1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PTP 1588 clock support
5 * Copyright (C) 2010 OMICRON electronics GmbH
8 #include <linux/device.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
20 #include "ptp_private.h"
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27 struct class *ptp_class;
31 static dev_t ptp_devt;
33 static DEFINE_IDA(ptp_clocks_map);
35 /* time stamp event queue operations */
37 static inline int queue_free(struct timestamp_event_queue *q)
39 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43 struct ptp_clock_event *src)
45 struct ptp_extts_event *dst;
50 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
52 spin_lock_irqsave(&queue->lock, flags);
54 dst = &queue->buf[queue->tail];
55 dst->index = src->index;
57 dst->t.nsec = remainder;
59 if (!queue_free(queue))
60 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
62 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
64 spin_unlock_irqrestore(&queue->lock, flags);
67 /* posix clock implementation */
69 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
76 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
78 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
80 if (ptp_vclock_in_use(ptp)) {
81 pr_err("ptp: virtual clock in use\n");
85 return ptp->info->settime64(ptp->info, tp);
88 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
90 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
93 if (ptp->info->gettimex64)
94 err = ptp->info->gettimex64(ptp->info, tp, NULL);
96 err = ptp->info->gettime64(ptp->info, tp);
100 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
102 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103 struct ptp_clock_info *ops;
104 int err = -EOPNOTSUPP;
106 if (ptp_vclock_in_use(ptp)) {
107 pr_err("ptp: virtual clock in use\n");
113 if (tx->modes & ADJ_SETOFFSET) {
114 struct timespec64 ts;
118 ts.tv_sec = tx->time.tv_sec;
119 ts.tv_nsec = tx->time.tv_usec;
121 if (!(tx->modes & ADJ_NANO))
124 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
127 kt = timespec64_to_ktime(ts);
128 delta = ktime_to_ns(kt);
129 err = ops->adjtime(ops, delta);
130 } else if (tx->modes & ADJ_FREQUENCY) {
131 long ppb = scaled_ppm_to_ppb(tx->freq);
132 if (ppb > ops->max_adj || ppb < -ops->max_adj)
135 err = ops->adjfine(ops, tx->freq);
137 err = ops->adjfreq(ops, ppb);
138 ptp->dialed_frequency = tx->freq;
139 } else if (tx->modes & ADJ_OFFSET) {
141 s32 offset = tx->offset;
143 if (!(tx->modes & ADJ_NANO))
144 offset *= NSEC_PER_USEC;
146 err = ops->adjphase(ops, offset);
148 } else if (tx->modes == 0) {
149 tx->freq = ptp->dialed_frequency;
156 static struct posix_clock_operations ptp_clock_ops = {
157 .owner = THIS_MODULE,
158 .clock_adjtime = ptp_clock_adjtime,
159 .clock_gettime = ptp_clock_gettime,
160 .clock_getres = ptp_clock_getres,
161 .clock_settime = ptp_clock_settime,
168 static void ptp_clock_release(struct device *dev)
170 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
172 ptp_cleanup_pin_groups(ptp);
173 mutex_destroy(&ptp->tsevq_mux);
174 mutex_destroy(&ptp->pincfg_mux);
175 mutex_destroy(&ptp->n_vclocks_mux);
176 ida_simple_remove(&ptp_clocks_map, ptp->index);
180 static void ptp_aux_kworker(struct kthread_work *work)
182 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
184 struct ptp_clock_info *info = ptp->info;
187 delay = info->do_aux_work(info);
190 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
193 /* public interface */
195 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
196 struct device *parent)
198 struct ptp_clock *ptp;
199 int err = 0, index, major = MAJOR(ptp_devt);
202 if (info->n_alarm > PTP_MAX_ALARMS)
203 return ERR_PTR(-EINVAL);
205 /* Initialize a clock structure. */
207 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
211 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
217 ptp->clock.ops = ptp_clock_ops;
219 ptp->devid = MKDEV(major, index);
221 spin_lock_init(&ptp->tsevq.lock);
222 mutex_init(&ptp->tsevq_mux);
223 mutex_init(&ptp->pincfg_mux);
224 mutex_init(&ptp->n_vclocks_mux);
225 init_waitqueue_head(&ptp->tsev_wq);
227 if (ptp->info->do_aux_work) {
228 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
229 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
230 if (IS_ERR(ptp->kworker)) {
231 err = PTR_ERR(ptp->kworker);
232 pr_err("failed to create ptp aux_worker %d\n", err);
237 /* PTP virtual clock is being registered under physical clock */
238 if (parent && parent->class && parent->class->name &&
239 strcmp(parent->class->name, "ptp") == 0)
240 ptp->is_virtual_clock = true;
242 if (!ptp->is_virtual_clock) {
243 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
245 size = sizeof(int) * ptp->max_vclocks;
246 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
247 if (!ptp->vclock_index) {
249 goto no_mem_for_vclocks;
253 err = ptp_populate_pin_groups(ptp);
257 /* Register a new PPS source. */
259 struct pps_source_info pps;
260 memset(&pps, 0, sizeof(pps));
261 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
262 pps.mode = PTP_PPS_MODE;
263 pps.owner = info->owner;
264 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
265 if (IS_ERR(ptp->pps_source)) {
266 err = PTR_ERR(ptp->pps_source);
267 pr_err("failed to register pps source\n");
270 ptp->pps_source->lookup_cookie = ptp;
273 /* Initialize a new device of our class in our clock structure. */
274 device_initialize(&ptp->dev);
275 ptp->dev.devt = ptp->devid;
276 ptp->dev.class = ptp_class;
277 ptp->dev.parent = parent;
278 ptp->dev.groups = ptp->pin_attr_groups;
279 ptp->dev.release = ptp_clock_release;
280 dev_set_drvdata(&ptp->dev, ptp);
281 dev_set_name(&ptp->dev, "ptp%d", ptp->index);
283 /* Create a posix clock and link it to the device. */
284 err = posix_clock_register(&ptp->clock, &ptp->dev);
286 pr_err("failed to create posix clock\n");
294 pps_unregister_source(ptp->pps_source);
296 ptp_cleanup_pin_groups(ptp);
298 kfree(ptp->vclock_index);
301 kthread_destroy_worker(ptp->kworker);
303 mutex_destroy(&ptp->tsevq_mux);
304 mutex_destroy(&ptp->pincfg_mux);
305 mutex_destroy(&ptp->n_vclocks_mux);
306 ida_simple_remove(&ptp_clocks_map, index);
312 EXPORT_SYMBOL(ptp_clock_register);
314 int ptp_clock_unregister(struct ptp_clock *ptp)
316 if (ptp_vclock_in_use(ptp)) {
317 pr_err("ptp: virtual clock in use\n");
322 wake_up_interruptible(&ptp->tsev_wq);
324 kfree(ptp->vclock_index);
327 kthread_cancel_delayed_work_sync(&ptp->aux_work);
328 kthread_destroy_worker(ptp->kworker);
331 /* Release the clock's resources. */
333 pps_unregister_source(ptp->pps_source);
335 posix_clock_unregister(&ptp->clock);
339 EXPORT_SYMBOL(ptp_clock_unregister);
341 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
343 struct pps_event_time evt;
345 switch (event->type) {
347 case PTP_CLOCK_ALARM:
350 case PTP_CLOCK_EXTTS:
351 enqueue_external_timestamp(&ptp->tsevq, event);
352 wake_up_interruptible(&ptp->tsev_wq);
357 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
360 case PTP_CLOCK_PPSUSR:
361 pps_event(ptp->pps_source, &event->pps_times,
362 PTP_PPS_EVENT, NULL);
366 EXPORT_SYMBOL(ptp_clock_event);
368 int ptp_clock_index(struct ptp_clock *ptp)
372 EXPORT_SYMBOL(ptp_clock_index);
374 int ptp_find_pin(struct ptp_clock *ptp,
375 enum ptp_pin_function func, unsigned int chan)
377 struct ptp_pin_desc *pin = NULL;
380 for (i = 0; i < ptp->info->n_pins; i++) {
381 if (ptp->info->pin_config[i].func == func &&
382 ptp->info->pin_config[i].chan == chan) {
383 pin = &ptp->info->pin_config[i];
390 EXPORT_SYMBOL(ptp_find_pin);
392 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
393 enum ptp_pin_function func, unsigned int chan)
397 mutex_lock(&ptp->pincfg_mux);
399 result = ptp_find_pin(ptp, func, chan);
401 mutex_unlock(&ptp->pincfg_mux);
405 EXPORT_SYMBOL(ptp_find_pin_unlocked);
407 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
409 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
411 EXPORT_SYMBOL(ptp_schedule_worker);
413 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
415 kthread_cancel_delayed_work_sync(&ptp->aux_work);
417 EXPORT_SYMBOL(ptp_cancel_worker_sync);
419 /* module operations */
421 static void __exit ptp_exit(void)
423 class_destroy(ptp_class);
424 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
425 ida_destroy(&ptp_clocks_map);
428 static int __init ptp_init(void)
432 ptp_class = class_create(THIS_MODULE, "ptp");
433 if (IS_ERR(ptp_class)) {
434 pr_err("ptp: failed to allocate class\n");
435 return PTR_ERR(ptp_class);
438 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
440 pr_err("ptp: failed to allocate device region\n");
444 ptp_class->dev_groups = ptp_groups;
445 pr_info("PTP clock support registered\n");
449 class_destroy(ptp_class);
453 subsys_initcall(ptp_init);
454 module_exit(ptp_exit);
456 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
457 MODULE_DESCRIPTION("PTP clocks support");
458 MODULE_LICENSE("GPL");