1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
4 #include <linux/bits.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/ptp_clock_kernel.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/xilinx_spi.h>
19 #include <net/devlink.h>
20 #include <linux/i2c.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/nvmem-consumer.h>
23 #include <linux/crc16.h>
25 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
26 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
28 #define PCI_VENDOR_ID_CELESTICA 0x18d4
29 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
31 static struct class timecard_class = {
61 #define OCP_CTRL_ENABLE BIT(0)
62 #define OCP_CTRL_ADJUST_TIME BIT(1)
63 #define OCP_CTRL_ADJUST_OFFSET BIT(2)
64 #define OCP_CTRL_ADJUST_DRIFT BIT(3)
65 #define OCP_CTRL_ADJUST_SERVO BIT(8)
66 #define OCP_CTRL_READ_TIME_REQ BIT(30)
67 #define OCP_CTRL_READ_TIME_DONE BIT(31)
69 #define OCP_STATUS_IN_SYNC BIT(0)
70 #define OCP_STATUS_IN_HOLDOVER BIT(1)
72 #define OCP_SELECT_CLK_NONE 0
73 #define OCP_SELECT_CLK_REG 0xfe
88 #define TOD_CTRL_PROTOCOL BIT(28)
89 #define TOD_CTRL_DISABLE_FMT_A BIT(17)
90 #define TOD_CTRL_DISABLE_FMT_B BIT(16)
91 #define TOD_CTRL_ENABLE BIT(0)
92 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
93 #define TOD_CTRL_GNSS_SHIFT 24
95 #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
96 #define TOD_STATUS_UTC_VALID BIT(8)
97 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
98 #define TOD_STATUS_LEAP_VALID BIT(16)
126 #define PPS_STATUS_FILTER_ERR BIT(0)
127 #define PPS_STATUS_SUPERV_ERR BIT(1)
140 struct irig_master_reg {
149 #define IRIG_M_CTRL_ENABLE BIT(0)
151 struct irig_slave_reg {
160 #define IRIG_S_CTRL_ENABLE BIT(0)
162 struct dcf_master_reg {
170 #define DCF_M_CTRL_ENABLE BIT(0)
172 struct dcf_slave_reg {
180 #define DCF_S_CTRL_ENABLE BIT(0)
202 struct frequency_reg {
206 #define FREQ_STATUS_VALID BIT(31)
207 #define FREQ_STATUS_ERROR BIT(30)
208 #define FREQ_STATUS_OVERRUN BIT(29)
209 #define FREQ_STATUS_MASK GENMASK(23, 0)
211 struct ptp_ocp_flash_info {
218 struct ptp_ocp_firmware_header {
220 __be16 pci_vendor_id;
221 __be16 pci_device_id;
227 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
229 struct ptp_ocp_i2c_info {
231 unsigned long fixed_rate;
236 struct ptp_ocp_ext_info {
238 irqreturn_t (*irq_fcn)(int irq, void *priv);
239 int (*enable)(void *priv, u32 req, bool enable);
242 struct ptp_ocp_ext_src {
245 struct ptp_ocp_ext_info *info;
249 enum ptp_ocp_sma_mode {
254 struct ptp_ocp_sma_connector {
255 enum ptp_ocp_sma_mode mode;
262 struct ocp_attr_group {
264 const struct attribute_group *group;
267 #define OCP_CAP_BASIC BIT(0)
268 #define OCP_CAP_SIGNAL BIT(1)
269 #define OCP_CAP_FREQ BIT(2)
271 struct ptp_ocp_signal {
281 #define OCP_BOARD_ID_LEN 13
282 #define OCP_SERIAL_LEN 6
285 struct pci_dev *pdev;
288 struct ocp_reg __iomem *reg;
289 struct tod_reg __iomem *tod;
290 struct pps_reg __iomem *pps_to_ext;
291 struct pps_reg __iomem *pps_to_clk;
292 struct gpio_reg __iomem *pps_select;
293 struct gpio_reg __iomem *sma_map1;
294 struct gpio_reg __iomem *sma_map2;
295 struct irig_master_reg __iomem *irig_out;
296 struct irig_slave_reg __iomem *irig_in;
297 struct dcf_master_reg __iomem *dcf_out;
298 struct dcf_slave_reg __iomem *dcf_in;
299 struct tod_reg __iomem *nmea_out;
300 struct frequency_reg __iomem *freq_in[4];
301 struct ptp_ocp_ext_src *signal_out[4];
302 struct ptp_ocp_ext_src *pps;
303 struct ptp_ocp_ext_src *ts0;
304 struct ptp_ocp_ext_src *ts1;
305 struct ptp_ocp_ext_src *ts2;
306 struct ptp_ocp_ext_src *ts3;
307 struct ptp_ocp_ext_src *ts4;
308 struct img_reg __iomem *image;
309 struct ptp_clock *ptp;
310 struct ptp_clock_info ptp_info;
311 struct platform_device *i2c_ctrl;
312 struct platform_device *spi_flash;
313 struct clk_hw *i2c_clk;
314 struct timer_list watchdog;
315 const struct attribute_group **attr_group;
316 const struct ptp_ocp_eeprom_map *eeprom_map;
317 struct dentry *debug_root;
323 int mac_port; /* miniature atomic clock */
328 u8 board_id[OCP_BOARD_ID_LEN];
329 u8 serial[OCP_SERIAL_LEN];
330 bool has_eeprom_data;
334 u32 ts_window_adjust;
336 struct ptp_ocp_signal signal[4];
337 struct ptp_ocp_sma_connector sma[4];
338 const struct ocp_sma_op *sma_op;
341 #define OCP_REQ_TIMESTAMP BIT(0)
342 #define OCP_REQ_PPS BIT(1)
344 struct ocp_resource {
345 unsigned long offset;
348 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
350 unsigned long bp_offset;
351 const char * const name;
354 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
355 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
356 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
357 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
358 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
359 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
360 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
361 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
362 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
363 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
364 struct ptp_perout_request *req);
365 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
366 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
368 static const struct ocp_attr_group fb_timecard_groups[];
370 struct ptp_ocp_eeprom_map {
374 const void * const tag;
377 #define EEPROM_ENTRY(addr, member) \
379 .len = sizeof_field(struct ptp_ocp, member), \
380 .bp_offset = offsetof(struct ptp_ocp, member)
382 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
383 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
386 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
387 { EEPROM_ENTRY(0x43, board_id) },
388 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
392 #define bp_assign_entry(bp, res, val) ({ \
393 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
394 *(typeof(val) *)addr = val; \
397 #define OCP_RES_LOCATION(member) \
398 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
400 #define OCP_MEM_RESOURCE(member) \
401 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
403 #define OCP_SERIAL_RESOURCE(member) \
404 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
406 #define OCP_I2C_RESOURCE(member) \
407 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
409 #define OCP_SPI_RESOURCE(member) \
410 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
412 #define OCP_EXT_RESOURCE(member) \
413 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
415 /* This is the MSI vector mapping used.
424 * 8: HWICAP (notused)
427 * 11: Signal Generator 1
428 * 12: Signal Generator 2
429 * 13: Signal Generator 3
430 * 14: Signal Generator 4
435 static struct ocp_resource ocp_fb_resource[] = {
437 OCP_MEM_RESOURCE(reg),
438 .offset = 0x01000000, .size = 0x10000,
441 OCP_EXT_RESOURCE(ts0),
442 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
443 .extra = &(struct ptp_ocp_ext_info) {
445 .irq_fcn = ptp_ocp_ts_irq,
446 .enable = ptp_ocp_ts_enable,
450 OCP_EXT_RESOURCE(ts1),
451 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
452 .extra = &(struct ptp_ocp_ext_info) {
454 .irq_fcn = ptp_ocp_ts_irq,
455 .enable = ptp_ocp_ts_enable,
459 OCP_EXT_RESOURCE(ts2),
460 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
461 .extra = &(struct ptp_ocp_ext_info) {
463 .irq_fcn = ptp_ocp_ts_irq,
464 .enable = ptp_ocp_ts_enable,
468 OCP_EXT_RESOURCE(ts3),
469 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
470 .extra = &(struct ptp_ocp_ext_info) {
472 .irq_fcn = ptp_ocp_ts_irq,
473 .enable = ptp_ocp_ts_enable,
477 OCP_EXT_RESOURCE(ts4),
478 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
479 .extra = &(struct ptp_ocp_ext_info) {
481 .irq_fcn = ptp_ocp_ts_irq,
482 .enable = ptp_ocp_ts_enable,
485 /* Timestamp for PHC and/or PPS generator */
487 OCP_EXT_RESOURCE(pps),
488 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
489 .extra = &(struct ptp_ocp_ext_info) {
491 .irq_fcn = ptp_ocp_ts_irq,
492 .enable = ptp_ocp_ts_enable,
496 OCP_EXT_RESOURCE(signal_out[0]),
497 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
498 .extra = &(struct ptp_ocp_ext_info) {
500 .irq_fcn = ptp_ocp_signal_irq,
501 .enable = ptp_ocp_signal_enable,
505 OCP_EXT_RESOURCE(signal_out[1]),
506 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
507 .extra = &(struct ptp_ocp_ext_info) {
509 .irq_fcn = ptp_ocp_signal_irq,
510 .enable = ptp_ocp_signal_enable,
514 OCP_EXT_RESOURCE(signal_out[2]),
515 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
516 .extra = &(struct ptp_ocp_ext_info) {
518 .irq_fcn = ptp_ocp_signal_irq,
519 .enable = ptp_ocp_signal_enable,
523 OCP_EXT_RESOURCE(signal_out[3]),
524 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
525 .extra = &(struct ptp_ocp_ext_info) {
527 .irq_fcn = ptp_ocp_signal_irq,
528 .enable = ptp_ocp_signal_enable,
532 OCP_MEM_RESOURCE(pps_to_ext),
533 .offset = 0x01030000, .size = 0x10000,
536 OCP_MEM_RESOURCE(pps_to_clk),
537 .offset = 0x01040000, .size = 0x10000,
540 OCP_MEM_RESOURCE(tod),
541 .offset = 0x01050000, .size = 0x10000,
544 OCP_MEM_RESOURCE(irig_in),
545 .offset = 0x01070000, .size = 0x10000,
548 OCP_MEM_RESOURCE(irig_out),
549 .offset = 0x01080000, .size = 0x10000,
552 OCP_MEM_RESOURCE(dcf_in),
553 .offset = 0x01090000, .size = 0x10000,
556 OCP_MEM_RESOURCE(dcf_out),
557 .offset = 0x010A0000, .size = 0x10000,
560 OCP_MEM_RESOURCE(nmea_out),
561 .offset = 0x010B0000, .size = 0x10000,
564 OCP_MEM_RESOURCE(image),
565 .offset = 0x00020000, .size = 0x1000,
568 OCP_MEM_RESOURCE(pps_select),
569 .offset = 0x00130000, .size = 0x1000,
572 OCP_MEM_RESOURCE(sma_map1),
573 .offset = 0x00140000, .size = 0x1000,
576 OCP_MEM_RESOURCE(sma_map2),
577 .offset = 0x00220000, .size = 0x1000,
580 OCP_I2C_RESOURCE(i2c_ctrl),
581 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
582 .extra = &(struct ptp_ocp_i2c_info) {
584 .fixed_rate = 50000000,
585 .data_size = sizeof(struct xiic_i2c_platform_data),
586 .data = &(struct xiic_i2c_platform_data) {
588 .devices = (struct i2c_board_info[]) {
589 { I2C_BOARD_INFO("24c02", 0x50) },
590 { I2C_BOARD_INFO("24mac402", 0x58),
591 .platform_data = "mac" },
597 OCP_SERIAL_RESOURCE(gnss_port),
598 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
601 OCP_SERIAL_RESOURCE(gnss2_port),
602 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
605 OCP_SERIAL_RESOURCE(mac_port),
606 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
609 OCP_SERIAL_RESOURCE(nmea_port),
610 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
613 OCP_SPI_RESOURCE(spi_flash),
614 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
615 .extra = &(struct ptp_ocp_flash_info) {
616 .name = "xilinx_spi", .pci_offset = 0,
617 .data_size = sizeof(struct xspi_platform_data),
618 .data = &(struct xspi_platform_data) {
622 .devices = &(struct spi_board_info) {
623 .modalias = "spi-nor",
629 OCP_MEM_RESOURCE(freq_in[0]),
630 .offset = 0x01200000, .size = 0x10000,
633 OCP_MEM_RESOURCE(freq_in[1]),
634 .offset = 0x01210000, .size = 0x10000,
637 OCP_MEM_RESOURCE(freq_in[2]),
638 .offset = 0x01220000, .size = 0x10000,
641 OCP_MEM_RESOURCE(freq_in[3]),
642 .offset = 0x01230000, .size = 0x10000,
645 .setup = ptp_ocp_fb_board_init,
650 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
651 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
652 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
655 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
657 static DEFINE_MUTEX(ptp_ocp_lock);
658 static DEFINE_IDR(ptp_ocp_idr);
660 struct ocp_selector {
665 static const struct ocp_selector ptp_ocp_clock[] = {
666 { .name = "NONE", .value = 0 },
667 { .name = "TOD", .value = 1 },
668 { .name = "IRIG", .value = 2 },
669 { .name = "PPS", .value = 3 },
670 { .name = "PTP", .value = 4 },
671 { .name = "RTC", .value = 5 },
672 { .name = "DCF", .value = 6 },
673 { .name = "REGS", .value = 0xfe },
674 { .name = "EXT", .value = 0xff },
678 #define SMA_DISABLE BIT(16)
679 #define SMA_ENABLE BIT(15)
680 #define SMA_SELECT_MASK GENMASK(14, 0)
682 static const struct ocp_selector ptp_ocp_sma_in[] = {
683 { .name = "10Mhz", .value = 0x0000 },
684 { .name = "PPS1", .value = 0x0001 },
685 { .name = "PPS2", .value = 0x0002 },
686 { .name = "TS1", .value = 0x0004 },
687 { .name = "TS2", .value = 0x0008 },
688 { .name = "IRIG", .value = 0x0010 },
689 { .name = "DCF", .value = 0x0020 },
690 { .name = "TS3", .value = 0x0040 },
691 { .name = "TS4", .value = 0x0080 },
692 { .name = "FREQ1", .value = 0x0100 },
693 { .name = "FREQ2", .value = 0x0200 },
694 { .name = "FREQ3", .value = 0x0400 },
695 { .name = "FREQ4", .value = 0x0800 },
696 { .name = "None", .value = SMA_DISABLE },
700 static const struct ocp_selector ptp_ocp_sma_out[] = {
701 { .name = "10Mhz", .value = 0x0000 },
702 { .name = "PHC", .value = 0x0001 },
703 { .name = "MAC", .value = 0x0002 },
704 { .name = "GNSS1", .value = 0x0004 },
705 { .name = "GNSS2", .value = 0x0008 },
706 { .name = "IRIG", .value = 0x0010 },
707 { .name = "DCF", .value = 0x0020 },
708 { .name = "GEN1", .value = 0x0040 },
709 { .name = "GEN2", .value = 0x0080 },
710 { .name = "GEN3", .value = 0x0100 },
711 { .name = "GEN4", .value = 0x0200 },
712 { .name = "GND", .value = 0x2000 },
713 { .name = "VCC", .value = 0x4000 },
718 const struct ocp_selector *tbl[2];
719 void (*init)(struct ptp_ocp *bp);
720 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
721 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
722 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
726 ptp_ocp_sma_init(struct ptp_ocp *bp)
728 return bp->sma_op->init(bp);
732 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
734 return bp->sma_op->get(bp, sma_nr);
738 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
740 return bp->sma_op->set_inputs(bp, sma_nr, val);
744 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
746 return bp->sma_op->set_output(bp, sma_nr, val);
750 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
754 for (i = 0; tbl[i].name; i++)
755 if (tbl[i].value == val)
761 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
766 for (i = 0; tbl[i].name; i++) {
767 select = tbl[i].name;
768 if (!strncasecmp(name, select, strlen(select)))
775 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
781 for (i = 0; tbl[i].name; i++)
782 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
785 count += sysfs_emit_at(buf, count, "\n");
790 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
791 struct ptp_system_timestamp *sts)
793 u32 ctrl, time_sec, time_ns;
796 ptp_read_system_prets(sts);
798 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
799 iowrite32(ctrl, &bp->reg->ctrl);
801 for (i = 0; i < 100; i++) {
802 ctrl = ioread32(&bp->reg->ctrl);
803 if (ctrl & OCP_CTRL_READ_TIME_DONE)
806 ptp_read_system_postts(sts);
808 if (sts && bp->ts_window_adjust) {
809 s64 ns = timespec64_to_ns(&sts->post_ts);
811 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
814 time_ns = ioread32(&bp->reg->time_ns);
815 time_sec = ioread32(&bp->reg->time_sec);
817 ts->tv_sec = time_sec;
818 ts->tv_nsec = time_ns;
820 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
824 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
825 struct ptp_system_timestamp *sts)
827 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
831 spin_lock_irqsave(&bp->lock, flags);
832 err = __ptp_ocp_gettime_locked(bp, ts, sts);
833 spin_unlock_irqrestore(&bp->lock, flags);
839 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
841 u32 ctrl, time_sec, time_ns;
844 time_ns = ts->tv_nsec;
845 time_sec = ts->tv_sec;
847 select = ioread32(&bp->reg->select);
848 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
850 iowrite32(time_ns, &bp->reg->adjust_ns);
851 iowrite32(time_sec, &bp->reg->adjust_sec);
853 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
854 iowrite32(ctrl, &bp->reg->ctrl);
856 /* restore clock selection */
857 iowrite32(select >> 16, &bp->reg->select);
861 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
863 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
866 spin_lock_irqsave(&bp->lock, flags);
867 __ptp_ocp_settime_locked(bp, ts);
868 spin_unlock_irqrestore(&bp->lock, flags);
874 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
878 select = ioread32(&bp->reg->select);
879 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
881 iowrite32(adj_val, &bp->reg->offset_ns);
882 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
884 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
885 iowrite32(ctrl, &bp->reg->ctrl);
887 /* restore clock selection */
888 iowrite32(select >> 16, &bp->reg->select);
892 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
894 struct timespec64 ts;
898 spin_lock_irqsave(&bp->lock, flags);
899 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
901 set_normalized_timespec64(&ts, ts.tv_sec,
902 ts.tv_nsec + delta_ns);
903 __ptp_ocp_settime_locked(bp, &ts);
905 spin_unlock_irqrestore(&bp->lock, flags);
909 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
911 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
915 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
916 ptp_ocp_adjtime_coarse(bp, delta_ns);
920 sign = delta_ns < 0 ? BIT(31) : 0;
921 adj_ns = sign ? -delta_ns : delta_ns;
923 spin_lock_irqsave(&bp->lock, flags);
924 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
925 spin_unlock_irqrestore(&bp->lock, flags);
931 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
940 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
946 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
949 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
950 struct ptp_ocp_ext_src *ext = NULL;
955 case PTP_CLK_REQ_EXTTS:
956 req = OCP_REQ_TIMESTAMP;
957 switch (rq->extts.index) {
978 case PTP_CLK_REQ_PPS:
982 case PTP_CLK_REQ_PEROUT:
983 switch (rq->perout.index) {
985 /* This is a request for 1PPS on an output SMA.
986 * Allow, but assume manual configuration.
988 if (on && (rq->perout.period.sec != 1 ||
989 rq->perout.period.nsec != 0))
996 req = rq->perout.index - 1;
997 ext = bp->signal_out[req];
998 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1010 err = ext->info->enable(ext, req, on);
1016 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1017 enum ptp_pin_function func, unsigned chan)
1019 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1024 snprintf(buf, sizeof(buf), "IN: None");
1027 /* Allow timestamps, but require sysfs configuration. */
1030 /* channel 0 is 1PPS from PHC.
1031 * channels 1..4 are the frequency generators.
1034 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1036 snprintf(buf, sizeof(buf), "OUT: PHC");
1042 return ptp_ocp_sma_store(bp, buf, pin + 1);
1045 static const struct ptp_clock_info ptp_ocp_clock_info = {
1046 .owner = THIS_MODULE,
1047 .name = KBUILD_MODNAME,
1048 .max_adj = 100000000,
1049 .gettimex64 = ptp_ocp_gettimex,
1050 .settime64 = ptp_ocp_settime,
1051 .adjtime = ptp_ocp_adjtime,
1052 .adjfine = ptp_ocp_null_adjfine,
1053 .adjphase = ptp_ocp_null_adjphase,
1054 .enable = ptp_ocp_enable,
1055 .verify = ptp_ocp_verify,
1062 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1066 select = ioread32(&bp->reg->select);
1067 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1069 iowrite32(0, &bp->reg->drift_ns);
1071 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1072 iowrite32(ctrl, &bp->reg->ctrl);
1074 /* restore clock selection */
1075 iowrite32(select >> 16, &bp->reg->select);
1079 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1081 unsigned long flags;
1083 spin_lock_irqsave(&bp->lock, flags);
1085 bp->utc_tai_offset = val;
1088 iowrite32(val, &bp->irig_out->adj_sec);
1090 iowrite32(val, &bp->dcf_out->adj_sec);
1092 iowrite32(val, &bp->nmea_out->adj_sec);
1094 spin_unlock_irqrestore(&bp->lock, flags);
1098 ptp_ocp_watchdog(struct timer_list *t)
1100 struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1101 unsigned long flags;
1102 u32 status, utc_offset;
1104 status = ioread32(&bp->pps_to_clk->status);
1106 if (status & PPS_STATUS_SUPERV_ERR) {
1107 iowrite32(status, &bp->pps_to_clk->status);
1108 if (!bp->gnss_lost) {
1109 spin_lock_irqsave(&bp->lock, flags);
1110 __ptp_ocp_clear_drift_locked(bp);
1111 spin_unlock_irqrestore(&bp->lock, flags);
1112 bp->gnss_lost = ktime_get_real_seconds();
1115 } else if (bp->gnss_lost) {
1119 /* if GNSS provides correct data we can rely on
1120 * it to get leap second information
1123 status = ioread32(&bp->tod->utc_status);
1124 utc_offset = status & TOD_STATUS_UTC_MASK;
1125 if (status & TOD_STATUS_UTC_VALID &&
1126 utc_offset != bp->utc_tai_offset)
1127 ptp_ocp_utc_distribute(bp, utc_offset);
1130 mod_timer(&bp->watchdog, jiffies + HZ);
1134 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1140 ctrl = ioread32(&bp->reg->ctrl);
1141 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1143 iowrite32(ctrl, &bp->reg->ctrl);
1145 start = ktime_get_ns();
1147 ctrl = ioread32(&bp->reg->ctrl);
1149 end = ktime_get_ns();
1151 delay = end - start;
1152 bp->ts_window_adjust = (delay >> 5) * 3;
1156 ptp_ocp_init_clock(struct ptp_ocp *bp)
1158 struct timespec64 ts;
1162 ctrl = OCP_CTRL_ENABLE;
1163 iowrite32(ctrl, &bp->reg->ctrl);
1165 /* NO DRIFT Correction */
1166 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1167 iowrite32(0x2000, &bp->reg->servo_offset_p);
1168 iowrite32(0x1000, &bp->reg->servo_offset_i);
1169 iowrite32(0, &bp->reg->servo_drift_p);
1170 iowrite32(0, &bp->reg->servo_drift_i);
1172 /* latch servo values */
1173 ctrl |= OCP_CTRL_ADJUST_SERVO;
1174 iowrite32(ctrl, &bp->reg->ctrl);
1176 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1177 dev_err(&bp->pdev->dev, "clock not enabled\n");
1181 ptp_ocp_estimate_pci_timing(bp);
1183 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1185 ktime_get_clocktai_ts64(&ts);
1186 ptp_ocp_settime(&bp->ptp_info, &ts);
1189 /* If there is a clock supervisor, then enable the watchdog */
1190 if (bp->pps_to_clk) {
1191 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1192 mod_timer(&bp->watchdog, jiffies + HZ);
1199 ptp_ocp_tod_init(struct ptp_ocp *bp)
1203 ctrl = ioread32(&bp->tod->ctrl);
1204 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1205 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1206 iowrite32(ctrl, &bp->tod->ctrl);
1208 reg = ioread32(&bp->tod->utc_status);
1209 if (reg & TOD_STATUS_UTC_VALID)
1210 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1214 ptp_ocp_tod_proto_name(const int idx)
1216 static const char * const proto_name[] = {
1217 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1218 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1220 return proto_name[idx];
1224 ptp_ocp_tod_gnss_name(int idx)
1226 static const char * const gnss_name[] = {
1227 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1230 if (idx >= ARRAY_SIZE(gnss_name))
1231 idx = ARRAY_SIZE(gnss_name) - 1;
1232 return gnss_name[idx];
1235 struct ptp_ocp_nvmem_match_info {
1237 const void * const tag;
1241 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1243 const struct ptp_ocp_nvmem_match_info *info = data;
1246 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1249 while ((dev = dev->parent))
1250 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1251 return info->bp == dev_get_drvdata(dev);
1255 static inline struct nvmem_device *
1256 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1258 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1260 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1264 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1266 if (!IS_ERR_OR_NULL(*nvmemp))
1267 nvmem_device_put(*nvmemp);
1272 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1274 const struct ptp_ocp_eeprom_map *map;
1275 struct nvmem_device *nvmem;
1285 for (map = bp->eeprom_map; map->len; map++) {
1286 if (map->tag != tag) {
1288 ptp_ocp_nvmem_device_put(&nvmem);
1291 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1292 if (IS_ERR(nvmem)) {
1293 ret = PTR_ERR(nvmem);
1297 ret = nvmem_device_read(nvmem, map->off, map->len,
1298 BP_MAP_ENTRY_ADDR(bp, map));
1299 if (ret != map->len)
1303 bp->has_eeprom_data = true;
1306 ptp_ocp_nvmem_device_put(&nvmem);
1310 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1315 ptp_ocp_firstchild(struct device *dev, void *data)
1320 static struct device *
1321 ptp_ocp_find_flash(struct ptp_ocp *bp)
1323 struct device *dev, *last;
1326 dev = &bp->spi_flash->dev;
1328 while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) {
1329 if (!strcmp("mtd", dev_bus_name(dev)))
1340 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1341 const u8 **data, size_t *size)
1343 struct ptp_ocp *bp = devlink_priv(devlink);
1344 const struct ptp_ocp_firmware_header *hdr;
1345 size_t offset, length;
1348 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1349 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1350 devlink_flash_update_status_notify(devlink,
1351 "No firmware header found, flashing raw image",
1358 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1359 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1360 devlink_flash_update_status_notify(devlink,
1361 "Firmware image compatibility check failed",
1366 offset = sizeof(*hdr);
1367 length = be32_to_cpu(hdr->image_size);
1368 if (length != (fw->size - offset)) {
1369 devlink_flash_update_status_notify(devlink,
1370 "Firmware image size check failed",
1375 crc = crc16(0xffff, &fw->data[offset], length);
1376 if (be16_to_cpu(hdr->crc) != crc) {
1377 devlink_flash_update_status_notify(devlink,
1378 "Firmware image CRC check failed",
1384 *data = &fw->data[offset];
1391 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1392 const struct firmware *fw)
1394 struct mtd_info *mtd = dev_get_drvdata(dev);
1395 struct ptp_ocp *bp = devlink_priv(devlink);
1396 size_t off, len, size, resid, wrote;
1397 struct erase_info erase;
1402 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1407 base = bp->flash_start;
1412 devlink_flash_update_status_notify(devlink, "Flashing",
1415 len = min_t(size_t, resid, blksz);
1416 erase.addr = base + off;
1419 err = mtd_erase(mtd, &erase);
1423 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1435 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1436 struct devlink_flash_update_params *params,
1437 struct netlink_ext_ack *extack)
1439 struct ptp_ocp *bp = devlink_priv(devlink);
1444 dev = ptp_ocp_find_flash(bp);
1446 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1450 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1453 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1455 msg = err ? "Flash error" : "Flash complete";
1456 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1463 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1464 struct netlink_ext_ack *extack)
1466 struct ptp_ocp *bp = devlink_priv(devlink);
1467 const char *fw_image;
1471 err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
1475 fw_image = bp->fw_loader ? "loader" : "fw";
1476 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1477 err = devlink_info_version_running_put(req, fw_image, buf);
1481 if (!bp->has_eeprom_data) {
1482 ptp_ocp_read_eeprom(bp);
1483 if (!bp->has_eeprom_data)
1487 sprintf(buf, "%pM", bp->serial);
1488 err = devlink_info_serial_number_put(req, buf);
1492 err = devlink_info_version_fixed_put(req,
1493 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1501 static const struct devlink_ops ptp_ocp_devlink_ops = {
1502 .flash_update = ptp_ocp_devlink_flash_update,
1503 .info_get = ptp_ocp_devlink_info_get,
1506 static void __iomem *
1507 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1509 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1511 return devm_ioremap_resource(&bp->pdev->dev, &res);
1514 static void __iomem *
1515 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1517 resource_size_t start;
1519 start = pci_resource_start(bp->pdev, 0) + r->offset;
1520 return __ptp_ocp_get_mem(bp, start, r->size);
1524 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1526 struct resource r = DEFINE_RES_IRQ(irq);
1531 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1533 struct resource r = DEFINE_RES_MEM(start, size);
1538 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1540 struct ptp_ocp_flash_info *info;
1541 struct pci_dev *pdev = bp->pdev;
1542 struct platform_device *p;
1543 struct resource res[2];
1544 resource_size_t start;
1547 start = pci_resource_start(pdev, 0) + r->offset;
1548 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1549 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1552 id = pci_dev_id(pdev) << 1;
1553 id += info->pci_offset;
1555 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1561 bp_assign_entry(bp, r, p);
1566 static struct platform_device *
1567 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1569 struct ptp_ocp_i2c_info *info;
1570 struct resource res[2];
1571 resource_size_t start;
1574 start = pci_resource_start(pdev, 0) + r->offset;
1575 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1576 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1578 return platform_device_register_resndata(&pdev->dev, info->name,
1580 info->data, info->data_size);
1584 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1586 struct pci_dev *pdev = bp->pdev;
1587 struct ptp_ocp_i2c_info *info;
1588 struct platform_device *p;
1594 id = pci_dev_id(bp->pdev);
1596 sprintf(buf, "AXI.%d", id);
1597 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1600 return PTR_ERR(clk);
1603 sprintf(buf, "%s.%d", info->name, id);
1604 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1605 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1609 bp_assign_entry(bp, r, p);
1614 /* The expectation is that this is triggered only on error. */
1616 ptp_ocp_signal_irq(int irq, void *priv)
1618 struct ptp_ocp_ext_src *ext = priv;
1619 struct signal_reg __iomem *reg = ext->mem;
1620 struct ptp_ocp *bp = ext->bp;
1624 gen = ext->info->index - 1;
1626 enable = ioread32(®->enable);
1627 status = ioread32(®->status);
1629 /* disable generator on error */
1630 if (status || !enable) {
1631 iowrite32(0, ®->intr_mask);
1632 iowrite32(0, ®->enable);
1633 bp->signal[gen].running = false;
1636 iowrite32(0, ®->intr); /* ack interrupt */
1642 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1644 struct ptp_system_timestamp sts;
1645 struct timespec64 ts;
1653 s->pulse = ktime_divns(s->period * s->duty, 100);
1655 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1659 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1661 /* roundup() does not work on 32-bit systems */
1662 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1663 s->start = ktime_add(s->start, s->phase);
1666 if (s->duty < 1 || s->duty > 99)
1669 if (s->pulse < 1 || s->pulse > s->period)
1672 if (s->start < start_ns)
1675 bp->signal[gen] = *s;
1681 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1682 struct ptp_perout_request *req)
1684 struct ptp_ocp_signal s = { };
1686 s.polarity = bp->signal[gen].polarity;
1687 s.period = ktime_set(req->period.sec, req->period.nsec);
1691 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1692 s.pulse = ktime_set(req->on.sec, req->on.nsec);
1693 s.duty = ktime_divns(s.pulse * 100, s.period);
1696 if (req->flags & PTP_PEROUT_PHASE)
1697 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1699 s.start = ktime_set(req->start.sec, req->start.nsec);
1701 return ptp_ocp_signal_set(bp, gen, &s);
1705 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1707 struct ptp_ocp_ext_src *ext = priv;
1708 struct signal_reg __iomem *reg = ext->mem;
1709 struct ptp_ocp *bp = ext->bp;
1710 struct timespec64 ts;
1713 gen = ext->info->index - 1;
1715 iowrite32(0, ®->intr_mask);
1716 iowrite32(0, ®->enable);
1717 bp->signal[gen].running = false;
1721 ts = ktime_to_timespec64(bp->signal[gen].start);
1722 iowrite32(ts.tv_sec, ®->start_sec);
1723 iowrite32(ts.tv_nsec, ®->start_ns);
1725 ts = ktime_to_timespec64(bp->signal[gen].period);
1726 iowrite32(ts.tv_sec, ®->period_sec);
1727 iowrite32(ts.tv_nsec, ®->period_ns);
1729 ts = ktime_to_timespec64(bp->signal[gen].pulse);
1730 iowrite32(ts.tv_sec, ®->pulse_sec);
1731 iowrite32(ts.tv_nsec, ®->pulse_ns);
1733 iowrite32(bp->signal[gen].polarity, ®->polarity);
1734 iowrite32(0, ®->repeat_count);
1736 iowrite32(0, ®->intr); /* clear interrupt state */
1737 iowrite32(1, ®->intr_mask); /* enable interrupt */
1738 iowrite32(3, ®->enable); /* valid & enable */
1740 bp->signal[gen].running = true;
1746 ptp_ocp_ts_irq(int irq, void *priv)
1748 struct ptp_ocp_ext_src *ext = priv;
1749 struct ts_reg __iomem *reg = ext->mem;
1750 struct ptp_clock_event ev;
1753 if (ext == ext->bp->pps) {
1754 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1755 ev.type = PTP_CLOCK_PPS;
1756 ptp_clock_event(ext->bp->ptp, &ev);
1759 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1763 /* XXX should fix API - this converts s/ns -> ts -> s/ns */
1764 sec = ioread32(®->time_sec);
1765 nsec = ioread32(®->time_ns);
1767 ev.type = PTP_CLOCK_EXTTS;
1768 ev.index = ext->info->index;
1769 ev.timestamp = sec * NSEC_PER_SEC + nsec;
1771 ptp_clock_event(ext->bp->ptp, &ev);
1774 iowrite32(1, ®->intr); /* write 1 to ack */
1780 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1782 struct ptp_ocp_ext_src *ext = priv;
1783 struct ts_reg __iomem *reg = ext->mem;
1784 struct ptp_ocp *bp = ext->bp;
1786 if (ext == bp->pps) {
1787 u32 old_map = bp->pps_req_map;
1790 bp->pps_req_map |= req;
1792 bp->pps_req_map &= ~req;
1794 /* if no state change, just return */
1795 if ((!!old_map ^ !!bp->pps_req_map) == 0)
1800 iowrite32(1, ®->enable);
1801 iowrite32(1, ®->intr_mask);
1802 iowrite32(1, ®->intr);
1804 iowrite32(0, ®->intr_mask);
1805 iowrite32(0, ®->enable);
1812 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1814 ext->info->enable(ext, ~0, false);
1815 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1820 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1822 struct pci_dev *pdev = bp->pdev;
1823 struct ptp_ocp_ext_src *ext;
1826 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
1830 ext->mem = ptp_ocp_get_mem(bp, r);
1831 if (IS_ERR(ext->mem)) {
1832 err = PTR_ERR(ext->mem);
1837 ext->info = r->extra;
1838 ext->irq_vec = r->irq_vec;
1840 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
1841 ext, "ocp%d.%s", bp->id, r->name);
1843 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
1847 bp_assign_entry(bp, r, ext);
1857 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
1859 struct pci_dev *pdev = bp->pdev;
1860 struct uart_8250_port uart;
1862 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
1863 * the serial port device claim and release the pci resource.
1865 memset(&uart, 0, sizeof(uart));
1866 uart.port.dev = &pdev->dev;
1867 uart.port.iotype = UPIO_MEM;
1868 uart.port.regshift = 2;
1869 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
1870 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
1871 uart.port.uartclk = 50000000;
1872 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
1873 uart.port.type = PORT_16550A;
1875 return serial8250_register_8250_port(&uart);
1879 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
1883 port = ptp_ocp_serial_line(bp, r);
1887 bp_assign_entry(bp, r, port);
1893 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1897 mem = ptp_ocp_get_mem(bp, r);
1899 return PTR_ERR(mem);
1901 bp_assign_entry(bp, r, mem);
1907 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
1912 iowrite32(0, &bp->nmea_out->ctrl); /* disable */
1913 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
1914 iowrite32(1, &bp->nmea_out->ctrl); /* enable */
1918 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
1922 iowrite32(0, ®->enable); /* disable */
1924 val = ioread32(®->polarity);
1925 s->polarity = val ? true : false;
1930 ptp_ocp_signal_init(struct ptp_ocp *bp)
1934 for (i = 0; i < 4; i++)
1935 if (bp->signal_out[i])
1936 _ptp_ocp_signal_init(&bp->signal[i],
1937 bp->signal_out[i]->mem);
1941 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
1943 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
1944 kfree(bp->attr_group);
1948 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
1949 const struct ocp_attr_group *attr_tbl)
1955 for (i = 0; attr_tbl[i].cap; i++)
1956 if (attr_tbl[i].cap & bp->fw_cap)
1959 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
1961 if (!bp->attr_group)
1965 for (i = 0; attr_tbl[i].cap; i++)
1966 if (attr_tbl[i].cap & bp->fw_cap)
1967 bp->attr_group[count++] = attr_tbl[i].group;
1969 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
1971 bp->attr_group[0] = NULL;
1977 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
1982 ctrl = ioread32(reg);
1986 ctrl |= enable ? bit : 0;
1987 iowrite32(ctrl, reg);
1992 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
1994 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
1995 IRIG_M_CTRL_ENABLE, enable);
1999 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2001 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2002 IRIG_S_CTRL_ENABLE, enable);
2006 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2008 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2009 DCF_M_CTRL_ENABLE, enable);
2013 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2015 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2016 DCF_S_CTRL_ENABLE, enable);
2020 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2022 ptp_ocp_irig_out(bp, val & 0x00100010);
2023 ptp_ocp_dcf_out(bp, val & 0x00200020);
2027 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2029 ptp_ocp_irig_in(bp, val & 0x00100010);
2030 ptp_ocp_dcf_in(bp, val & 0x00200020);
2034 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2039 if (bp->sma[sma_nr - 1].fixed_fcn)
2040 return (sma_nr - 1) & 1;
2042 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2043 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2045 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2046 shift = sma_nr & 1 ? 0 : 16;
2048 return (ioread32(gpio) >> shift) & 0xffff;
2052 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2054 u32 reg, mask, shift;
2055 unsigned long flags;
2058 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2059 shift = sma_nr & 1 ? 0 : 16;
2061 mask = 0xffff << (16 - shift);
2063 spin_lock_irqsave(&bp->lock, flags);
2065 reg = ioread32(gpio);
2066 reg = (reg & mask) | (val << shift);
2068 __handle_signal_outputs(bp, reg);
2070 iowrite32(reg, gpio);
2072 spin_unlock_irqrestore(&bp->lock, flags);
2078 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2080 u32 reg, mask, shift;
2081 unsigned long flags;
2084 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2085 shift = sma_nr & 1 ? 0 : 16;
2087 mask = 0xffff << (16 - shift);
2089 spin_lock_irqsave(&bp->lock, flags);
2091 reg = ioread32(gpio);
2092 reg = (reg & mask) | (val << shift);
2094 __handle_signal_inputs(bp, reg);
2096 iowrite32(reg, gpio);
2098 spin_unlock_irqrestore(&bp->lock, flags);
2104 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2110 bp->sma[0].mode = SMA_MODE_IN;
2111 bp->sma[1].mode = SMA_MODE_IN;
2112 bp->sma[2].mode = SMA_MODE_OUT;
2113 bp->sma[3].mode = SMA_MODE_OUT;
2114 for (i = 0; i < 4; i++)
2115 bp->sma[i].default_fcn = i & 1;
2117 /* If no SMA1 map, the pin functions and directions are fixed. */
2118 if (!bp->sma_map1) {
2119 for (i = 0; i < 4; i++) {
2120 bp->sma[i].fixed_fcn = true;
2121 bp->sma[i].fixed_dir = true;
2126 /* If SMA2 GPIO output map is all 1, it is not present.
2127 * This indicates the firmware has fixed direction SMA pins.
2129 reg = ioread32(&bp->sma_map2->gpio2);
2130 if (reg == 0xffffffff) {
2131 for (i = 0; i < 4; i++)
2132 bp->sma[i].fixed_dir = true;
2134 reg = ioread32(&bp->sma_map1->gpio1);
2135 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2136 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2138 reg = ioread32(&bp->sma_map1->gpio2);
2139 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2140 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2144 static const struct ocp_sma_op ocp_fb_sma_op = {
2145 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2146 .init = ptp_ocp_sma_fb_init,
2147 .get = ptp_ocp_sma_fb_get,
2148 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2149 .set_output = ptp_ocp_sma_fb_set_output,
2153 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2155 struct ptp_pin_desc *config;
2158 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2162 for (i = 0; i < 4; i++) {
2163 sprintf(config[i].name, "sma%d", i + 1);
2164 config[i].index = i;
2167 bp->ptp_info.n_pins = 4;
2168 bp->ptp_info.pin_config = config;
2174 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2176 u64 cap = OCP_CAP_BASIC;
2179 version = ioread32(&bp->image->version);
2181 /* if lower 16 bits are empty, this is the fw loader. */
2182 if ((version & 0xffff) == 0) {
2183 version = version >> 16;
2184 bp->fw_loader = true;
2187 bp->fw_tag = version >> 15;
2188 bp->fw_version = version & 0x7fff;
2193 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2197 cap |= OCP_CAP_SIGNAL;
2199 cap |= OCP_CAP_FREQ;
2205 /* FB specific board initializers; last "resource" registered. */
2207 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2211 bp->flash_start = 1024 * 4096;
2212 bp->eeprom_map = fb_eeprom_map;
2213 bp->fw_version = ioread32(&bp->image->version);
2214 bp->sma_op = &ocp_fb_sma_op;
2216 ptp_ocp_fb_set_version(bp);
2218 ptp_ocp_tod_init(bp);
2219 ptp_ocp_nmea_out_init(bp);
2220 ptp_ocp_sma_init(bp);
2221 ptp_ocp_signal_init(bp);
2223 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2227 err = ptp_ocp_fb_set_pins(bp);
2231 return ptp_ocp_init_clock(bp);
2235 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2237 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2240 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2241 r->irq_vec, r->name);
2246 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2248 struct ocp_resource *r, *table;
2251 table = (struct ocp_resource *)driver_data;
2252 for (r = table; r->setup; r++) {
2253 if (!ptp_ocp_allow_irq(bp, r))
2255 err = r->setup(bp, r);
2257 dev_err(&bp->pdev->dev,
2258 "Could not register %s: err %d\n",
2267 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2273 count = sysfs_emit(buf, "OUT: ");
2274 name = ptp_ocp_select_name_from_val(tbl, val);
2276 name = ptp_ocp_select_name_from_val(tbl, def_val);
2277 count += sysfs_emit_at(buf, count, "%s\n", name);
2282 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2289 count = sysfs_emit(buf, "IN: ");
2290 for (i = 0; tbl[i].name; i++) {
2291 if (val & tbl[i].value) {
2293 count += sysfs_emit_at(buf, count, "%s ", name);
2296 if (!val && def_val >= 0) {
2297 name = ptp_ocp_select_name_from_val(tbl, def_val);
2298 count += sysfs_emit_at(buf, count, "%s ", name);
2302 count += sysfs_emit_at(buf, count, "\n");
2307 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2308 enum ptp_ocp_sma_mode *mode)
2310 int idx, count, dir;
2314 argv = argv_split(GFP_KERNEL, buf, &count);
2323 dir = *mode == SMA_MODE_IN ? 0 : 1;
2324 if (!strcasecmp("IN:", argv[0])) {
2328 if (!strcasecmp("OUT:", argv[0])) {
2332 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2335 for (; idx < count; idx++)
2336 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2346 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2347 int default_in_val, int default_out_val)
2349 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2350 const struct ocp_selector * const *tbl;
2353 tbl = bp->sma_op->tbl;
2354 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2356 if (sma->mode == SMA_MODE_IN) {
2359 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2362 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2366 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2368 struct ptp_ocp *bp = dev_get_drvdata(dev);
2370 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2374 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2376 struct ptp_ocp *bp = dev_get_drvdata(dev);
2378 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2382 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2384 struct ptp_ocp *bp = dev_get_drvdata(dev);
2386 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2390 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2392 struct ptp_ocp *bp = dev_get_drvdata(dev);
2394 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2398 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2400 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2401 enum ptp_ocp_sma_mode mode;
2405 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2409 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2412 if (sma->fixed_fcn) {
2413 if (val != sma->default_fcn)
2418 sma->disabled = !!(val & SMA_DISABLE);
2420 if (mode != sma->mode) {
2421 if (mode == SMA_MODE_IN)
2422 ptp_ocp_sma_set_output(bp, sma_nr, 0);
2424 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2428 if (!sma->fixed_dir)
2429 val |= SMA_ENABLE; /* add enable bit */
2434 if (mode == SMA_MODE_IN)
2435 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2437 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2443 sma1_store(struct device *dev, struct device_attribute *attr,
2444 const char *buf, size_t count)
2446 struct ptp_ocp *bp = dev_get_drvdata(dev);
2449 err = ptp_ocp_sma_store(bp, buf, 1);
2450 return err ? err : count;
2454 sma2_store(struct device *dev, struct device_attribute *attr,
2455 const char *buf, size_t count)
2457 struct ptp_ocp *bp = dev_get_drvdata(dev);
2460 err = ptp_ocp_sma_store(bp, buf, 2);
2461 return err ? err : count;
2465 sma3_store(struct device *dev, struct device_attribute *attr,
2466 const char *buf, size_t count)
2468 struct ptp_ocp *bp = dev_get_drvdata(dev);
2471 err = ptp_ocp_sma_store(bp, buf, 3);
2472 return err ? err : count;
2476 sma4_store(struct device *dev, struct device_attribute *attr,
2477 const char *buf, size_t count)
2479 struct ptp_ocp *bp = dev_get_drvdata(dev);
2482 err = ptp_ocp_sma_store(bp, buf, 4);
2483 return err ? err : count;
2485 static DEVICE_ATTR_RW(sma1);
2486 static DEVICE_ATTR_RW(sma2);
2487 static DEVICE_ATTR_RW(sma3);
2488 static DEVICE_ATTR_RW(sma4);
2491 available_sma_inputs_show(struct device *dev,
2492 struct device_attribute *attr, char *buf)
2494 struct ptp_ocp *bp = dev_get_drvdata(dev);
2496 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2498 static DEVICE_ATTR_RO(available_sma_inputs);
2501 available_sma_outputs_show(struct device *dev,
2502 struct device_attribute *attr, char *buf)
2504 struct ptp_ocp *bp = dev_get_drvdata(dev);
2506 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2508 static DEVICE_ATTR_RO(available_sma_outputs);
2510 #define EXT_ATTR_RO(_group, _name, _val) \
2511 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2512 { __ATTR_RO(_name), (void *)_val }
2513 #define EXT_ATTR_RW(_group, _name, _val) \
2514 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2515 { __ATTR_RW(_name), (void *)_val }
2516 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2518 /* period [duty [phase [polarity]]] */
2520 signal_store(struct device *dev, struct device_attribute *attr,
2521 const char *buf, size_t count)
2523 struct dev_ext_attribute *ea = to_ext_attr(attr);
2524 struct ptp_ocp *bp = dev_get_drvdata(dev);
2525 struct ptp_ocp_signal s = { };
2526 int gen = (uintptr_t)ea->var;
2530 argv = argv_split(GFP_KERNEL, buf, &argc);
2535 s.duty = bp->signal[gen].duty;
2536 s.phase = bp->signal[gen].phase;
2537 s.period = bp->signal[gen].period;
2538 s.polarity = bp->signal[gen].polarity;
2543 err = kstrtobool(argv[argc], &s.polarity);
2549 err = kstrtou64(argv[argc], 0, &s.phase);
2555 err = kstrtoint(argv[argc], 0, &s.duty);
2561 err = kstrtou64(argv[argc], 0, &s.period);
2569 err = ptp_ocp_signal_set(bp, gen, &s);
2573 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2577 return err ? err : count;
2581 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2583 struct dev_ext_attribute *ea = to_ext_attr(attr);
2584 struct ptp_ocp *bp = dev_get_drvdata(dev);
2585 struct ptp_ocp_signal *signal;
2586 struct timespec64 ts;
2590 i = (uintptr_t)ea->var;
2591 signal = &bp->signal[i];
2593 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2594 signal->duty, signal->phase, signal->polarity);
2596 ts = ktime_to_timespec64(signal->start);
2597 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2601 static EXT_ATTR_RW(signal, signal, 0);
2602 static EXT_ATTR_RW(signal, signal, 1);
2603 static EXT_ATTR_RW(signal, signal, 2);
2604 static EXT_ATTR_RW(signal, signal, 3);
2607 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2609 struct dev_ext_attribute *ea = to_ext_attr(attr);
2610 struct ptp_ocp *bp = dev_get_drvdata(dev);
2611 int i = (uintptr_t)ea->var;
2613 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2615 static EXT_ATTR_RO(signal, duty, 0);
2616 static EXT_ATTR_RO(signal, duty, 1);
2617 static EXT_ATTR_RO(signal, duty, 2);
2618 static EXT_ATTR_RO(signal, duty, 3);
2621 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2623 struct dev_ext_attribute *ea = to_ext_attr(attr);
2624 struct ptp_ocp *bp = dev_get_drvdata(dev);
2625 int i = (uintptr_t)ea->var;
2627 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2629 static EXT_ATTR_RO(signal, period, 0);
2630 static EXT_ATTR_RO(signal, period, 1);
2631 static EXT_ATTR_RO(signal, period, 2);
2632 static EXT_ATTR_RO(signal, period, 3);
2635 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2637 struct dev_ext_attribute *ea = to_ext_attr(attr);
2638 struct ptp_ocp *bp = dev_get_drvdata(dev);
2639 int i = (uintptr_t)ea->var;
2641 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2643 static EXT_ATTR_RO(signal, phase, 0);
2644 static EXT_ATTR_RO(signal, phase, 1);
2645 static EXT_ATTR_RO(signal, phase, 2);
2646 static EXT_ATTR_RO(signal, phase, 3);
2649 polarity_show(struct device *dev, struct device_attribute *attr,
2652 struct dev_ext_attribute *ea = to_ext_attr(attr);
2653 struct ptp_ocp *bp = dev_get_drvdata(dev);
2654 int i = (uintptr_t)ea->var;
2656 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2658 static EXT_ATTR_RO(signal, polarity, 0);
2659 static EXT_ATTR_RO(signal, polarity, 1);
2660 static EXT_ATTR_RO(signal, polarity, 2);
2661 static EXT_ATTR_RO(signal, polarity, 3);
2664 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2666 struct dev_ext_attribute *ea = to_ext_attr(attr);
2667 struct ptp_ocp *bp = dev_get_drvdata(dev);
2668 int i = (uintptr_t)ea->var;
2670 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2672 static EXT_ATTR_RO(signal, running, 0);
2673 static EXT_ATTR_RO(signal, running, 1);
2674 static EXT_ATTR_RO(signal, running, 2);
2675 static EXT_ATTR_RO(signal, running, 3);
2678 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2680 struct dev_ext_attribute *ea = to_ext_attr(attr);
2681 struct ptp_ocp *bp = dev_get_drvdata(dev);
2682 int i = (uintptr_t)ea->var;
2683 struct timespec64 ts;
2685 ts = ktime_to_timespec64(bp->signal[i].start);
2686 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2688 static EXT_ATTR_RO(signal, start, 0);
2689 static EXT_ATTR_RO(signal, start, 1);
2690 static EXT_ATTR_RO(signal, start, 2);
2691 static EXT_ATTR_RO(signal, start, 3);
2694 seconds_store(struct device *dev, struct device_attribute *attr,
2695 const char *buf, size_t count)
2697 struct dev_ext_attribute *ea = to_ext_attr(attr);
2698 struct ptp_ocp *bp = dev_get_drvdata(dev);
2699 int idx = (uintptr_t)ea->var;
2703 err = kstrtou32(buf, 0, &val);
2710 val = (val << 8) | 0x1;
2712 iowrite32(val, &bp->freq_in[idx]->ctrl);
2718 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
2720 struct dev_ext_attribute *ea = to_ext_attr(attr);
2721 struct ptp_ocp *bp = dev_get_drvdata(dev);
2722 int idx = (uintptr_t)ea->var;
2725 val = ioread32(&bp->freq_in[idx]->ctrl);
2727 val = (val >> 8) & 0xff;
2731 return sysfs_emit(buf, "%u\n", val);
2733 static EXT_ATTR_RW(freq, seconds, 0);
2734 static EXT_ATTR_RW(freq, seconds, 1);
2735 static EXT_ATTR_RW(freq, seconds, 2);
2736 static EXT_ATTR_RW(freq, seconds, 3);
2739 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
2741 struct dev_ext_attribute *ea = to_ext_attr(attr);
2742 struct ptp_ocp *bp = dev_get_drvdata(dev);
2743 int idx = (uintptr_t)ea->var;
2746 val = ioread32(&bp->freq_in[idx]->status);
2747 if (val & FREQ_STATUS_ERROR)
2748 return sysfs_emit(buf, "error\n");
2749 if (val & FREQ_STATUS_OVERRUN)
2750 return sysfs_emit(buf, "overrun\n");
2751 if (val & FREQ_STATUS_VALID)
2752 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
2755 static EXT_ATTR_RO(freq, frequency, 0);
2756 static EXT_ATTR_RO(freq, frequency, 1);
2757 static EXT_ATTR_RO(freq, frequency, 2);
2758 static EXT_ATTR_RO(freq, frequency, 3);
2761 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
2763 struct ptp_ocp *bp = dev_get_drvdata(dev);
2765 if (!bp->has_eeprom_data)
2766 ptp_ocp_read_eeprom(bp);
2768 return sysfs_emit(buf, "%pM\n", bp->serial);
2770 static DEVICE_ATTR_RO(serialnum);
2773 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
2775 struct ptp_ocp *bp = dev_get_drvdata(dev);
2779 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
2781 ret = sysfs_emit(buf, "SYNC\n");
2785 static DEVICE_ATTR_RO(gnss_sync);
2788 utc_tai_offset_show(struct device *dev,
2789 struct device_attribute *attr, char *buf)
2791 struct ptp_ocp *bp = dev_get_drvdata(dev);
2793 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
2797 utc_tai_offset_store(struct device *dev,
2798 struct device_attribute *attr,
2799 const char *buf, size_t count)
2801 struct ptp_ocp *bp = dev_get_drvdata(dev);
2805 err = kstrtou32(buf, 0, &val);
2809 ptp_ocp_utc_distribute(bp, val);
2813 static DEVICE_ATTR_RW(utc_tai_offset);
2816 ts_window_adjust_show(struct device *dev,
2817 struct device_attribute *attr, char *buf)
2819 struct ptp_ocp *bp = dev_get_drvdata(dev);
2821 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
2825 ts_window_adjust_store(struct device *dev,
2826 struct device_attribute *attr,
2827 const char *buf, size_t count)
2829 struct ptp_ocp *bp = dev_get_drvdata(dev);
2833 err = kstrtou32(buf, 0, &val);
2837 bp->ts_window_adjust = val;
2841 static DEVICE_ATTR_RW(ts_window_adjust);
2844 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
2846 struct ptp_ocp *bp = dev_get_drvdata(dev);
2849 val = ioread32(&bp->irig_out->ctrl);
2850 val = (val >> 16) & 0x07;
2851 return sysfs_emit(buf, "%d\n", val);
2855 irig_b_mode_store(struct device *dev,
2856 struct device_attribute *attr,
2857 const char *buf, size_t count)
2859 struct ptp_ocp *bp = dev_get_drvdata(dev);
2860 unsigned long flags;
2865 err = kstrtou8(buf, 0, &val);
2871 reg = ((val & 0x7) << 16);
2873 spin_lock_irqsave(&bp->lock, flags);
2874 iowrite32(0, &bp->irig_out->ctrl); /* disable */
2875 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
2876 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
2877 spin_unlock_irqrestore(&bp->lock, flags);
2881 static DEVICE_ATTR_RW(irig_b_mode);
2884 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
2886 struct ptp_ocp *bp = dev_get_drvdata(dev);
2890 select = ioread32(&bp->reg->select);
2891 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
2893 return sysfs_emit(buf, "%s\n", p);
2897 clock_source_store(struct device *dev, struct device_attribute *attr,
2898 const char *buf, size_t count)
2900 struct ptp_ocp *bp = dev_get_drvdata(dev);
2901 unsigned long flags;
2904 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
2908 spin_lock_irqsave(&bp->lock, flags);
2909 iowrite32(val, &bp->reg->select);
2910 spin_unlock_irqrestore(&bp->lock, flags);
2914 static DEVICE_ATTR_RW(clock_source);
2917 available_clock_sources_show(struct device *dev,
2918 struct device_attribute *attr, char *buf)
2920 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
2922 static DEVICE_ATTR_RO(available_clock_sources);
2925 clock_status_drift_show(struct device *dev,
2926 struct device_attribute *attr, char *buf)
2928 struct ptp_ocp *bp = dev_get_drvdata(dev);
2932 val = ioread32(&bp->reg->status_drift);
2933 res = (val & ~INT_MAX) ? -1 : 1;
2934 res *= (val & INT_MAX);
2935 return sysfs_emit(buf, "%d\n", res);
2937 static DEVICE_ATTR_RO(clock_status_drift);
2940 clock_status_offset_show(struct device *dev,
2941 struct device_attribute *attr, char *buf)
2943 struct ptp_ocp *bp = dev_get_drvdata(dev);
2947 val = ioread32(&bp->reg->status_offset);
2948 res = (val & ~INT_MAX) ? -1 : 1;
2949 res *= (val & INT_MAX);
2950 return sysfs_emit(buf, "%d\n", res);
2952 static DEVICE_ATTR_RO(clock_status_offset);
2955 tod_correction_show(struct device *dev,
2956 struct device_attribute *attr, char *buf)
2958 struct ptp_ocp *bp = dev_get_drvdata(dev);
2962 val = ioread32(&bp->tod->adj_sec);
2963 res = (val & ~INT_MAX) ? -1 : 1;
2964 res *= (val & INT_MAX);
2965 return sysfs_emit(buf, "%d\n", res);
2969 tod_correction_store(struct device *dev, struct device_attribute *attr,
2970 const char *buf, size_t count)
2972 struct ptp_ocp *bp = dev_get_drvdata(dev);
2973 unsigned long flags;
2977 err = kstrtos32(buf, 0, &res);
2986 spin_lock_irqsave(&bp->lock, flags);
2987 iowrite32(val, &bp->tod->adj_sec);
2988 spin_unlock_irqrestore(&bp->lock, flags);
2992 static DEVICE_ATTR_RW(tod_correction);
2994 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
2995 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
2996 &dev_attr_signal##_nr##_signal.attr.attr, \
2997 &dev_attr_signal##_nr##_duty.attr.attr, \
2998 &dev_attr_signal##_nr##_phase.attr.attr, \
2999 &dev_attr_signal##_nr##_period.attr.attr, \
3000 &dev_attr_signal##_nr##_polarity.attr.attr, \
3001 &dev_attr_signal##_nr##_running.attr.attr, \
3002 &dev_attr_signal##_nr##_start.attr.attr, \
3006 #define DEVICE_SIGNAL_GROUP(_name, _nr) \
3007 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3008 static const struct attribute_group \
3009 fb_timecard_signal##_nr##_group = { \
3011 .attrs = fb_timecard_signal##_nr##_attrs, \
3014 DEVICE_SIGNAL_GROUP(gen1, 0);
3015 DEVICE_SIGNAL_GROUP(gen2, 1);
3016 DEVICE_SIGNAL_GROUP(gen3, 2);
3017 DEVICE_SIGNAL_GROUP(gen4, 3);
3019 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3020 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3021 &dev_attr_freq##_nr##_seconds.attr.attr, \
3022 &dev_attr_freq##_nr##_frequency.attr.attr, \
3026 #define DEVICE_FREQ_GROUP(_name, _nr) \
3027 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3028 static const struct attribute_group \
3029 fb_timecard_freq##_nr##_group = { \
3031 .attrs = fb_timecard_freq##_nr##_attrs, \
3034 DEVICE_FREQ_GROUP(freq1, 0);
3035 DEVICE_FREQ_GROUP(freq2, 1);
3036 DEVICE_FREQ_GROUP(freq3, 2);
3037 DEVICE_FREQ_GROUP(freq4, 3);
3039 static struct attribute *fb_timecard_attrs[] = {
3040 &dev_attr_serialnum.attr,
3041 &dev_attr_gnss_sync.attr,
3042 &dev_attr_clock_source.attr,
3043 &dev_attr_available_clock_sources.attr,
3044 &dev_attr_sma1.attr,
3045 &dev_attr_sma2.attr,
3046 &dev_attr_sma3.attr,
3047 &dev_attr_sma4.attr,
3048 &dev_attr_available_sma_inputs.attr,
3049 &dev_attr_available_sma_outputs.attr,
3050 &dev_attr_clock_status_drift.attr,
3051 &dev_attr_clock_status_offset.attr,
3052 &dev_attr_irig_b_mode.attr,
3053 &dev_attr_utc_tai_offset.attr,
3054 &dev_attr_ts_window_adjust.attr,
3055 &dev_attr_tod_correction.attr,
3058 static const struct attribute_group fb_timecard_group = {
3059 .attrs = fb_timecard_attrs,
3061 static const struct ocp_attr_group fb_timecard_groups[] = {
3062 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3063 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3064 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3065 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3066 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3067 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3068 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3069 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3070 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3075 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3080 for (i = 0; i < 4; i++) {
3081 if (bp->sma[i].mode != SMA_MODE_IN)
3083 if (map[i][0] & (1 << bit)) {
3084 sprintf(buf, "sma%d", i + 1);
3094 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3099 strcpy(ans, "----");
3100 for (i = 0; i < 4; i++) {
3101 if (bp->sma[i].mode != SMA_MODE_OUT)
3103 if (map[i][1] & (1 << bit))
3104 ans += sprintf(ans, "sma%d ", i + 1);
3109 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3111 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3112 struct ptp_ocp_signal *signal = &bp->signal[nr];
3120 on = signal->running;
3121 sprintf(label, "GEN%d", nr + 1);
3122 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3123 label, on ? " ON" : "OFF",
3124 signal->period, signal->duty, signal->phase,
3127 val = ioread32(®->enable);
3128 seq_printf(s, " [%x", val);
3129 val = ioread32(®->status);
3130 seq_printf(s, " %x]", val);
3132 seq_printf(s, " start:%llu\n", signal->start);
3136 _frequency_summary_show(struct seq_file *s, int nr,
3137 struct frequency_reg __iomem *reg)
3146 sprintf(label, "FREQ%d", nr + 1);
3147 val = ioread32(®->ctrl);
3149 val = (val >> 8) & 0xff;
3150 seq_printf(s, "%7s: %s, sec:%u",
3155 val = ioread32(®->status);
3156 if (val & FREQ_STATUS_ERROR)
3157 seq_printf(s, ", error");
3158 if (val & FREQ_STATUS_OVERRUN)
3159 seq_printf(s, ", overrun");
3160 if (val & FREQ_STATUS_VALID)
3161 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3162 seq_printf(s, " reg:%x\n", val);
3166 ptp_ocp_summary_show(struct seq_file *s, void *data)
3168 struct device *dev = s->private;
3169 struct ptp_system_timestamp sts;
3170 struct ts_reg __iomem *ts_reg;
3171 char *buf, *src, *mac_src;
3172 struct timespec64 ts;
3179 buf = (char *)__get_free_page(GFP_KERNEL);
3183 bp = dev_get_drvdata(dev);
3185 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3186 if (bp->gnss_port != -1)
3187 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port);
3188 if (bp->gnss2_port != -1)
3189 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port);
3190 if (bp->mac_port != -1)
3191 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port);
3192 if (bp->nmea_port != -1)
3193 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port);
3195 memset(sma_val, 0xff, sizeof(sma_val));
3199 reg = ioread32(&bp->sma_map1->gpio1);
3200 sma_val[0][0] = reg & 0xffff;
3201 sma_val[1][0] = reg >> 16;
3203 reg = ioread32(&bp->sma_map1->gpio2);
3204 sma_val[2][1] = reg & 0xffff;
3205 sma_val[3][1] = reg >> 16;
3207 reg = ioread32(&bp->sma_map2->gpio1);
3208 sma_val[2][0] = reg & 0xffff;
3209 sma_val[3][0] = reg >> 16;
3211 reg = ioread32(&bp->sma_map2->gpio2);
3212 sma_val[0][1] = reg & 0xffff;
3213 sma_val[1][1] = reg >> 16;
3216 sma1_show(dev, NULL, buf);
3217 seq_printf(s, " sma1: %04x,%04x %s",
3218 sma_val[0][0], sma_val[0][1], buf);
3220 sma2_show(dev, NULL, buf);
3221 seq_printf(s, " sma2: %04x,%04x %s",
3222 sma_val[1][0], sma_val[1][1], buf);
3224 sma3_show(dev, NULL, buf);
3225 seq_printf(s, " sma3: %04x,%04x %s",
3226 sma_val[2][0], sma_val[2][1], buf);
3228 sma4_show(dev, NULL, buf);
3229 seq_printf(s, " sma4: %04x,%04x %s",
3230 sma_val[3][0], sma_val[3][1], buf);
3233 ts_reg = bp->ts0->mem;
3234 on = ioread32(&ts_reg->enable);
3236 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3237 on ? " ON" : "OFF", src);
3241 ts_reg = bp->ts1->mem;
3242 on = ioread32(&ts_reg->enable);
3243 gpio_input_map(buf, bp, sma_val, 2, NULL);
3244 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3245 on ? " ON" : "OFF", buf);
3249 ts_reg = bp->ts2->mem;
3250 on = ioread32(&ts_reg->enable);
3251 gpio_input_map(buf, bp, sma_val, 3, NULL);
3252 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3253 on ? " ON" : "OFF", buf);
3257 ts_reg = bp->ts3->mem;
3258 on = ioread32(&ts_reg->enable);
3259 gpio_input_map(buf, bp, sma_val, 6, NULL);
3260 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3261 on ? " ON" : "OFF", buf);
3265 ts_reg = bp->ts4->mem;
3266 on = ioread32(&ts_reg->enable);
3267 gpio_input_map(buf, bp, sma_val, 7, NULL);
3268 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3269 on ? " ON" : "OFF", buf);
3273 ts_reg = bp->pps->mem;
3275 on = ioread32(&ts_reg->enable);
3276 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3277 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3278 on && map ? " ON" : "OFF", src);
3280 map = !!(bp->pps_req_map & OCP_REQ_PPS);
3281 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3282 on && map ? " ON" : "OFF", src);
3285 if (bp->fw_cap & OCP_CAP_SIGNAL)
3286 for (i = 0; i < 4; i++)
3287 _signal_summary_show(s, bp, i);
3289 if (bp->fw_cap & OCP_CAP_FREQ)
3290 for (i = 0; i < 4; i++)
3291 _frequency_summary_show(s, i, bp->freq_in[i]);
3294 ctrl = ioread32(&bp->irig_out->ctrl);
3295 on = ctrl & IRIG_M_CTRL_ENABLE;
3296 val = ioread32(&bp->irig_out->status);
3297 gpio_output_map(buf, bp, sma_val, 4);
3298 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3299 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3303 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3304 val = ioread32(&bp->irig_in->status);
3305 gpio_input_map(buf, bp, sma_val, 4, NULL);
3306 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3307 on ? " ON" : "OFF", val, buf);
3311 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3312 val = ioread32(&bp->dcf_out->status);
3313 gpio_output_map(buf, bp, sma_val, 5);
3314 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3315 on ? " ON" : "OFF", val, buf);
3319 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3320 val = ioread32(&bp->dcf_in->status);
3321 gpio_input_map(buf, bp, sma_val, 5, NULL);
3322 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3323 on ? " ON" : "OFF", val, buf);
3327 on = ioread32(&bp->nmea_out->ctrl) & 1;
3328 val = ioread32(&bp->nmea_out->status);
3329 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3330 on ? " ON" : "OFF", val);
3333 /* compute src for PPS1, used below. */
3334 if (bp->pps_select) {
3335 val = ioread32(&bp->pps_select->gpio1);
3339 gpio_input_map(src, bp, sma_val, 0, NULL);
3341 } else if (val & 0x02) {
3343 } else if (val & 0x04) {
3353 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3355 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3356 seq_printf(s, "MAC PPS2 src: %s\n", buf);
3358 /* assumes automatic switchover/selection */
3359 val = ioread32(&bp->reg->select);
3360 switch (val >> 16) {
3362 sprintf(buf, "----");
3365 sprintf(buf, "IRIG");
3368 sprintf(buf, "%s via PPS1", src);
3371 sprintf(buf, "DCF");
3374 strcpy(buf, "unknown");
3377 val = ioread32(&bp->reg->status);
3378 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3379 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3381 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3382 struct timespec64 sys_ts;
3383 s64 pre_ns, post_ns, ns;
3385 pre_ns = timespec64_to_ns(&sts.pre_ts);
3386 post_ns = timespec64_to_ns(&sts.post_ts);
3387 ns = (pre_ns + post_ns) / 2;
3388 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3389 sys_ts = ns_to_timespec64(ns);
3391 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3392 ts.tv_sec, ts.tv_nsec, &ts);
3393 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3394 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3395 bp->utc_tai_offset);
3396 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
3397 timespec64_to_ns(&ts) - ns,
3401 free_page((unsigned long)buf);
3404 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3407 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3409 struct device *dev = s->private;
3414 bp = dev_get_drvdata(dev);
3416 val = ioread32(&bp->tod->ctrl);
3417 if (!(val & TOD_CTRL_ENABLE)) {
3418 seq_printf(s, "TOD Slave disabled\n");
3421 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3423 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3424 idx += (val >> 16) & 3;
3425 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3427 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3428 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3430 val = ioread32(&bp->tod->version);
3431 seq_printf(s, "TOD Version %d.%d.%d\n",
3432 val >> 24, (val >> 16) & 0xff, val & 0xffff);
3434 val = ioread32(&bp->tod->status);
3435 seq_printf(s, "Status register: 0x%08X\n", val);
3437 val = ioread32(&bp->tod->adj_sec);
3438 idx = (val & ~INT_MAX) ? -1 : 1;
3439 idx *= (val & INT_MAX);
3440 seq_printf(s, "Correction seconds: %d\n", idx);
3442 val = ioread32(&bp->tod->utc_status);
3443 seq_printf(s, "UTC status register: 0x%08X\n", val);
3444 seq_printf(s, "UTC offset: %ld valid:%d\n",
3445 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3446 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3447 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3448 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3450 val = ioread32(&bp->tod->leap);
3451 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3455 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3457 static struct dentry *ptp_ocp_debugfs_root;
3460 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3464 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3466 debugfs_create_file("summary", 0444, bp->debug_root,
3467 &bp->dev, &ptp_ocp_summary_fops);
3469 debugfs_create_file("tod_status", 0444, bp->debug_root,
3470 &bp->dev, &ptp_ocp_tod_status_fops);
3474 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3476 debugfs_remove_recursive(bp->debug_root);
3480 ptp_ocp_debugfs_init(void)
3482 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3486 ptp_ocp_debugfs_fini(void)
3488 debugfs_remove_recursive(ptp_ocp_debugfs_root);
3492 ptp_ocp_dev_release(struct device *dev)
3494 struct ptp_ocp *bp = dev_get_drvdata(dev);
3496 mutex_lock(&ptp_ocp_lock);
3497 idr_remove(&ptp_ocp_idr, bp->id);
3498 mutex_unlock(&ptp_ocp_lock);
3502 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3506 mutex_lock(&ptp_ocp_lock);
3507 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3508 mutex_unlock(&ptp_ocp_lock);
3510 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3515 bp->ptp_info = ptp_ocp_clock_info;
3516 spin_lock_init(&bp->lock);
3518 bp->gnss2_port = -1;
3523 device_initialize(&bp->dev);
3524 dev_set_name(&bp->dev, "ocp%d", bp->id);
3525 bp->dev.class = &timecard_class;
3526 bp->dev.parent = &pdev->dev;
3527 bp->dev.release = ptp_ocp_dev_release;
3528 dev_set_drvdata(&bp->dev, bp);
3530 err = device_add(&bp->dev);
3532 dev_err(&bp->dev, "device add failed: %d\n", err);
3536 pci_set_drvdata(pdev, bp);
3541 ptp_ocp_dev_release(&bp->dev);
3542 put_device(&bp->dev);
3547 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
3549 struct device *dev = &bp->dev;
3551 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
3552 dev_err(dev, "%s symlink failed\n", link);
3556 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
3558 struct device *dev, *child;
3560 dev = &bp->pdev->dev;
3562 child = device_find_child_by_name(dev, name);
3564 dev_err(dev, "Could not find device %s\n", name);
3568 ptp_ocp_symlink(bp, child, link);
3573 ptp_ocp_complete(struct ptp_ocp *bp)
3575 struct pps_device *pps;
3578 if (bp->gnss_port != -1) {
3579 sprintf(buf, "ttyS%d", bp->gnss_port);
3580 ptp_ocp_link_child(bp, buf, "ttyGNSS");
3582 if (bp->gnss2_port != -1) {
3583 sprintf(buf, "ttyS%d", bp->gnss2_port);
3584 ptp_ocp_link_child(bp, buf, "ttyGNSS2");
3586 if (bp->mac_port != -1) {
3587 sprintf(buf, "ttyS%d", bp->mac_port);
3588 ptp_ocp_link_child(bp, buf, "ttyMAC");
3590 if (bp->nmea_port != -1) {
3591 sprintf(buf, "ttyS%d", bp->nmea_port);
3592 ptp_ocp_link_child(bp, buf, "ttyNMEA");
3594 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
3595 ptp_ocp_link_child(bp, buf, "ptp");
3597 pps = pps_lookup_dev(bp->ptp);
3599 ptp_ocp_symlink(bp, pps->dev, "pps");
3601 ptp_ocp_debugfs_add_device(bp);
3607 ptp_ocp_phc_info(struct ptp_ocp *bp)
3609 struct timespec64 ts;
3610 u32 version, select;
3613 version = ioread32(&bp->reg->version);
3614 select = ioread32(&bp->reg->select);
3615 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
3616 version >> 24, (version >> 16) & 0xff, version & 0xffff,
3617 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
3618 ptp_clock_index(bp->ptp));
3620 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
3621 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
3622 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
3623 ts.tv_sec, ts.tv_nsec,
3624 sync ? "in-sync" : "UNSYNCED");
3628 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
3631 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
3635 ptp_ocp_info(struct ptp_ocp *bp)
3637 static int nmea_baud[] = {
3638 1200, 2400, 4800, 9600, 19200, 38400,
3639 57600, 115200, 230400, 460800, 921600,
3642 struct device *dev = &bp->pdev->dev;
3645 ptp_ocp_phc_info(bp);
3647 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
3648 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
3649 ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
3650 if (bp->nmea_out && bp->nmea_port != -1) {
3653 reg = ioread32(&bp->nmea_out->uart_baud);
3654 if (reg < ARRAY_SIZE(nmea_baud))
3655 baud = nmea_baud[reg];
3656 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
3661 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
3663 struct device *dev = &bp->dev;
3665 sysfs_remove_link(&dev->kobj, "ttyGNSS");
3666 sysfs_remove_link(&dev->kobj, "ttyMAC");
3667 sysfs_remove_link(&dev->kobj, "ptp");
3668 sysfs_remove_link(&dev->kobj, "pps");
3672 ptp_ocp_detach(struct ptp_ocp *bp)
3676 ptp_ocp_debugfs_remove_device(bp);
3677 ptp_ocp_detach_sysfs(bp);
3678 ptp_ocp_attr_group_del(bp);
3679 if (timer_pending(&bp->watchdog))
3680 del_timer_sync(&bp->watchdog);
3682 ptp_ocp_unregister_ext(bp->ts0);
3684 ptp_ocp_unregister_ext(bp->ts1);
3686 ptp_ocp_unregister_ext(bp->ts2);
3688 ptp_ocp_unregister_ext(bp->ts3);
3690 ptp_ocp_unregister_ext(bp->ts4);
3692 ptp_ocp_unregister_ext(bp->pps);
3693 for (i = 0; i < 4; i++)
3694 if (bp->signal_out[i])
3695 ptp_ocp_unregister_ext(bp->signal_out[i]);
3696 if (bp->gnss_port != -1)
3697 serial8250_unregister_port(bp->gnss_port);
3698 if (bp->gnss2_port != -1)
3699 serial8250_unregister_port(bp->gnss2_port);
3700 if (bp->mac_port != -1)
3701 serial8250_unregister_port(bp->mac_port);
3702 if (bp->nmea_port != -1)
3703 serial8250_unregister_port(bp->nmea_port);
3704 platform_device_unregister(bp->spi_flash);
3705 platform_device_unregister(bp->i2c_ctrl);
3707 clk_hw_unregister_fixed_rate(bp->i2c_clk);
3709 pci_free_irq_vectors(bp->pdev);
3711 ptp_clock_unregister(bp->ptp);
3712 kfree(bp->ptp_info.pin_config);
3713 device_unregister(&bp->dev);
3717 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3719 struct devlink *devlink;
3723 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
3725 dev_err(&pdev->dev, "devlink_alloc failed\n");
3729 err = pci_enable_device(pdev);
3731 dev_err(&pdev->dev, "pci_enable_device\n");
3735 bp = devlink_priv(devlink);
3736 err = ptp_ocp_device_init(bp, pdev);
3741 * Older FPGA firmware only returns 2 irq's.
3742 * allow this - if not all of the IRQ's are returned, skip the
3743 * extra devices and just register the clock.
3745 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
3747 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
3751 pci_set_master(pdev);
3753 err = ptp_ocp_register_resources(bp, id->driver_data);
3757 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
3758 if (IS_ERR(bp->ptp)) {
3759 err = PTR_ERR(bp->ptp);
3760 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
3765 err = ptp_ocp_complete(bp);
3770 devlink_register(devlink);
3776 pci_disable_device(pdev);
3778 devlink_free(devlink);
3783 ptp_ocp_remove(struct pci_dev *pdev)
3785 struct ptp_ocp *bp = pci_get_drvdata(pdev);
3786 struct devlink *devlink = priv_to_devlink(bp);
3788 devlink_unregister(devlink);
3790 pci_disable_device(pdev);
3792 devlink_free(devlink);
3795 static struct pci_driver ptp_ocp_driver = {
3796 .name = KBUILD_MODNAME,
3797 .id_table = ptp_ocp_pcidev_id,
3798 .probe = ptp_ocp_probe,
3799 .remove = ptp_ocp_remove,
3803 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
3804 unsigned long action, void *data)
3806 struct device *dev, *child = data;
3811 case BUS_NOTIFY_ADD_DEVICE:
3812 case BUS_NOTIFY_DEL_DEVICE:
3813 add = action == BUS_NOTIFY_ADD_DEVICE;
3819 if (!i2c_verify_adapter(child))
3823 while ((dev = dev->parent))
3824 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
3829 bp = dev_get_drvdata(dev);
3831 ptp_ocp_symlink(bp, child, "i2c");
3833 sysfs_remove_link(&bp->dev.kobj, "i2c");
3838 static struct notifier_block ptp_ocp_i2c_notifier = {
3839 .notifier_call = ptp_ocp_i2c_notifier_call,
3848 ptp_ocp_debugfs_init();
3850 what = "timecard class";
3851 err = class_register(&timecard_class);
3855 what = "i2c notifier";
3856 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3860 what = "ptp_ocp driver";
3861 err = pci_register_driver(&ptp_ocp_driver);
3868 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3870 class_unregister(&timecard_class);
3872 ptp_ocp_debugfs_fini();
3873 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
3880 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3881 pci_unregister_driver(&ptp_ocp_driver);
3882 class_unregister(&timecard_class);
3883 ptp_ocp_debugfs_fini();
3886 module_init(ptp_ocp_init);
3887 module_exit(ptp_ocp_fini);
3889 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
3890 MODULE_LICENSE("GPL v2");