media: rp1: Drop LE handling
[platform/kernel/linux-rpi.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 struct class *ptp_class;
28
29 /* private globals */
30
31 static dev_t ptp_devt;
32
33 static DEFINE_IDA(ptp_clocks_map);
34
35 /* time stamp event queue operations */
36
37 static inline int queue_free(struct timestamp_event_queue *q)
38 {
39         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
40 }
41
42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43                                        struct ptp_clock_event *src)
44 {
45         struct ptp_extts_event *dst;
46         unsigned long flags;
47         s64 seconds;
48         u32 remainder;
49
50         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51
52         spin_lock_irqsave(&queue->lock, flags);
53
54         dst = &queue->buf[queue->tail];
55         dst->index = src->index;
56         dst->t.sec = seconds;
57         dst->t.nsec = remainder;
58
59         /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
60         if (!queue_free(queue))
61                 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
62
63         WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
64
65         spin_unlock_irqrestore(&queue->lock, flags);
66 }
67
68 /* posix clock implementation */
69
70 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
71 {
72         tp->tv_sec = 0;
73         tp->tv_nsec = 1;
74         return 0;
75 }
76
77 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
78 {
79         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
80
81         if (ptp_clock_freerun(ptp)) {
82                 pr_err("ptp: physical clock is free running\n");
83                 return -EBUSY;
84         }
85
86         return  ptp->info->settime64(ptp->info, tp);
87 }
88
89 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
90 {
91         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
92         int err;
93
94         if (ptp->info->gettimex64)
95                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
96         else
97                 err = ptp->info->gettime64(ptp->info, tp);
98         return err;
99 }
100
101 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
102 {
103         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
104         struct ptp_clock_info *ops;
105         int err = -EOPNOTSUPP;
106
107         if (ptp_clock_freerun(ptp)) {
108                 pr_err("ptp: physical clock is free running\n");
109                 return -EBUSY;
110         }
111
112         ops = ptp->info;
113
114         if (tx->modes & ADJ_SETOFFSET) {
115                 struct timespec64 ts;
116                 ktime_t kt;
117                 s64 delta;
118
119                 ts.tv_sec  = tx->time.tv_sec;
120                 ts.tv_nsec = tx->time.tv_usec;
121
122                 if (!(tx->modes & ADJ_NANO))
123                         ts.tv_nsec *= 1000;
124
125                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
126                         return -EINVAL;
127
128                 kt = timespec64_to_ktime(ts);
129                 delta = ktime_to_ns(kt);
130                 err = ops->adjtime(ops, delta);
131         } else if (tx->modes & ADJ_FREQUENCY) {
132                 long ppb = scaled_ppm_to_ppb(tx->freq);
133                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
134                         return -ERANGE;
135                 err = ops->adjfine(ops, tx->freq);
136                 ptp->dialed_frequency = tx->freq;
137         } else if (tx->modes & ADJ_OFFSET) {
138                 if (ops->adjphase) {
139                         s32 max_phase_adj = ops->getmaxphase(ops);
140                         s32 offset = tx->offset;
141
142                         if (!(tx->modes & ADJ_NANO))
143                                 offset *= NSEC_PER_USEC;
144
145                         if (offset > max_phase_adj || offset < -max_phase_adj)
146                                 return -ERANGE;
147
148                         err = ops->adjphase(ops, offset);
149                 }
150         } else if (tx->modes == 0) {
151                 tx->freq = ptp->dialed_frequency;
152                 err = 0;
153         }
154
155         return err;
156 }
157
158 static struct posix_clock_operations ptp_clock_ops = {
159         .owner          = THIS_MODULE,
160         .clock_adjtime  = ptp_clock_adjtime,
161         .clock_gettime  = ptp_clock_gettime,
162         .clock_getres   = ptp_clock_getres,
163         .clock_settime  = ptp_clock_settime,
164         .ioctl          = ptp_ioctl,
165         .open           = ptp_open,
166         .poll           = ptp_poll,
167         .read           = ptp_read,
168 };
169
170 static void ptp_clock_release(struct device *dev)
171 {
172         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
173
174         ptp_cleanup_pin_groups(ptp);
175         kfree(ptp->vclock_index);
176         mutex_destroy(&ptp->tsevq_mux);
177         mutex_destroy(&ptp->pincfg_mux);
178         mutex_destroy(&ptp->n_vclocks_mux);
179         ida_free(&ptp_clocks_map, ptp->index);
180         kfree(ptp);
181 }
182
183 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
184 {
185         if (info->getcyclesx64)
186                 return info->getcyclesx64(info, ts, NULL);
187         else
188                 return info->gettime64(info, ts);
189 }
190
191 static void ptp_aux_kworker(struct kthread_work *work)
192 {
193         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
194                                              aux_work.work);
195         struct ptp_clock_info *info = ptp->info;
196         long delay;
197
198         delay = info->do_aux_work(info);
199
200         if (delay >= 0)
201                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
202 }
203
204 /* public interface */
205
206 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
207                                      struct device *parent)
208 {
209         struct ptp_clock *ptp;
210         int err = 0, index, major = MAJOR(ptp_devt);
211         size_t size;
212
213         if (info->n_alarm > PTP_MAX_ALARMS)
214                 return ERR_PTR(-EINVAL);
215
216         /* Initialize a clock structure. */
217         err = -ENOMEM;
218         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
219         if (ptp == NULL)
220                 goto no_memory;
221
222         index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL);
223         if (index < 0) {
224                 err = index;
225                 goto no_slot;
226         }
227
228         ptp->clock.ops = ptp_clock_ops;
229         ptp->info = info;
230         ptp->devid = MKDEV(major, index);
231         ptp->index = index;
232         spin_lock_init(&ptp->tsevq.lock);
233         mutex_init(&ptp->tsevq_mux);
234         mutex_init(&ptp->pincfg_mux);
235         mutex_init(&ptp->n_vclocks_mux);
236         init_waitqueue_head(&ptp->tsev_wq);
237
238         if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
239                 ptp->has_cycles = true;
240                 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
241                         ptp->info->getcycles64 = ptp_getcycles64;
242         } else {
243                 /* Free running cycle counter not supported, use time. */
244                 ptp->info->getcycles64 = ptp_getcycles64;
245
246                 if (ptp->info->gettimex64)
247                         ptp->info->getcyclesx64 = ptp->info->gettimex64;
248
249                 if (ptp->info->getcrosststamp)
250                         ptp->info->getcrosscycles = ptp->info->getcrosststamp;
251         }
252
253         if (ptp->info->do_aux_work) {
254                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
255                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
256                 if (IS_ERR(ptp->kworker)) {
257                         err = PTR_ERR(ptp->kworker);
258                         pr_err("failed to create ptp aux_worker %d\n", err);
259                         goto kworker_err;
260                 }
261         }
262
263         /* PTP virtual clock is being registered under physical clock */
264         if (parent && parent->class && parent->class->name &&
265             strcmp(parent->class->name, "ptp") == 0)
266                 ptp->is_virtual_clock = true;
267
268         if (!ptp->is_virtual_clock) {
269                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
270
271                 size = sizeof(int) * ptp->max_vclocks;
272                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
273                 if (!ptp->vclock_index) {
274                         err = -ENOMEM;
275                         goto no_mem_for_vclocks;
276                 }
277         }
278
279         err = ptp_populate_pin_groups(ptp);
280         if (err)
281                 goto no_pin_groups;
282
283         /* Register a new PPS source. */
284         if (info->pps) {
285                 struct pps_source_info pps;
286                 memset(&pps, 0, sizeof(pps));
287                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
288                 pps.mode = PTP_PPS_MODE;
289                 pps.owner = info->owner;
290                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
291                 if (IS_ERR(ptp->pps_source)) {
292                         err = PTR_ERR(ptp->pps_source);
293                         pr_err("failed to register pps source\n");
294                         goto no_pps;
295                 }
296                 ptp->pps_source->lookup_cookie = ptp;
297         }
298
299         /* Initialize a new device of our class in our clock structure. */
300         device_initialize(&ptp->dev);
301         ptp->dev.devt = ptp->devid;
302         ptp->dev.class = ptp_class;
303         ptp->dev.parent = parent;
304         ptp->dev.groups = ptp->pin_attr_groups;
305         ptp->dev.release = ptp_clock_release;
306         dev_set_drvdata(&ptp->dev, ptp);
307         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
308
309         /* Create a posix clock and link it to the device. */
310         err = posix_clock_register(&ptp->clock, &ptp->dev);
311         if (err) {
312                 if (ptp->pps_source)
313                         pps_unregister_source(ptp->pps_source);
314
315                 if (ptp->kworker)
316                         kthread_destroy_worker(ptp->kworker);
317
318                 put_device(&ptp->dev);
319
320                 pr_err("failed to create posix clock\n");
321                 return ERR_PTR(err);
322         }
323
324         return ptp;
325
326 no_pps:
327         ptp_cleanup_pin_groups(ptp);
328 no_pin_groups:
329         kfree(ptp->vclock_index);
330 no_mem_for_vclocks:
331         if (ptp->kworker)
332                 kthread_destroy_worker(ptp->kworker);
333 kworker_err:
334         mutex_destroy(&ptp->tsevq_mux);
335         mutex_destroy(&ptp->pincfg_mux);
336         mutex_destroy(&ptp->n_vclocks_mux);
337         ida_free(&ptp_clocks_map, index);
338 no_slot:
339         kfree(ptp);
340 no_memory:
341         return ERR_PTR(err);
342 }
343 EXPORT_SYMBOL(ptp_clock_register);
344
345 static int unregister_vclock(struct device *dev, void *data)
346 {
347         struct ptp_clock *ptp = dev_get_drvdata(dev);
348
349         ptp_vclock_unregister(info_to_vclock(ptp->info));
350         return 0;
351 }
352
353 int ptp_clock_unregister(struct ptp_clock *ptp)
354 {
355         if (ptp_vclock_in_use(ptp)) {
356                 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
357         }
358
359         ptp->defunct = 1;
360         wake_up_interruptible(&ptp->tsev_wq);
361
362         if (ptp->kworker) {
363                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
364                 kthread_destroy_worker(ptp->kworker);
365         }
366
367         /* Release the clock's resources. */
368         if (ptp->pps_source)
369                 pps_unregister_source(ptp->pps_source);
370
371         posix_clock_unregister(&ptp->clock);
372
373         return 0;
374 }
375 EXPORT_SYMBOL(ptp_clock_unregister);
376
377 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
378 {
379         struct pps_event_time evt;
380
381         switch (event->type) {
382
383         case PTP_CLOCK_ALARM:
384                 break;
385
386         case PTP_CLOCK_EXTTS:
387                 enqueue_external_timestamp(&ptp->tsevq, event);
388                 wake_up_interruptible(&ptp->tsev_wq);
389                 break;
390
391         case PTP_CLOCK_PPS:
392                 pps_get_ts(&evt);
393                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
394                 break;
395
396         case PTP_CLOCK_PPSUSR:
397                 pps_event(ptp->pps_source, &event->pps_times,
398                           PTP_PPS_EVENT, NULL);
399                 break;
400         }
401 }
402 EXPORT_SYMBOL(ptp_clock_event);
403
404 int ptp_clock_index(struct ptp_clock *ptp)
405 {
406         return ptp->index;
407 }
408 EXPORT_SYMBOL(ptp_clock_index);
409
410 int ptp_find_pin(struct ptp_clock *ptp,
411                  enum ptp_pin_function func, unsigned int chan)
412 {
413         struct ptp_pin_desc *pin = NULL;
414         int i;
415
416         for (i = 0; i < ptp->info->n_pins; i++) {
417                 if (ptp->info->pin_config[i].func == func &&
418                     ptp->info->pin_config[i].chan == chan) {
419                         pin = &ptp->info->pin_config[i];
420                         break;
421                 }
422         }
423
424         return pin ? i : -1;
425 }
426 EXPORT_SYMBOL(ptp_find_pin);
427
428 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
429                           enum ptp_pin_function func, unsigned int chan)
430 {
431         int result;
432
433         mutex_lock(&ptp->pincfg_mux);
434
435         result = ptp_find_pin(ptp, func, chan);
436
437         mutex_unlock(&ptp->pincfg_mux);
438
439         return result;
440 }
441 EXPORT_SYMBOL(ptp_find_pin_unlocked);
442
443 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
444 {
445         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
446 }
447 EXPORT_SYMBOL(ptp_schedule_worker);
448
449 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
450 {
451         kthread_cancel_delayed_work_sync(&ptp->aux_work);
452 }
453 EXPORT_SYMBOL(ptp_cancel_worker_sync);
454
455 /* module operations */
456
457 static void __exit ptp_exit(void)
458 {
459         class_destroy(ptp_class);
460         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
461         ida_destroy(&ptp_clocks_map);
462 }
463
464 static int __init ptp_init(void)
465 {
466         int err;
467
468         ptp_class = class_create("ptp");
469         if (IS_ERR(ptp_class)) {
470                 pr_err("ptp: failed to allocate class\n");
471                 return PTR_ERR(ptp_class);
472         }
473
474         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
475         if (err < 0) {
476                 pr_err("ptp: failed to allocate device region\n");
477                 goto no_region;
478         }
479
480         ptp_class->dev_groups = ptp_groups;
481         pr_info("PTP clock support registered\n");
482         return 0;
483
484 no_region:
485         class_destroy(ptp_class);
486         return err;
487 }
488
489 subsys_initcall(ptp_init);
490 module_exit(ptp_exit);
491
492 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
493 MODULE_DESCRIPTION("PTP clocks support");
494 MODULE_LICENSE("GPL");