Merge tag 'drm-misc-next-2023-07-21' of ssh://git.freedesktop.org/git/drm/drm-misc...
[platform/kernel/linux-rpi.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 struct class *ptp_class;
28
29 /* private globals */
30
31 static dev_t ptp_devt;
32
33 static DEFINE_IDA(ptp_clocks_map);
34
35 /* time stamp event queue operations */
36
37 static inline int queue_free(struct timestamp_event_queue *q)
38 {
39         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
40 }
41
42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43                                        struct ptp_clock_event *src)
44 {
45         struct ptp_extts_event *dst;
46         unsigned long flags;
47         s64 seconds;
48         u32 remainder;
49
50         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51
52         spin_lock_irqsave(&queue->lock, flags);
53
54         dst = &queue->buf[queue->tail];
55         dst->index = src->index;
56         dst->t.sec = seconds;
57         dst->t.nsec = remainder;
58
59         if (!queue_free(queue))
60                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
61
62         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
63
64         spin_unlock_irqrestore(&queue->lock, flags);
65 }
66
67 /* posix clock implementation */
68
69 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
70 {
71         tp->tv_sec = 0;
72         tp->tv_nsec = 1;
73         return 0;
74 }
75
76 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
77 {
78         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
79
80         if (ptp_clock_freerun(ptp)) {
81                 pr_err("ptp: physical clock is free running\n");
82                 return -EBUSY;
83         }
84
85         return  ptp->info->settime64(ptp->info, tp);
86 }
87
88 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
89 {
90         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
91         int err;
92
93         if (ptp->info->gettimex64)
94                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
95         else
96                 err = ptp->info->gettime64(ptp->info, tp);
97         return err;
98 }
99
100 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
101 {
102         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103         struct ptp_clock_info *ops;
104         int err = -EOPNOTSUPP;
105
106         if (ptp_clock_freerun(ptp)) {
107                 pr_err("ptp: physical clock is free running\n");
108                 return -EBUSY;
109         }
110
111         ops = ptp->info;
112
113         if (tx->modes & ADJ_SETOFFSET) {
114                 struct timespec64 ts;
115                 ktime_t kt;
116                 s64 delta;
117
118                 ts.tv_sec  = tx->time.tv_sec;
119                 ts.tv_nsec = tx->time.tv_usec;
120
121                 if (!(tx->modes & ADJ_NANO))
122                         ts.tv_nsec *= 1000;
123
124                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
125                         return -EINVAL;
126
127                 kt = timespec64_to_ktime(ts);
128                 delta = ktime_to_ns(kt);
129                 err = ops->adjtime(ops, delta);
130         } else if (tx->modes & ADJ_FREQUENCY) {
131                 long ppb = scaled_ppm_to_ppb(tx->freq);
132                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
133                         return -ERANGE;
134                 err = ops->adjfine(ops, tx->freq);
135                 ptp->dialed_frequency = tx->freq;
136         } else if (tx->modes & ADJ_OFFSET) {
137                 if (ops->adjphase) {
138                         s32 max_phase_adj = ops->getmaxphase(ops);
139                         s32 offset = tx->offset;
140
141                         if (!(tx->modes & ADJ_NANO))
142                                 offset *= NSEC_PER_USEC;
143
144                         if (offset > max_phase_adj || offset < -max_phase_adj)
145                                 return -ERANGE;
146
147                         err = ops->adjphase(ops, offset);
148                 }
149         } else if (tx->modes == 0) {
150                 tx->freq = ptp->dialed_frequency;
151                 err = 0;
152         }
153
154         return err;
155 }
156
157 static struct posix_clock_operations ptp_clock_ops = {
158         .owner          = THIS_MODULE,
159         .clock_adjtime  = ptp_clock_adjtime,
160         .clock_gettime  = ptp_clock_gettime,
161         .clock_getres   = ptp_clock_getres,
162         .clock_settime  = ptp_clock_settime,
163         .ioctl          = ptp_ioctl,
164         .open           = ptp_open,
165         .poll           = ptp_poll,
166         .read           = ptp_read,
167 };
168
169 static void ptp_clock_release(struct device *dev)
170 {
171         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
172
173         ptp_cleanup_pin_groups(ptp);
174         kfree(ptp->vclock_index);
175         mutex_destroy(&ptp->tsevq_mux);
176         mutex_destroy(&ptp->pincfg_mux);
177         mutex_destroy(&ptp->n_vclocks_mux);
178         ida_free(&ptp_clocks_map, ptp->index);
179         kfree(ptp);
180 }
181
182 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
183 {
184         if (info->getcyclesx64)
185                 return info->getcyclesx64(info, ts, NULL);
186         else
187                 return info->gettime64(info, ts);
188 }
189
190 static void ptp_aux_kworker(struct kthread_work *work)
191 {
192         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
193                                              aux_work.work);
194         struct ptp_clock_info *info = ptp->info;
195         long delay;
196
197         delay = info->do_aux_work(info);
198
199         if (delay >= 0)
200                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
201 }
202
203 /* public interface */
204
205 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
206                                      struct device *parent)
207 {
208         struct ptp_clock *ptp;
209         int err = 0, index, major = MAJOR(ptp_devt);
210         size_t size;
211
212         if (info->n_alarm > PTP_MAX_ALARMS)
213                 return ERR_PTR(-EINVAL);
214
215         /* Initialize a clock structure. */
216         err = -ENOMEM;
217         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
218         if (ptp == NULL)
219                 goto no_memory;
220
221         index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL);
222         if (index < 0) {
223                 err = index;
224                 goto no_slot;
225         }
226
227         ptp->clock.ops = ptp_clock_ops;
228         ptp->info = info;
229         ptp->devid = MKDEV(major, index);
230         ptp->index = index;
231         spin_lock_init(&ptp->tsevq.lock);
232         mutex_init(&ptp->tsevq_mux);
233         mutex_init(&ptp->pincfg_mux);
234         mutex_init(&ptp->n_vclocks_mux);
235         init_waitqueue_head(&ptp->tsev_wq);
236
237         if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
238                 ptp->has_cycles = true;
239                 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
240                         ptp->info->getcycles64 = ptp_getcycles64;
241         } else {
242                 /* Free running cycle counter not supported, use time. */
243                 ptp->info->getcycles64 = ptp_getcycles64;
244
245                 if (ptp->info->gettimex64)
246                         ptp->info->getcyclesx64 = ptp->info->gettimex64;
247
248                 if (ptp->info->getcrosststamp)
249                         ptp->info->getcrosscycles = ptp->info->getcrosststamp;
250         }
251
252         if (ptp->info->do_aux_work) {
253                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
254                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
255                 if (IS_ERR(ptp->kworker)) {
256                         err = PTR_ERR(ptp->kworker);
257                         pr_err("failed to create ptp aux_worker %d\n", err);
258                         goto kworker_err;
259                 }
260         }
261
262         /* PTP virtual clock is being registered under physical clock */
263         if (parent && parent->class && parent->class->name &&
264             strcmp(parent->class->name, "ptp") == 0)
265                 ptp->is_virtual_clock = true;
266
267         if (!ptp->is_virtual_clock) {
268                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
269
270                 size = sizeof(int) * ptp->max_vclocks;
271                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
272                 if (!ptp->vclock_index) {
273                         err = -ENOMEM;
274                         goto no_mem_for_vclocks;
275                 }
276         }
277
278         err = ptp_populate_pin_groups(ptp);
279         if (err)
280                 goto no_pin_groups;
281
282         /* Register a new PPS source. */
283         if (info->pps) {
284                 struct pps_source_info pps;
285                 memset(&pps, 0, sizeof(pps));
286                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
287                 pps.mode = PTP_PPS_MODE;
288                 pps.owner = info->owner;
289                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
290                 if (IS_ERR(ptp->pps_source)) {
291                         err = PTR_ERR(ptp->pps_source);
292                         pr_err("failed to register pps source\n");
293                         goto no_pps;
294                 }
295                 ptp->pps_source->lookup_cookie = ptp;
296         }
297
298         /* Initialize a new device of our class in our clock structure. */
299         device_initialize(&ptp->dev);
300         ptp->dev.devt = ptp->devid;
301         ptp->dev.class = ptp_class;
302         ptp->dev.parent = parent;
303         ptp->dev.groups = ptp->pin_attr_groups;
304         ptp->dev.release = ptp_clock_release;
305         dev_set_drvdata(&ptp->dev, ptp);
306         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
307
308         /* Create a posix clock and link it to the device. */
309         err = posix_clock_register(&ptp->clock, &ptp->dev);
310         if (err) {
311                 if (ptp->pps_source)
312                         pps_unregister_source(ptp->pps_source);
313
314                 if (ptp->kworker)
315                         kthread_destroy_worker(ptp->kworker);
316
317                 put_device(&ptp->dev);
318
319                 pr_err("failed to create posix clock\n");
320                 return ERR_PTR(err);
321         }
322
323         return ptp;
324
325 no_pps:
326         ptp_cleanup_pin_groups(ptp);
327 no_pin_groups:
328         kfree(ptp->vclock_index);
329 no_mem_for_vclocks:
330         if (ptp->kworker)
331                 kthread_destroy_worker(ptp->kworker);
332 kworker_err:
333         mutex_destroy(&ptp->tsevq_mux);
334         mutex_destroy(&ptp->pincfg_mux);
335         mutex_destroy(&ptp->n_vclocks_mux);
336         ida_free(&ptp_clocks_map, index);
337 no_slot:
338         kfree(ptp);
339 no_memory:
340         return ERR_PTR(err);
341 }
342 EXPORT_SYMBOL(ptp_clock_register);
343
344 static int unregister_vclock(struct device *dev, void *data)
345 {
346         struct ptp_clock *ptp = dev_get_drvdata(dev);
347
348         ptp_vclock_unregister(info_to_vclock(ptp->info));
349         return 0;
350 }
351
352 int ptp_clock_unregister(struct ptp_clock *ptp)
353 {
354         if (ptp_vclock_in_use(ptp)) {
355                 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
356         }
357
358         ptp->defunct = 1;
359         wake_up_interruptible(&ptp->tsev_wq);
360
361         if (ptp->kworker) {
362                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
363                 kthread_destroy_worker(ptp->kworker);
364         }
365
366         /* Release the clock's resources. */
367         if (ptp->pps_source)
368                 pps_unregister_source(ptp->pps_source);
369
370         posix_clock_unregister(&ptp->clock);
371
372         return 0;
373 }
374 EXPORT_SYMBOL(ptp_clock_unregister);
375
376 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
377 {
378         struct pps_event_time evt;
379
380         switch (event->type) {
381
382         case PTP_CLOCK_ALARM:
383                 break;
384
385         case PTP_CLOCK_EXTTS:
386                 enqueue_external_timestamp(&ptp->tsevq, event);
387                 wake_up_interruptible(&ptp->tsev_wq);
388                 break;
389
390         case PTP_CLOCK_PPS:
391                 pps_get_ts(&evt);
392                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
393                 break;
394
395         case PTP_CLOCK_PPSUSR:
396                 pps_event(ptp->pps_source, &event->pps_times,
397                           PTP_PPS_EVENT, NULL);
398                 break;
399         }
400 }
401 EXPORT_SYMBOL(ptp_clock_event);
402
403 int ptp_clock_index(struct ptp_clock *ptp)
404 {
405         return ptp->index;
406 }
407 EXPORT_SYMBOL(ptp_clock_index);
408
409 int ptp_find_pin(struct ptp_clock *ptp,
410                  enum ptp_pin_function func, unsigned int chan)
411 {
412         struct ptp_pin_desc *pin = NULL;
413         int i;
414
415         for (i = 0; i < ptp->info->n_pins; i++) {
416                 if (ptp->info->pin_config[i].func == func &&
417                     ptp->info->pin_config[i].chan == chan) {
418                         pin = &ptp->info->pin_config[i];
419                         break;
420                 }
421         }
422
423         return pin ? i : -1;
424 }
425 EXPORT_SYMBOL(ptp_find_pin);
426
427 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
428                           enum ptp_pin_function func, unsigned int chan)
429 {
430         int result;
431
432         mutex_lock(&ptp->pincfg_mux);
433
434         result = ptp_find_pin(ptp, func, chan);
435
436         mutex_unlock(&ptp->pincfg_mux);
437
438         return result;
439 }
440 EXPORT_SYMBOL(ptp_find_pin_unlocked);
441
442 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
443 {
444         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
445 }
446 EXPORT_SYMBOL(ptp_schedule_worker);
447
448 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
449 {
450         kthread_cancel_delayed_work_sync(&ptp->aux_work);
451 }
452 EXPORT_SYMBOL(ptp_cancel_worker_sync);
453
454 /* module operations */
455
456 static void __exit ptp_exit(void)
457 {
458         class_destroy(ptp_class);
459         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
460         ida_destroy(&ptp_clocks_map);
461 }
462
463 static int __init ptp_init(void)
464 {
465         int err;
466
467         ptp_class = class_create("ptp");
468         if (IS_ERR(ptp_class)) {
469                 pr_err("ptp: failed to allocate class\n");
470                 return PTR_ERR(ptp_class);
471         }
472
473         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
474         if (err < 0) {
475                 pr_err("ptp: failed to allocate device region\n");
476                 goto no_region;
477         }
478
479         ptp_class->dev_groups = ptp_groups;
480         pr_info("PTP clock support registered\n");
481         return 0;
482
483 no_region:
484         class_destroy(ptp_class);
485         return err;
486 }
487
488 subsys_initcall(ptp_init);
489 module_exit(ptp_exit);
490
491 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
492 MODULE_DESCRIPTION("PTP clocks support");
493 MODULE_LICENSE("GPL");