nvme-multipath: fix possible hang in live ns resize with ANA access
[platform/kernel/linux-starfive.git] / drivers / ptp / ptp_vclock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP virtual clock driver
4  *
5  * Copyright 2021 NXP
6  */
7 #include <linux/slab.h>
8 #include <linux/hashtable.h>
9 #include "ptp_private.h"
10
11 #define PTP_VCLOCK_CC_SHIFT             31
12 #define PTP_VCLOCK_CC_MULT              (1 << PTP_VCLOCK_CC_SHIFT)
13 #define PTP_VCLOCK_FADJ_SHIFT           9
14 #define PTP_VCLOCK_FADJ_DENOMINATOR     15625ULL
15 #define PTP_VCLOCK_REFRESH_INTERVAL     (HZ * 2)
16
17 /* protects vclock_hash addition/deletion */
18 static DEFINE_SPINLOCK(vclock_hash_lock);
19
20 static DEFINE_READ_MOSTLY_HASHTABLE(vclock_hash, 8);
21
22 static void ptp_vclock_hash_add(struct ptp_vclock *vclock)
23 {
24         spin_lock(&vclock_hash_lock);
25
26         hlist_add_head_rcu(&vclock->vclock_hash_node,
27                            &vclock_hash[vclock->clock->index % HASH_SIZE(vclock_hash)]);
28
29         spin_unlock(&vclock_hash_lock);
30 }
31
32 static void ptp_vclock_hash_del(struct ptp_vclock *vclock)
33 {
34         spin_lock(&vclock_hash_lock);
35
36         hlist_del_init_rcu(&vclock->vclock_hash_node);
37
38         spin_unlock(&vclock_hash_lock);
39
40         synchronize_rcu();
41 }
42
43 static int ptp_vclock_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
44 {
45         struct ptp_vclock *vclock = info_to_vclock(ptp);
46         unsigned long flags;
47         s64 adj;
48
49         adj = (s64)scaled_ppm << PTP_VCLOCK_FADJ_SHIFT;
50         adj = div_s64(adj, PTP_VCLOCK_FADJ_DENOMINATOR);
51
52         spin_lock_irqsave(&vclock->lock, flags);
53         timecounter_read(&vclock->tc);
54         vclock->cc.mult = PTP_VCLOCK_CC_MULT + adj;
55         spin_unlock_irqrestore(&vclock->lock, flags);
56
57         return 0;
58 }
59
60 static int ptp_vclock_adjtime(struct ptp_clock_info *ptp, s64 delta)
61 {
62         struct ptp_vclock *vclock = info_to_vclock(ptp);
63         unsigned long flags;
64
65         spin_lock_irqsave(&vclock->lock, flags);
66         timecounter_adjtime(&vclock->tc, delta);
67         spin_unlock_irqrestore(&vclock->lock, flags);
68
69         return 0;
70 }
71
72 static int ptp_vclock_gettime(struct ptp_clock_info *ptp,
73                               struct timespec64 *ts)
74 {
75         struct ptp_vclock *vclock = info_to_vclock(ptp);
76         unsigned long flags;
77         u64 ns;
78
79         spin_lock_irqsave(&vclock->lock, flags);
80         ns = timecounter_read(&vclock->tc);
81         spin_unlock_irqrestore(&vclock->lock, flags);
82         *ts = ns_to_timespec64(ns);
83
84         return 0;
85 }
86
87 static int ptp_vclock_gettimex(struct ptp_clock_info *ptp,
88                                struct timespec64 *ts,
89                                struct ptp_system_timestamp *sts)
90 {
91         struct ptp_vclock *vclock = info_to_vclock(ptp);
92         struct ptp_clock *pptp = vclock->pclock;
93         struct timespec64 pts;
94         unsigned long flags;
95         int err;
96         u64 ns;
97
98         err = pptp->info->getcyclesx64(pptp->info, &pts, sts);
99         if (err)
100                 return err;
101
102         spin_lock_irqsave(&vclock->lock, flags);
103         ns = timecounter_cyc2time(&vclock->tc, timespec64_to_ns(&pts));
104         spin_unlock_irqrestore(&vclock->lock, flags);
105
106         *ts = ns_to_timespec64(ns);
107
108         return 0;
109 }
110
111 static int ptp_vclock_settime(struct ptp_clock_info *ptp,
112                               const struct timespec64 *ts)
113 {
114         struct ptp_vclock *vclock = info_to_vclock(ptp);
115         u64 ns = timespec64_to_ns(ts);
116         unsigned long flags;
117
118         spin_lock_irqsave(&vclock->lock, flags);
119         timecounter_init(&vclock->tc, &vclock->cc, ns);
120         spin_unlock_irqrestore(&vclock->lock, flags);
121
122         return 0;
123 }
124
125 static int ptp_vclock_getcrosststamp(struct ptp_clock_info *ptp,
126                                      struct system_device_crosststamp *xtstamp)
127 {
128         struct ptp_vclock *vclock = info_to_vclock(ptp);
129         struct ptp_clock *pptp = vclock->pclock;
130         unsigned long flags;
131         int err;
132         u64 ns;
133
134         err = pptp->info->getcrosscycles(pptp->info, xtstamp);
135         if (err)
136                 return err;
137
138         spin_lock_irqsave(&vclock->lock, flags);
139         ns = timecounter_cyc2time(&vclock->tc, ktime_to_ns(xtstamp->device));
140         spin_unlock_irqrestore(&vclock->lock, flags);
141
142         xtstamp->device = ns_to_ktime(ns);
143
144         return 0;
145 }
146
147 static long ptp_vclock_refresh(struct ptp_clock_info *ptp)
148 {
149         struct ptp_vclock *vclock = info_to_vclock(ptp);
150         struct timespec64 ts;
151
152         ptp_vclock_gettime(&vclock->info, &ts);
153
154         return PTP_VCLOCK_REFRESH_INTERVAL;
155 }
156
157 static const struct ptp_clock_info ptp_vclock_info = {
158         .owner          = THIS_MODULE,
159         .name           = "ptp virtual clock",
160         .max_adj        = 500000000,
161         .adjfine        = ptp_vclock_adjfine,
162         .adjtime        = ptp_vclock_adjtime,
163         .settime64      = ptp_vclock_settime,
164         .do_aux_work    = ptp_vclock_refresh,
165 };
166
167 static u64 ptp_vclock_read(const struct cyclecounter *cc)
168 {
169         struct ptp_vclock *vclock = cc_to_vclock(cc);
170         struct ptp_clock *ptp = vclock->pclock;
171         struct timespec64 ts = {};
172
173         ptp->info->getcycles64(ptp->info, &ts);
174
175         return timespec64_to_ns(&ts);
176 }
177
178 static const struct cyclecounter ptp_vclock_cc = {
179         .read   = ptp_vclock_read,
180         .mask   = CYCLECOUNTER_MASK(32),
181         .mult   = PTP_VCLOCK_CC_MULT,
182         .shift  = PTP_VCLOCK_CC_SHIFT,
183 };
184
185 struct ptp_vclock *ptp_vclock_register(struct ptp_clock *pclock)
186 {
187         struct ptp_vclock *vclock;
188
189         vclock = kzalloc(sizeof(*vclock), GFP_KERNEL);
190         if (!vclock)
191                 return NULL;
192
193         vclock->pclock = pclock;
194         vclock->info = ptp_vclock_info;
195         if (pclock->info->getcyclesx64)
196                 vclock->info.gettimex64 = ptp_vclock_gettimex;
197         else
198                 vclock->info.gettime64 = ptp_vclock_gettime;
199         if (pclock->info->getcrosscycles)
200                 vclock->info.getcrosststamp = ptp_vclock_getcrosststamp;
201         vclock->cc = ptp_vclock_cc;
202
203         snprintf(vclock->info.name, PTP_CLOCK_NAME_LEN, "ptp%d_virt",
204                  pclock->index);
205
206         INIT_HLIST_NODE(&vclock->vclock_hash_node);
207
208         spin_lock_init(&vclock->lock);
209
210         vclock->clock = ptp_clock_register(&vclock->info, &pclock->dev);
211         if (IS_ERR_OR_NULL(vclock->clock)) {
212                 kfree(vclock);
213                 return NULL;
214         }
215
216         timecounter_init(&vclock->tc, &vclock->cc, 0);
217         ptp_schedule_worker(vclock->clock, PTP_VCLOCK_REFRESH_INTERVAL);
218
219         ptp_vclock_hash_add(vclock);
220
221         return vclock;
222 }
223
224 void ptp_vclock_unregister(struct ptp_vclock *vclock)
225 {
226         ptp_vclock_hash_del(vclock);
227
228         ptp_clock_unregister(vclock->clock);
229         kfree(vclock);
230 }
231
232 #if IS_BUILTIN(CONFIG_PTP_1588_CLOCK)
233 int ptp_get_vclocks_index(int pclock_index, int **vclock_index)
234 {
235         char name[PTP_CLOCK_NAME_LEN] = "";
236         struct ptp_clock *ptp;
237         struct device *dev;
238         int num = 0;
239
240         if (pclock_index < 0)
241                 return num;
242
243         snprintf(name, PTP_CLOCK_NAME_LEN, "ptp%d", pclock_index);
244         dev = class_find_device_by_name(ptp_class, name);
245         if (!dev)
246                 return num;
247
248         ptp = dev_get_drvdata(dev);
249
250         if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) {
251                 put_device(dev);
252                 return num;
253         }
254
255         *vclock_index = kzalloc(sizeof(int) * ptp->n_vclocks, GFP_KERNEL);
256         if (!(*vclock_index))
257                 goto out;
258
259         memcpy(*vclock_index, ptp->vclock_index, sizeof(int) * ptp->n_vclocks);
260         num = ptp->n_vclocks;
261 out:
262         mutex_unlock(&ptp->n_vclocks_mux);
263         put_device(dev);
264         return num;
265 }
266 EXPORT_SYMBOL(ptp_get_vclocks_index);
267
268 ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index)
269 {
270         unsigned int hash = vclock_index % HASH_SIZE(vclock_hash);
271         struct ptp_vclock *vclock;
272         unsigned long flags;
273         u64 ns;
274         u64 vclock_ns = 0;
275
276         ns = ktime_to_ns(*hwtstamp);
277
278         rcu_read_lock();
279
280         hlist_for_each_entry_rcu(vclock, &vclock_hash[hash], vclock_hash_node) {
281                 if (vclock->clock->index != vclock_index)
282                         continue;
283
284                 spin_lock_irqsave(&vclock->lock, flags);
285                 vclock_ns = timecounter_cyc2time(&vclock->tc, ns);
286                 spin_unlock_irqrestore(&vclock->lock, flags);
287                 break;
288         }
289
290         rcu_read_unlock();
291
292         return ns_to_ktime(vclock_ns);
293 }
294 EXPORT_SYMBOL(ptp_convert_timestamp);
295 #endif