Merge tag 'spi-fix-v5.15-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[platform/kernel/linux-rpi.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 struct class *ptp_class;
28
29 /* private globals */
30
31 static dev_t ptp_devt;
32
33 static DEFINE_IDA(ptp_clocks_map);
34
35 /* time stamp event queue operations */
36
37 static inline int queue_free(struct timestamp_event_queue *q)
38 {
39         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
40 }
41
42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43                                        struct ptp_clock_event *src)
44 {
45         struct ptp_extts_event *dst;
46         unsigned long flags;
47         s64 seconds;
48         u32 remainder;
49
50         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51
52         spin_lock_irqsave(&queue->lock, flags);
53
54         dst = &queue->buf[queue->tail];
55         dst->index = src->index;
56         dst->t.sec = seconds;
57         dst->t.nsec = remainder;
58
59         if (!queue_free(queue))
60                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
61
62         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
63
64         spin_unlock_irqrestore(&queue->lock, flags);
65 }
66
67 /* posix clock implementation */
68
69 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
70 {
71         tp->tv_sec = 0;
72         tp->tv_nsec = 1;
73         return 0;
74 }
75
76 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
77 {
78         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
79
80         if (ptp_vclock_in_use(ptp)) {
81                 pr_err("ptp: virtual clock in use\n");
82                 return -EBUSY;
83         }
84
85         return  ptp->info->settime64(ptp->info, tp);
86 }
87
88 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
89 {
90         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
91         int err;
92
93         if (ptp->info->gettimex64)
94                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
95         else
96                 err = ptp->info->gettime64(ptp->info, tp);
97         return err;
98 }
99
100 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
101 {
102         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103         struct ptp_clock_info *ops;
104         int err = -EOPNOTSUPP;
105
106         if (ptp_vclock_in_use(ptp)) {
107                 pr_err("ptp: virtual clock in use\n");
108                 return -EBUSY;
109         }
110
111         ops = ptp->info;
112
113         if (tx->modes & ADJ_SETOFFSET) {
114                 struct timespec64 ts;
115                 ktime_t kt;
116                 s64 delta;
117
118                 ts.tv_sec  = tx->time.tv_sec;
119                 ts.tv_nsec = tx->time.tv_usec;
120
121                 if (!(tx->modes & ADJ_NANO))
122                         ts.tv_nsec *= 1000;
123
124                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
125                         return -EINVAL;
126
127                 kt = timespec64_to_ktime(ts);
128                 delta = ktime_to_ns(kt);
129                 err = ops->adjtime(ops, delta);
130         } else if (tx->modes & ADJ_FREQUENCY) {
131                 long ppb = scaled_ppm_to_ppb(tx->freq);
132                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
133                         return -ERANGE;
134                 if (ops->adjfine)
135                         err = ops->adjfine(ops, tx->freq);
136                 else
137                         err = ops->adjfreq(ops, ppb);
138                 ptp->dialed_frequency = tx->freq;
139         } else if (tx->modes & ADJ_OFFSET) {
140                 if (ops->adjphase) {
141                         s32 offset = tx->offset;
142
143                         if (!(tx->modes & ADJ_NANO))
144                                 offset *= NSEC_PER_USEC;
145
146                         err = ops->adjphase(ops, offset);
147                 }
148         } else if (tx->modes == 0) {
149                 tx->freq = ptp->dialed_frequency;
150                 err = 0;
151         }
152
153         return err;
154 }
155
156 static struct posix_clock_operations ptp_clock_ops = {
157         .owner          = THIS_MODULE,
158         .clock_adjtime  = ptp_clock_adjtime,
159         .clock_gettime  = ptp_clock_gettime,
160         .clock_getres   = ptp_clock_getres,
161         .clock_settime  = ptp_clock_settime,
162         .ioctl          = ptp_ioctl,
163         .open           = ptp_open,
164         .poll           = ptp_poll,
165         .read           = ptp_read,
166 };
167
168 static void ptp_clock_release(struct device *dev)
169 {
170         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
171
172         ptp_cleanup_pin_groups(ptp);
173         kfree(ptp->vclock_index);
174         mutex_destroy(&ptp->tsevq_mux);
175         mutex_destroy(&ptp->pincfg_mux);
176         mutex_destroy(&ptp->n_vclocks_mux);
177         ida_simple_remove(&ptp_clocks_map, ptp->index);
178         kfree(ptp);
179 }
180
181 static void ptp_aux_kworker(struct kthread_work *work)
182 {
183         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
184                                              aux_work.work);
185         struct ptp_clock_info *info = ptp->info;
186         long delay;
187
188         delay = info->do_aux_work(info);
189
190         if (delay >= 0)
191                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
192 }
193
194 /* public interface */
195
196 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
197                                      struct device *parent)
198 {
199         struct ptp_clock *ptp;
200         int err = 0, index, major = MAJOR(ptp_devt);
201         size_t size;
202
203         if (info->n_alarm > PTP_MAX_ALARMS)
204                 return ERR_PTR(-EINVAL);
205
206         /* Initialize a clock structure. */
207         err = -ENOMEM;
208         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
209         if (ptp == NULL)
210                 goto no_memory;
211
212         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
213         if (index < 0) {
214                 err = index;
215                 goto no_slot;
216         }
217
218         ptp->clock.ops = ptp_clock_ops;
219         ptp->info = info;
220         ptp->devid = MKDEV(major, index);
221         ptp->index = index;
222         spin_lock_init(&ptp->tsevq.lock);
223         mutex_init(&ptp->tsevq_mux);
224         mutex_init(&ptp->pincfg_mux);
225         mutex_init(&ptp->n_vclocks_mux);
226         init_waitqueue_head(&ptp->tsev_wq);
227
228         if (ptp->info->do_aux_work) {
229                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
230                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
231                 if (IS_ERR(ptp->kworker)) {
232                         err = PTR_ERR(ptp->kworker);
233                         pr_err("failed to create ptp aux_worker %d\n", err);
234                         goto kworker_err;
235                 }
236         }
237
238         /* PTP virtual clock is being registered under physical clock */
239         if (parent && parent->class && parent->class->name &&
240             strcmp(parent->class->name, "ptp") == 0)
241                 ptp->is_virtual_clock = true;
242
243         if (!ptp->is_virtual_clock) {
244                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
245
246                 size = sizeof(int) * ptp->max_vclocks;
247                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
248                 if (!ptp->vclock_index) {
249                         err = -ENOMEM;
250                         goto no_mem_for_vclocks;
251                 }
252         }
253
254         err = ptp_populate_pin_groups(ptp);
255         if (err)
256                 goto no_pin_groups;
257
258         /* Register a new PPS source. */
259         if (info->pps) {
260                 struct pps_source_info pps;
261                 memset(&pps, 0, sizeof(pps));
262                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
263                 pps.mode = PTP_PPS_MODE;
264                 pps.owner = info->owner;
265                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
266                 if (IS_ERR(ptp->pps_source)) {
267                         err = PTR_ERR(ptp->pps_source);
268                         pr_err("failed to register pps source\n");
269                         goto no_pps;
270                 }
271                 ptp->pps_source->lookup_cookie = ptp;
272         }
273
274         /* Initialize a new device of our class in our clock structure. */
275         device_initialize(&ptp->dev);
276         ptp->dev.devt = ptp->devid;
277         ptp->dev.class = ptp_class;
278         ptp->dev.parent = parent;
279         ptp->dev.groups = ptp->pin_attr_groups;
280         ptp->dev.release = ptp_clock_release;
281         dev_set_drvdata(&ptp->dev, ptp);
282         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
283
284         /* Create a posix clock and link it to the device. */
285         err = posix_clock_register(&ptp->clock, &ptp->dev);
286         if (err) {
287                 if (ptp->pps_source)
288                         pps_unregister_source(ptp->pps_source);
289
290                 if (ptp->kworker)
291                         kthread_destroy_worker(ptp->kworker);
292
293                 put_device(&ptp->dev);
294
295                 pr_err("failed to create posix clock\n");
296                 return ERR_PTR(err);
297         }
298
299         return ptp;
300
301 no_pps:
302         ptp_cleanup_pin_groups(ptp);
303 no_pin_groups:
304         kfree(ptp->vclock_index);
305 no_mem_for_vclocks:
306         if (ptp->kworker)
307                 kthread_destroy_worker(ptp->kworker);
308 kworker_err:
309         mutex_destroy(&ptp->tsevq_mux);
310         mutex_destroy(&ptp->pincfg_mux);
311         mutex_destroy(&ptp->n_vclocks_mux);
312         ida_simple_remove(&ptp_clocks_map, index);
313 no_slot:
314         kfree(ptp);
315 no_memory:
316         return ERR_PTR(err);
317 }
318 EXPORT_SYMBOL(ptp_clock_register);
319
320 int ptp_clock_unregister(struct ptp_clock *ptp)
321 {
322         if (ptp_vclock_in_use(ptp)) {
323                 pr_err("ptp: virtual clock in use\n");
324                 return -EBUSY;
325         }
326
327         ptp->defunct = 1;
328         wake_up_interruptible(&ptp->tsev_wq);
329
330         if (ptp->kworker) {
331                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
332                 kthread_destroy_worker(ptp->kworker);
333         }
334
335         /* Release the clock's resources. */
336         if (ptp->pps_source)
337                 pps_unregister_source(ptp->pps_source);
338
339         posix_clock_unregister(&ptp->clock);
340
341         return 0;
342 }
343 EXPORT_SYMBOL(ptp_clock_unregister);
344
345 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
346 {
347         struct pps_event_time evt;
348
349         switch (event->type) {
350
351         case PTP_CLOCK_ALARM:
352                 break;
353
354         case PTP_CLOCK_EXTTS:
355                 enqueue_external_timestamp(&ptp->tsevq, event);
356                 wake_up_interruptible(&ptp->tsev_wq);
357                 break;
358
359         case PTP_CLOCK_PPS:
360                 pps_get_ts(&evt);
361                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
362                 break;
363
364         case PTP_CLOCK_PPSUSR:
365                 pps_event(ptp->pps_source, &event->pps_times,
366                           PTP_PPS_EVENT, NULL);
367                 break;
368         }
369 }
370 EXPORT_SYMBOL(ptp_clock_event);
371
372 int ptp_clock_index(struct ptp_clock *ptp)
373 {
374         return ptp->index;
375 }
376 EXPORT_SYMBOL(ptp_clock_index);
377
378 int ptp_find_pin(struct ptp_clock *ptp,
379                  enum ptp_pin_function func, unsigned int chan)
380 {
381         struct ptp_pin_desc *pin = NULL;
382         int i;
383
384         for (i = 0; i < ptp->info->n_pins; i++) {
385                 if (ptp->info->pin_config[i].func == func &&
386                     ptp->info->pin_config[i].chan == chan) {
387                         pin = &ptp->info->pin_config[i];
388                         break;
389                 }
390         }
391
392         return pin ? i : -1;
393 }
394 EXPORT_SYMBOL(ptp_find_pin);
395
396 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
397                           enum ptp_pin_function func, unsigned int chan)
398 {
399         int result;
400
401         mutex_lock(&ptp->pincfg_mux);
402
403         result = ptp_find_pin(ptp, func, chan);
404
405         mutex_unlock(&ptp->pincfg_mux);
406
407         return result;
408 }
409 EXPORT_SYMBOL(ptp_find_pin_unlocked);
410
411 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
412 {
413         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
414 }
415 EXPORT_SYMBOL(ptp_schedule_worker);
416
417 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
418 {
419         kthread_cancel_delayed_work_sync(&ptp->aux_work);
420 }
421 EXPORT_SYMBOL(ptp_cancel_worker_sync);
422
423 /* module operations */
424
425 static void __exit ptp_exit(void)
426 {
427         class_destroy(ptp_class);
428         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
429         ida_destroy(&ptp_clocks_map);
430 }
431
432 static int __init ptp_init(void)
433 {
434         int err;
435
436         ptp_class = class_create(THIS_MODULE, "ptp");
437         if (IS_ERR(ptp_class)) {
438                 pr_err("ptp: failed to allocate class\n");
439                 return PTR_ERR(ptp_class);
440         }
441
442         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
443         if (err < 0) {
444                 pr_err("ptp: failed to allocate device region\n");
445                 goto no_region;
446         }
447
448         ptp_class->dev_groups = ptp_groups;
449         pr_info("PTP clock support registered\n");
450         return 0;
451
452 no_region:
453         class_destroy(ptp_class);
454         return err;
455 }
456
457 subsys_initcall(ptp_init);
458 module_exit(ptp_exit);
459
460 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
461 MODULE_DESCRIPTION("PTP clocks support");
462 MODULE_LICENSE("GPL");