Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 struct class *ptp_class;
28
29 /* private globals */
30
31 static dev_t ptp_devt;
32
33 static DEFINE_IDA(ptp_clocks_map);
34
35 /* time stamp event queue operations */
36
37 static inline int queue_free(struct timestamp_event_queue *q)
38 {
39         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
40 }
41
42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43                                        struct ptp_clock_event *src)
44 {
45         struct ptp_extts_event *dst;
46         unsigned long flags;
47         s64 seconds;
48         u32 remainder;
49
50         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51
52         spin_lock_irqsave(&queue->lock, flags);
53
54         dst = &queue->buf[queue->tail];
55         dst->index = src->index;
56         dst->t.sec = seconds;
57         dst->t.nsec = remainder;
58
59         if (!queue_free(queue))
60                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
61
62         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
63
64         spin_unlock_irqrestore(&queue->lock, flags);
65 }
66
67 /* posix clock implementation */
68
69 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
70 {
71         tp->tv_sec = 0;
72         tp->tv_nsec = 1;
73         return 0;
74 }
75
76 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
77 {
78         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
79
80         if (ptp_vclock_in_use(ptp)) {
81                 pr_err("ptp: virtual clock in use\n");
82                 return -EBUSY;
83         }
84
85         return  ptp->info->settime64(ptp->info, tp);
86 }
87
88 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
89 {
90         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
91         int err;
92
93         if (ptp->info->gettimex64)
94                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
95         else
96                 err = ptp->info->gettime64(ptp->info, tp);
97         return err;
98 }
99
100 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
101 {
102         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103         struct ptp_clock_info *ops;
104         int err = -EOPNOTSUPP;
105
106         if (ptp_vclock_in_use(ptp)) {
107                 pr_err("ptp: virtual clock in use\n");
108                 return -EBUSY;
109         }
110
111         ops = ptp->info;
112
113         if (tx->modes & ADJ_SETOFFSET) {
114                 struct timespec64 ts;
115                 ktime_t kt;
116                 s64 delta;
117
118                 ts.tv_sec  = tx->time.tv_sec;
119                 ts.tv_nsec = tx->time.tv_usec;
120
121                 if (!(tx->modes & ADJ_NANO))
122                         ts.tv_nsec *= 1000;
123
124                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
125                         return -EINVAL;
126
127                 kt = timespec64_to_ktime(ts);
128                 delta = ktime_to_ns(kt);
129                 err = ops->adjtime(ops, delta);
130         } else if (tx->modes & ADJ_FREQUENCY) {
131                 long ppb = scaled_ppm_to_ppb(tx->freq);
132                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
133                         return -ERANGE;
134                 if (ops->adjfine)
135                         err = ops->adjfine(ops, tx->freq);
136                 else
137                         err = ops->adjfreq(ops, ppb);
138                 ptp->dialed_frequency = tx->freq;
139         } else if (tx->modes & ADJ_OFFSET) {
140                 if (ops->adjphase) {
141                         s32 offset = tx->offset;
142
143                         if (!(tx->modes & ADJ_NANO))
144                                 offset *= NSEC_PER_USEC;
145
146                         err = ops->adjphase(ops, offset);
147                 }
148         } else if (tx->modes == 0) {
149                 tx->freq = ptp->dialed_frequency;
150                 err = 0;
151         }
152
153         return err;
154 }
155
156 static struct posix_clock_operations ptp_clock_ops = {
157         .owner          = THIS_MODULE,
158         .clock_adjtime  = ptp_clock_adjtime,
159         .clock_gettime  = ptp_clock_gettime,
160         .clock_getres   = ptp_clock_getres,
161         .clock_settime  = ptp_clock_settime,
162         .ioctl          = ptp_ioctl,
163         .open           = ptp_open,
164         .poll           = ptp_poll,
165         .read           = ptp_read,
166 };
167
168 static void ptp_clock_release(struct device *dev)
169 {
170         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
171
172         ptp_cleanup_pin_groups(ptp);
173         mutex_destroy(&ptp->tsevq_mux);
174         mutex_destroy(&ptp->pincfg_mux);
175         mutex_destroy(&ptp->n_vclocks_mux);
176         ida_simple_remove(&ptp_clocks_map, ptp->index);
177         kfree(ptp);
178 }
179
180 static void ptp_aux_kworker(struct kthread_work *work)
181 {
182         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
183                                              aux_work.work);
184         struct ptp_clock_info *info = ptp->info;
185         long delay;
186
187         delay = info->do_aux_work(info);
188
189         if (delay >= 0)
190                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
191 }
192
193 /* public interface */
194
195 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
196                                      struct device *parent)
197 {
198         struct ptp_clock *ptp;
199         int err = 0, index, major = MAJOR(ptp_devt);
200         size_t size;
201
202         if (info->n_alarm > PTP_MAX_ALARMS)
203                 return ERR_PTR(-EINVAL);
204
205         /* Initialize a clock structure. */
206         err = -ENOMEM;
207         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
208         if (ptp == NULL)
209                 goto no_memory;
210
211         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
212         if (index < 0) {
213                 err = index;
214                 goto no_slot;
215         }
216
217         ptp->clock.ops = ptp_clock_ops;
218         ptp->info = info;
219         ptp->devid = MKDEV(major, index);
220         ptp->index = index;
221         spin_lock_init(&ptp->tsevq.lock);
222         mutex_init(&ptp->tsevq_mux);
223         mutex_init(&ptp->pincfg_mux);
224         mutex_init(&ptp->n_vclocks_mux);
225         init_waitqueue_head(&ptp->tsev_wq);
226
227         if (ptp->info->do_aux_work) {
228                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
229                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
230                 if (IS_ERR(ptp->kworker)) {
231                         err = PTR_ERR(ptp->kworker);
232                         pr_err("failed to create ptp aux_worker %d\n", err);
233                         goto kworker_err;
234                 }
235         }
236
237         /* PTP virtual clock is being registered under physical clock */
238         if (parent && parent->class && parent->class->name &&
239             strcmp(parent->class->name, "ptp") == 0)
240                 ptp->is_virtual_clock = true;
241
242         if (!ptp->is_virtual_clock) {
243                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
244
245                 size = sizeof(int) * ptp->max_vclocks;
246                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
247                 if (!ptp->vclock_index) {
248                         err = -ENOMEM;
249                         goto no_mem_for_vclocks;
250                 }
251         }
252
253         err = ptp_populate_pin_groups(ptp);
254         if (err)
255                 goto no_pin_groups;
256
257         /* Register a new PPS source. */
258         if (info->pps) {
259                 struct pps_source_info pps;
260                 memset(&pps, 0, sizeof(pps));
261                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
262                 pps.mode = PTP_PPS_MODE;
263                 pps.owner = info->owner;
264                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
265                 if (IS_ERR(ptp->pps_source)) {
266                         err = PTR_ERR(ptp->pps_source);
267                         pr_err("failed to register pps source\n");
268                         goto no_pps;
269                 }
270                 ptp->pps_source->lookup_cookie = ptp;
271         }
272
273         /* Initialize a new device of our class in our clock structure. */
274         device_initialize(&ptp->dev);
275         ptp->dev.devt = ptp->devid;
276         ptp->dev.class = ptp_class;
277         ptp->dev.parent = parent;
278         ptp->dev.groups = ptp->pin_attr_groups;
279         ptp->dev.release = ptp_clock_release;
280         dev_set_drvdata(&ptp->dev, ptp);
281         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
282
283         /* Create a posix clock and link it to the device. */
284         err = posix_clock_register(&ptp->clock, &ptp->dev);
285         if (err) {
286                 pr_err("failed to create posix clock\n");
287                 goto no_clock;
288         }
289
290         return ptp;
291
292 no_clock:
293         if (ptp->pps_source)
294                 pps_unregister_source(ptp->pps_source);
295 no_pps:
296         ptp_cleanup_pin_groups(ptp);
297 no_pin_groups:
298         kfree(ptp->vclock_index);
299 no_mem_for_vclocks:
300         if (ptp->kworker)
301                 kthread_destroy_worker(ptp->kworker);
302 kworker_err:
303         mutex_destroy(&ptp->tsevq_mux);
304         mutex_destroy(&ptp->pincfg_mux);
305         mutex_destroy(&ptp->n_vclocks_mux);
306         ida_simple_remove(&ptp_clocks_map, index);
307 no_slot:
308         kfree(ptp);
309 no_memory:
310         return ERR_PTR(err);
311 }
312 EXPORT_SYMBOL(ptp_clock_register);
313
314 int ptp_clock_unregister(struct ptp_clock *ptp)
315 {
316         if (ptp_vclock_in_use(ptp)) {
317                 pr_err("ptp: virtual clock in use\n");
318                 return -EBUSY;
319         }
320
321         ptp->defunct = 1;
322         wake_up_interruptible(&ptp->tsev_wq);
323
324         kfree(ptp->vclock_index);
325
326         if (ptp->kworker) {
327                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
328                 kthread_destroy_worker(ptp->kworker);
329         }
330
331         /* Release the clock's resources. */
332         if (ptp->pps_source)
333                 pps_unregister_source(ptp->pps_source);
334
335         posix_clock_unregister(&ptp->clock);
336
337         return 0;
338 }
339 EXPORT_SYMBOL(ptp_clock_unregister);
340
341 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
342 {
343         struct pps_event_time evt;
344
345         switch (event->type) {
346
347         case PTP_CLOCK_ALARM:
348                 break;
349
350         case PTP_CLOCK_EXTTS:
351                 enqueue_external_timestamp(&ptp->tsevq, event);
352                 wake_up_interruptible(&ptp->tsev_wq);
353                 break;
354
355         case PTP_CLOCK_PPS:
356                 pps_get_ts(&evt);
357                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
358                 break;
359
360         case PTP_CLOCK_PPSUSR:
361                 pps_event(ptp->pps_source, &event->pps_times,
362                           PTP_PPS_EVENT, NULL);
363                 break;
364         }
365 }
366 EXPORT_SYMBOL(ptp_clock_event);
367
368 int ptp_clock_index(struct ptp_clock *ptp)
369 {
370         return ptp->index;
371 }
372 EXPORT_SYMBOL(ptp_clock_index);
373
374 int ptp_find_pin(struct ptp_clock *ptp,
375                  enum ptp_pin_function func, unsigned int chan)
376 {
377         struct ptp_pin_desc *pin = NULL;
378         int i;
379
380         for (i = 0; i < ptp->info->n_pins; i++) {
381                 if (ptp->info->pin_config[i].func == func &&
382                     ptp->info->pin_config[i].chan == chan) {
383                         pin = &ptp->info->pin_config[i];
384                         break;
385                 }
386         }
387
388         return pin ? i : -1;
389 }
390 EXPORT_SYMBOL(ptp_find_pin);
391
392 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
393                           enum ptp_pin_function func, unsigned int chan)
394 {
395         int result;
396
397         mutex_lock(&ptp->pincfg_mux);
398
399         result = ptp_find_pin(ptp, func, chan);
400
401         mutex_unlock(&ptp->pincfg_mux);
402
403         return result;
404 }
405 EXPORT_SYMBOL(ptp_find_pin_unlocked);
406
407 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
408 {
409         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
410 }
411 EXPORT_SYMBOL(ptp_schedule_worker);
412
413 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
414 {
415         kthread_cancel_delayed_work_sync(&ptp->aux_work);
416 }
417 EXPORT_SYMBOL(ptp_cancel_worker_sync);
418
419 /* module operations */
420
421 static void __exit ptp_exit(void)
422 {
423         class_destroy(ptp_class);
424         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
425         ida_destroy(&ptp_clocks_map);
426 }
427
428 static int __init ptp_init(void)
429 {
430         int err;
431
432         ptp_class = class_create(THIS_MODULE, "ptp");
433         if (IS_ERR(ptp_class)) {
434                 pr_err("ptp: failed to allocate class\n");
435                 return PTR_ERR(ptp_class);
436         }
437
438         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
439         if (err < 0) {
440                 pr_err("ptp: failed to allocate device region\n");
441                 goto no_region;
442         }
443
444         ptp_class->dev_groups = ptp_groups;
445         pr_info("PTP clock support registered\n");
446         return 0;
447
448 no_region:
449         class_destroy(ptp_class);
450         return err;
451 }
452
453 subsys_initcall(ptp_init);
454 module_exit(ptp_exit);
455
456 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
457 MODULE_DESCRIPTION("PTP clocks support");
458 MODULE_LICENSE("GPL");