Merge branch 'rework/printk_safe-removal' into for-linus
[platform/kernel/linux-rpi.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 /* private globals */
28
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31
32 static DEFINE_IDA(ptp_clocks_map);
33
34 /* time stamp event queue operations */
35
36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42                                        struct ptp_clock_event *src)
43 {
44         struct ptp_extts_event *dst;
45         unsigned long flags;
46         s64 seconds;
47         u32 remainder;
48
49         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50
51         spin_lock_irqsave(&queue->lock, flags);
52
53         dst = &queue->buf[queue->tail];
54         dst->index = src->index;
55         dst->t.sec = seconds;
56         dst->t.nsec = remainder;
57
58         if (!queue_free(queue))
59                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
60
61         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
62
63         spin_unlock_irqrestore(&queue->lock, flags);
64 }
65
66 /* posix clock implementation */
67
68 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
69 {
70         tp->tv_sec = 0;
71         tp->tv_nsec = 1;
72         return 0;
73 }
74
75 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
76 {
77         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
78
79         return  ptp->info->settime64(ptp->info, tp);
80 }
81
82 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
83 {
84         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
85         int err;
86
87         if (ptp->info->gettimex64)
88                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
89         else
90                 err = ptp->info->gettime64(ptp->info, tp);
91         return err;
92 }
93
94 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
95 {
96         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
97         struct ptp_clock_info *ops;
98         int err = -EOPNOTSUPP;
99
100         ops = ptp->info;
101
102         if (tx->modes & ADJ_SETOFFSET) {
103                 struct timespec64 ts;
104                 ktime_t kt;
105                 s64 delta;
106
107                 ts.tv_sec  = tx->time.tv_sec;
108                 ts.tv_nsec = tx->time.tv_usec;
109
110                 if (!(tx->modes & ADJ_NANO))
111                         ts.tv_nsec *= 1000;
112
113                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
114                         return -EINVAL;
115
116                 kt = timespec64_to_ktime(ts);
117                 delta = ktime_to_ns(kt);
118                 err = ops->adjtime(ops, delta);
119         } else if (tx->modes & ADJ_FREQUENCY) {
120                 long ppb = scaled_ppm_to_ppb(tx->freq);
121                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
122                         return -ERANGE;
123                 if (ops->adjfine)
124                         err = ops->adjfine(ops, tx->freq);
125                 else
126                         err = ops->adjfreq(ops, ppb);
127                 ptp->dialed_frequency = tx->freq;
128         } else if (tx->modes & ADJ_OFFSET) {
129                 if (ops->adjphase) {
130                         s32 offset = tx->offset;
131
132                         if (!(tx->modes & ADJ_NANO))
133                                 offset *= NSEC_PER_USEC;
134
135                         err = ops->adjphase(ops, offset);
136                 }
137         } else if (tx->modes == 0) {
138                 tx->freq = ptp->dialed_frequency;
139                 err = 0;
140         }
141
142         return err;
143 }
144
145 static struct posix_clock_operations ptp_clock_ops = {
146         .owner          = THIS_MODULE,
147         .clock_adjtime  = ptp_clock_adjtime,
148         .clock_gettime  = ptp_clock_gettime,
149         .clock_getres   = ptp_clock_getres,
150         .clock_settime  = ptp_clock_settime,
151         .ioctl          = ptp_ioctl,
152         .open           = ptp_open,
153         .poll           = ptp_poll,
154         .read           = ptp_read,
155 };
156
157 static void ptp_clock_release(struct device *dev)
158 {
159         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
160
161         ptp_cleanup_pin_groups(ptp);
162         mutex_destroy(&ptp->tsevq_mux);
163         mutex_destroy(&ptp->pincfg_mux);
164         ida_simple_remove(&ptp_clocks_map, ptp->index);
165         kfree(ptp);
166 }
167
168 static void ptp_aux_kworker(struct kthread_work *work)
169 {
170         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
171                                              aux_work.work);
172         struct ptp_clock_info *info = ptp->info;
173         long delay;
174
175         delay = info->do_aux_work(info);
176
177         if (delay >= 0)
178                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
179 }
180
181 /* public interface */
182
183 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
184                                      struct device *parent)
185 {
186         struct ptp_clock *ptp;
187         int err = 0, index, major = MAJOR(ptp_devt);
188
189         if (info->n_alarm > PTP_MAX_ALARMS)
190                 return ERR_PTR(-EINVAL);
191
192         /* Initialize a clock structure. */
193         err = -ENOMEM;
194         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
195         if (ptp == NULL)
196                 goto no_memory;
197
198         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
199         if (index < 0) {
200                 err = index;
201                 goto no_slot;
202         }
203
204         ptp->clock.ops = ptp_clock_ops;
205         ptp->info = info;
206         ptp->devid = MKDEV(major, index);
207         ptp->index = index;
208         spin_lock_init(&ptp->tsevq.lock);
209         mutex_init(&ptp->tsevq_mux);
210         mutex_init(&ptp->pincfg_mux);
211         init_waitqueue_head(&ptp->tsev_wq);
212
213         if (ptp->info->do_aux_work) {
214                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
215                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
216                 if (IS_ERR(ptp->kworker)) {
217                         err = PTR_ERR(ptp->kworker);
218                         pr_err("failed to create ptp aux_worker %d\n", err);
219                         goto kworker_err;
220                 }
221                 ptp->pps_source->lookup_cookie = ptp;
222         }
223
224         err = ptp_populate_pin_groups(ptp);
225         if (err)
226                 goto no_pin_groups;
227
228         /* Register a new PPS source. */
229         if (info->pps) {
230                 struct pps_source_info pps;
231                 memset(&pps, 0, sizeof(pps));
232                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
233                 pps.mode = PTP_PPS_MODE;
234                 pps.owner = info->owner;
235                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
236                 if (IS_ERR(ptp->pps_source)) {
237                         err = PTR_ERR(ptp->pps_source);
238                         pr_err("failed to register pps source\n");
239                         goto no_pps;
240                 }
241         }
242
243         /* Initialize a new device of our class in our clock structure. */
244         device_initialize(&ptp->dev);
245         ptp->dev.devt = ptp->devid;
246         ptp->dev.class = ptp_class;
247         ptp->dev.parent = parent;
248         ptp->dev.groups = ptp->pin_attr_groups;
249         ptp->dev.release = ptp_clock_release;
250         dev_set_drvdata(&ptp->dev, ptp);
251         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
252
253         /* Create a posix clock and link it to the device. */
254         err = posix_clock_register(&ptp->clock, &ptp->dev);
255         if (err) {
256                 pr_err("failed to create posix clock\n");
257                 goto no_clock;
258         }
259
260         return ptp;
261
262 no_clock:
263         if (ptp->pps_source)
264                 pps_unregister_source(ptp->pps_source);
265 no_pps:
266         ptp_cleanup_pin_groups(ptp);
267 no_pin_groups:
268         if (ptp->kworker)
269                 kthread_destroy_worker(ptp->kworker);
270 kworker_err:
271         mutex_destroy(&ptp->tsevq_mux);
272         mutex_destroy(&ptp->pincfg_mux);
273         ida_simple_remove(&ptp_clocks_map, index);
274 no_slot:
275         kfree(ptp);
276 no_memory:
277         return ERR_PTR(err);
278 }
279 EXPORT_SYMBOL(ptp_clock_register);
280
281 int ptp_clock_unregister(struct ptp_clock *ptp)
282 {
283         ptp->defunct = 1;
284         wake_up_interruptible(&ptp->tsev_wq);
285
286         if (ptp->kworker) {
287                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
288                 kthread_destroy_worker(ptp->kworker);
289         }
290
291         /* Release the clock's resources. */
292         if (ptp->pps_source)
293                 pps_unregister_source(ptp->pps_source);
294
295         posix_clock_unregister(&ptp->clock);
296
297         return 0;
298 }
299 EXPORT_SYMBOL(ptp_clock_unregister);
300
301 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
302 {
303         struct pps_event_time evt;
304
305         switch (event->type) {
306
307         case PTP_CLOCK_ALARM:
308                 break;
309
310         case PTP_CLOCK_EXTTS:
311                 enqueue_external_timestamp(&ptp->tsevq, event);
312                 wake_up_interruptible(&ptp->tsev_wq);
313                 break;
314
315         case PTP_CLOCK_PPS:
316                 pps_get_ts(&evt);
317                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
318                 break;
319
320         case PTP_CLOCK_PPSUSR:
321                 pps_event(ptp->pps_source, &event->pps_times,
322                           PTP_PPS_EVENT, NULL);
323                 break;
324         }
325 }
326 EXPORT_SYMBOL(ptp_clock_event);
327
328 int ptp_clock_index(struct ptp_clock *ptp)
329 {
330         return ptp->index;
331 }
332 EXPORT_SYMBOL(ptp_clock_index);
333
334 int ptp_find_pin(struct ptp_clock *ptp,
335                  enum ptp_pin_function func, unsigned int chan)
336 {
337         struct ptp_pin_desc *pin = NULL;
338         int i;
339
340         for (i = 0; i < ptp->info->n_pins; i++) {
341                 if (ptp->info->pin_config[i].func == func &&
342                     ptp->info->pin_config[i].chan == chan) {
343                         pin = &ptp->info->pin_config[i];
344                         break;
345                 }
346         }
347
348         return pin ? i : -1;
349 }
350 EXPORT_SYMBOL(ptp_find_pin);
351
352 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
353                           enum ptp_pin_function func, unsigned int chan)
354 {
355         int result;
356
357         mutex_lock(&ptp->pincfg_mux);
358
359         result = ptp_find_pin(ptp, func, chan);
360
361         mutex_unlock(&ptp->pincfg_mux);
362
363         return result;
364 }
365 EXPORT_SYMBOL(ptp_find_pin_unlocked);
366
367 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
368 {
369         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
370 }
371 EXPORT_SYMBOL(ptp_schedule_worker);
372
373 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
374 {
375         kthread_cancel_delayed_work_sync(&ptp->aux_work);
376 }
377 EXPORT_SYMBOL(ptp_cancel_worker_sync);
378
379 /* module operations */
380
381 static void __exit ptp_exit(void)
382 {
383         class_destroy(ptp_class);
384         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
385         ida_destroy(&ptp_clocks_map);
386 }
387
388 static int __init ptp_init(void)
389 {
390         int err;
391
392         ptp_class = class_create(THIS_MODULE, "ptp");
393         if (IS_ERR(ptp_class)) {
394                 pr_err("ptp: failed to allocate class\n");
395                 return PTR_ERR(ptp_class);
396         }
397
398         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
399         if (err < 0) {
400                 pr_err("ptp: failed to allocate device region\n");
401                 goto no_region;
402         }
403
404         ptp_class->dev_groups = ptp_groups;
405         pr_info("PTP clock support registered\n");
406         return 0;
407
408 no_region:
409         class_destroy(ptp_class);
410         return err;
411 }
412
413 subsys_initcall(ptp_init);
414 module_exit(ptp_exit);
415
416 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
417 MODULE_DESCRIPTION("PTP clocks support");
418 MODULE_LICENSE("GPL");