div(dutycycle, state.period);
738 state.duty_cycle = dutycycle;
739 state.period = pargs.period;
743 * If the polarity changed, we should also change the duty cycle.
745 if (pargs.polarity != state.polarity) {
746 state.polarity = pargs.polarity;
747 state.duty_cycle = state.period - state.duty_cycle;
750 return pwm_apply_state(pwm, &state);
752 EXPORT_SYMBOL_GPL(pwm_adjust_config);
754 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
756 struct pwm_chip *chip;
758 mutex_lock(&pwm_lock);
760 list_for_each_entry(chip, &pwm_chips, list)
761 if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
762 mutex_unlock(&pwm_lock);
766 mutex_unlock(&pwm_lock);
768 return ERR_PTR(-EPROBE_DEFER);
771 static struct device_link *pwm_device_link_add(struct device *dev,
772 struct pwm_device *pwm)
774 struct device_link *dl;
778 * No device for the PWM consumer has been provided. It may
779 * impact the PM sequence ordering: the PWM supplier may get
780 * suspended before the consumer.
782 dev_warn(pwm->chip->dev,
783 "No consumer device specified to create a link to\n");
787 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
789 dev_err(dev, "failed to create device link to %s\n",
790 dev_name(pwm->chip->dev));
791 return ERR_PTR(-EINVAL);
798 * of_pwm_get() - request a PWM via the PWM framework
799 * @dev: device for PWM consumer
800 * @np: device node to get the PWM from
801 * @con_id: consumer name
803 * Returns the PWM device parsed from the phandle and index specified in the
804 * "pwms" property of a device tree node or a negative error-code on failure.
805 * Values parsed from the device tree are stored in the returned PWM device
808 * If con_id is NULL, the first PWM device listed in the "pwms" property will
809 * be requested. Otherwise the "pwm-names" property is used to do a reverse
810 * lookup of the PWM index. This also means that the "pwm-names" property
811 * becomes mandatory for devices that look up the PWM device via the con_id
814 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
815 * error code on failure.
817 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
820 struct pwm_device *pwm = NULL;
821 struct of_phandle_args args;
822 struct device_link *dl;
828 index = of_property_match_string(np, "pwm-names", con_id);
830 return ERR_PTR(index);
833 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
836 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
840 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
842 if (PTR_ERR(pc) != -EPROBE_DEFER)
843 pr_err("%s(): PWM chip not found\n", __func__);
849 pwm = pc->of_xlate(pc, &args);
853 dl = pwm_device_link_add(dev, pwm);
855 /* of_xlate ended up calling pwm_request_from_chip() */
862 * If a consumer name was not given, try to look it up from the
863 * "pwm-names" property if it exists. Otherwise use the name of
864 * the user device node.
867 err = of_property_read_string_index(np, "pwm-names", index,
876 of_node_put(args.np);
880 EXPORT_SYMBOL_GPL(of_pwm_get);
883 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
884 * @fwnode: firmware node to get the "pwms" property from
886 * Returns the PWM device parsed from the fwnode and index specified in the
887 * "pwms" property or a negative error-code on failure.
888 * Values parsed from the device tree are stored in the returned PWM device
891 * This is analogous to of_pwm_get() except con_id is not yet supported.
892 * ACPI entries must look like
893 * Package () {"pwms", Package ()
894 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
896 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
897 * error code on failure.
899 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
901 struct pwm_device *pwm;
902 struct fwnode_reference_args args;
903 struct pwm_chip *chip;
906 memset(&args, 0, sizeof(args));
908 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
913 return ERR_PTR(-EPROTO);
915 chip = fwnode_to_pwmchip(args.fwnode);
917 return ERR_CAST(chip);
919 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
923 pwm->args.period = args.args[1];
924 pwm->args.polarity = PWM_POLARITY_NORMAL;
926 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
927 pwm->args.polarity = PWM_POLARITY_INVERSED;
933 * pwm_add_table() - register PWM device consumers
934 * @table: array of consumers to register
935 * @num: number of consumers in table
937 void pwm_add_table(struct pwm_lookup *table, size_t num)
939 mutex_lock(&pwm_lookup_lock);
942 list_add_tail(&table->list, &pwm_lookup_list);
946 mutex_unlock(&pwm_lookup_lock);
950 * pwm_remove_table() - unregister PWM device consumers
951 * @table: array of consumers to unregister
952 * @num: number of consumers in table
954 void pwm_remove_table(struct pwm_lookup *table, size_t num)
956 mutex_lock(&pwm_lookup_lock);
959 list_del(&table->list);
963 mutex_unlock(&pwm_lookup_lock);
967 * pwm_get() - look up and request a PWM device
968 * @dev: device for PWM consumer
969 * @con_id: consumer name
971 * Lookup is first attempted using DT. If the device was not instantiated from
972 * a device tree, a PWM chip and a relative index is looked up via a table
973 * supplied by board setup code (see pwm_add_table()).
975 * Once a PWM chip has been found the specified PWM device will be requested
976 * and is ready to be used.
978 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
979 * error code on failure.
981 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
983 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
984 const char *dev_id = dev ? dev_name(dev) : NULL;
985 struct pwm_device *pwm;
986 struct pwm_chip *chip;
987 struct device_link *dl;
988 unsigned int best = 0;
989 struct pwm_lookup *p, *chosen = NULL;
993 /* look up via DT first */
994 if (is_of_node(fwnode))
995 return of_pwm_get(dev, to_of_node(fwnode), con_id);
997 /* then lookup via ACPI */
998 if (is_acpi_node(fwnode)) {
999 pwm = acpi_pwm_get(fwnode);
1000 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1005 * We look up the provider in the static table typically provided by
1006 * board setup code. We first try to lookup the consumer device by
1007 * name. If the consumer device was passed in as NULL or if no match
1008 * was found, we try to find the consumer by directly looking it up
1011 * If a match is found, the provider PWM chip is looked up by name
1012 * and a PWM device is requested using the PWM device per-chip index.
1014 * The lookup algorithm was shamelessly taken from the clock
1017 * We do slightly fuzzy matching here:
1018 * An entry with a NULL ID is assumed to be a wildcard.
1019 * If an entry has a device ID, it must match
1020 * If an entry has a connection ID, it must match
1021 * Then we take the most specific entry - with the following order
1022 * of precedence: dev+con > dev only > con only.
1024 mutex_lock(&pwm_lookup_lock);
1026 list_for_each_entry(p, &pwm_lookup_list, list) {
1030 if (!dev_id || strcmp(p->dev_id, dev_id))
1037 if (!con_id || strcmp(p->con_id, con_id))
1053 mutex_unlock(&pwm_lookup_lock);
1056 return ERR_PTR(-ENODEV);
1058 chip = pwmchip_find_by_name(chosen->provider);
1061 * If the lookup entry specifies a module, load the module and retry
1062 * the PWM chip lookup. This can be used to work around driver load
1063 * ordering issues if driver's can't be made to properly support the
1064 * deferred probe mechanism.
1066 if (!chip && chosen->module) {
1067 err = request_module(chosen->module);
1069 chip = pwmchip_find_by_name(chosen->provider);
1073 return ERR_PTR(-EPROBE_DEFER);
1075 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1079 dl = pwm_device_link_add(dev, pwm);
1082 return ERR_CAST(dl);
1085 pwm->args.period = chosen->period;
1086 pwm->args.polarity = chosen->polarity;
1090 EXPORT_SYMBOL_GPL(pwm_get);
1093 * pwm_put() - release a PWM device
1096 void pwm_put(struct pwm_device *pwm)
1101 mutex_lock(&pwm_lock);
1103 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1104 pr_warn("PWM device already freed\n");
1108 if (pwm->chip->ops->free)
1109 pwm->chip->ops->free(pwm->chip, pwm);
1111 pwm_set_chip_data(pwm, NULL);
1114 module_put(pwm->chip->ops->owner);
1116 mutex_unlock(&pwm_lock);
1118 EXPORT_SYMBOL_GPL(pwm_put);
1120 static void devm_pwm_release(void *pwm)
1126 * devm_pwm_get() - resource managed pwm_get()
1127 * @dev: device for PWM consumer
1128 * @con_id: consumer name
1130 * This function performs like pwm_get() but the acquired PWM device will
1131 * automatically be released on driver detach.
1133 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1134 * error code on failure.
1136 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1138 struct pwm_device *pwm;
1141 pwm = pwm_get(dev, con_id);
1145 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1147 return ERR_PTR(ret);
1151 EXPORT_SYMBOL_GPL(devm_pwm_get);
1154 * devm_of_pwm_get() - resource managed of_pwm_get()
1155 * @dev: device for PWM consumer
1156 * @np: device node to get the PWM from
1157 * @con_id: consumer name
1159 * This function performs like of_pwm_get() but the acquired PWM device will
1160 * automatically be released on driver detach.
1162 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1163 * error code on failure.
1165 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1168 struct pwm_device *pwm;
1171 pwm = of_pwm_get(dev, np, con_id);
1175 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1177 return ERR_PTR(ret);
1181 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1184 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1185 * @dev: device for PWM consumer
1186 * @fwnode: firmware node to get the PWM from
1187 * @con_id: consumer name
1189 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1190 * acpi_pwm_get() for a detailed description.
1192 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1193 * error code on failure.
1195 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1196 struct fwnode_handle *fwnode,
1199 struct pwm_device *pwm = ERR_PTR(-ENODEV);
1202 if (is_of_node(fwnode))
1203 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1204 else if (is_acpi_node(fwnode))
1205 pwm = acpi_pwm_get(fwnode);
1209 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1211 return ERR_PTR(ret);
1215 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1217 #ifdef CONFIG_DEBUG_FS
1218 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1222 for (i = 0; i < chip->npwm; i++) {
1223 struct pwm_device *pwm = &chip->pwms[i];
1224 struct pwm_state state;
1226 pwm_get_state(pwm, &state);
1228 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1230 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1231 seq_puts(s, " requested");
1234 seq_puts(s, " enabled");
1236 seq_printf(s, " period: %llu ns", state.period);
1237 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1238 seq_printf(s, " polarity: %s",
1239 state.polarity ? "inverse" : "normal");
1241 if (state.usage_power)
1242 seq_puts(s, " usage_power");
1248 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1250 mutex_lock(&pwm_lock);
1253 return seq_list_start(&pwm_chips, *pos);
1256 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1260 return seq_list_next(v, &pwm_chips, pos);
1263 static void pwm_seq_stop(struct seq_file *s, void *v)
1265 mutex_unlock(&pwm_lock);
1268 static int pwm_seq_show(struct seq_file *s, void *v)
1270 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1272 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1273 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1274 dev_name(chip->dev), chip->npwm,
1275 (chip->npwm != 1) ? "s" : "");
1277 pwm_dbg_show(chip, s);
1282 static const struct seq_operations pwm_debugfs_sops = {
1283 .start = pwm_seq_start,
1284 .next = pwm_seq_next,
1285 .stop = pwm_seq_stop,
1286 .show = pwm_seq_show,
1289 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1291 static int __init pwm_debugfs_init(void)
1293 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1298 subsys_initcall(pwm_debugfs_init);
1299 #endif /* CONFIG_DEBUG_FS */