drm/vc4: txp: Protect device resources
[platform/kernel/linux-starfive.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 struct class *ptp_class;
28
29 /* private globals */
30
31 static dev_t ptp_devt;
32
33 static DEFINE_IDA(ptp_clocks_map);
34
35 /* time stamp event queue operations */
36
37 static inline int queue_free(struct timestamp_event_queue *q)
38 {
39         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
40 }
41
42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43                                        struct ptp_clock_event *src)
44 {
45         struct ptp_extts_event *dst;
46         unsigned long flags;
47         s64 seconds;
48         u32 remainder;
49
50         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51
52         spin_lock_irqsave(&queue->lock, flags);
53
54         dst = &queue->buf[queue->tail];
55         dst->index = src->index;
56         dst->t.sec = seconds;
57         dst->t.nsec = remainder;
58
59         if (!queue_free(queue))
60                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
61
62         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
63
64         spin_unlock_irqrestore(&queue->lock, flags);
65 }
66
67 /* posix clock implementation */
68
69 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
70 {
71         tp->tv_sec = 0;
72         tp->tv_nsec = 1;
73         return 0;
74 }
75
76 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
77 {
78         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
79
80         if (ptp_clock_freerun(ptp)) {
81                 pr_err("ptp: physical clock is free running\n");
82                 return -EBUSY;
83         }
84
85         return  ptp->info->settime64(ptp->info, tp);
86 }
87
88 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
89 {
90         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
91         int err;
92
93         if (ptp->info->gettimex64)
94                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
95         else
96                 err = ptp->info->gettime64(ptp->info, tp);
97         return err;
98 }
99
100 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
101 {
102         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103         struct ptp_clock_info *ops;
104         int err = -EOPNOTSUPP;
105
106         if (ptp_clock_freerun(ptp)) {
107                 pr_err("ptp: physical clock is free running\n");
108                 return -EBUSY;
109         }
110
111         ops = ptp->info;
112
113         if (tx->modes & ADJ_SETOFFSET) {
114                 struct timespec64 ts;
115                 ktime_t kt;
116                 s64 delta;
117
118                 ts.tv_sec  = tx->time.tv_sec;
119                 ts.tv_nsec = tx->time.tv_usec;
120
121                 if (!(tx->modes & ADJ_NANO))
122                         ts.tv_nsec *= 1000;
123
124                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
125                         return -EINVAL;
126
127                 kt = timespec64_to_ktime(ts);
128                 delta = ktime_to_ns(kt);
129                 err = ops->adjtime(ops, delta);
130         } else if (tx->modes & ADJ_FREQUENCY) {
131                 long ppb = scaled_ppm_to_ppb(tx->freq);
132                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
133                         return -ERANGE;
134                 if (ops->adjfine)
135                         err = ops->adjfine(ops, tx->freq);
136                 else
137                         err = ops->adjfreq(ops, ppb);
138                 ptp->dialed_frequency = tx->freq;
139         } else if (tx->modes & ADJ_OFFSET) {
140                 if (ops->adjphase) {
141                         s32 offset = tx->offset;
142
143                         if (!(tx->modes & ADJ_NANO))
144                                 offset *= NSEC_PER_USEC;
145
146                         err = ops->adjphase(ops, offset);
147                 }
148         } else if (tx->modes == 0) {
149                 tx->freq = ptp->dialed_frequency;
150                 err = 0;
151         }
152
153         return err;
154 }
155
156 static struct posix_clock_operations ptp_clock_ops = {
157         .owner          = THIS_MODULE,
158         .clock_adjtime  = ptp_clock_adjtime,
159         .clock_gettime  = ptp_clock_gettime,
160         .clock_getres   = ptp_clock_getres,
161         .clock_settime  = ptp_clock_settime,
162         .ioctl          = ptp_ioctl,
163         .open           = ptp_open,
164         .poll           = ptp_poll,
165         .read           = ptp_read,
166 };
167
168 static void ptp_clock_release(struct device *dev)
169 {
170         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
171
172         ptp_cleanup_pin_groups(ptp);
173         kfree(ptp->vclock_index);
174         mutex_destroy(&ptp->tsevq_mux);
175         mutex_destroy(&ptp->pincfg_mux);
176         mutex_destroy(&ptp->n_vclocks_mux);
177         ida_simple_remove(&ptp_clocks_map, ptp->index);
178         kfree(ptp);
179 }
180
181 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
182 {
183         if (info->getcyclesx64)
184                 return info->getcyclesx64(info, ts, NULL);
185         else
186                 return info->gettime64(info, ts);
187 }
188
189 static void ptp_aux_kworker(struct kthread_work *work)
190 {
191         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
192                                              aux_work.work);
193         struct ptp_clock_info *info = ptp->info;
194         long delay;
195
196         delay = info->do_aux_work(info);
197
198         if (delay >= 0)
199                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
200 }
201
202 /* public interface */
203
204 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
205                                      struct device *parent)
206 {
207         struct ptp_clock *ptp;
208         int err = 0, index, major = MAJOR(ptp_devt);
209         size_t size;
210
211         if (info->n_alarm > PTP_MAX_ALARMS)
212                 return ERR_PTR(-EINVAL);
213
214         /* Initialize a clock structure. */
215         err = -ENOMEM;
216         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
217         if (ptp == NULL)
218                 goto no_memory;
219
220         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
221         if (index < 0) {
222                 err = index;
223                 goto no_slot;
224         }
225
226         ptp->clock.ops = ptp_clock_ops;
227         ptp->info = info;
228         ptp->devid = MKDEV(major, index);
229         ptp->index = index;
230         spin_lock_init(&ptp->tsevq.lock);
231         mutex_init(&ptp->tsevq_mux);
232         mutex_init(&ptp->pincfg_mux);
233         mutex_init(&ptp->n_vclocks_mux);
234         init_waitqueue_head(&ptp->tsev_wq);
235
236         if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
237                 ptp->has_cycles = true;
238                 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
239                         ptp->info->getcycles64 = ptp_getcycles64;
240         } else {
241                 /* Free running cycle counter not supported, use time. */
242                 ptp->info->getcycles64 = ptp_getcycles64;
243
244                 if (ptp->info->gettimex64)
245                         ptp->info->getcyclesx64 = ptp->info->gettimex64;
246
247                 if (ptp->info->getcrosststamp)
248                         ptp->info->getcrosscycles = ptp->info->getcrosststamp;
249         }
250
251         if (ptp->info->do_aux_work) {
252                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
253                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
254                 if (IS_ERR(ptp->kworker)) {
255                         err = PTR_ERR(ptp->kworker);
256                         pr_err("failed to create ptp aux_worker %d\n", err);
257                         goto kworker_err;
258                 }
259         }
260
261         /* PTP virtual clock is being registered under physical clock */
262         if (parent && parent->class && parent->class->name &&
263             strcmp(parent->class->name, "ptp") == 0)
264                 ptp->is_virtual_clock = true;
265
266         if (!ptp->is_virtual_clock) {
267                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
268
269                 size = sizeof(int) * ptp->max_vclocks;
270                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
271                 if (!ptp->vclock_index) {
272                         err = -ENOMEM;
273                         goto no_mem_for_vclocks;
274                 }
275         }
276
277         err = ptp_populate_pin_groups(ptp);
278         if (err)
279                 goto no_pin_groups;
280
281         /* Register a new PPS source. */
282         if (info->pps) {
283                 struct pps_source_info pps;
284                 memset(&pps, 0, sizeof(pps));
285                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
286                 pps.mode = PTP_PPS_MODE;
287                 pps.owner = info->owner;
288                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
289                 if (IS_ERR(ptp->pps_source)) {
290                         err = PTR_ERR(ptp->pps_source);
291                         pr_err("failed to register pps source\n");
292                         goto no_pps;
293                 }
294                 ptp->pps_source->lookup_cookie = ptp;
295         }
296
297         /* Initialize a new device of our class in our clock structure. */
298         device_initialize(&ptp->dev);
299         ptp->dev.devt = ptp->devid;
300         ptp->dev.class = ptp_class;
301         ptp->dev.parent = parent;
302         ptp->dev.groups = ptp->pin_attr_groups;
303         ptp->dev.release = ptp_clock_release;
304         dev_set_drvdata(&ptp->dev, ptp);
305         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
306
307         /* Create a posix clock and link it to the device. */
308         err = posix_clock_register(&ptp->clock, &ptp->dev);
309         if (err) {
310                 if (ptp->pps_source)
311                         pps_unregister_source(ptp->pps_source);
312
313                 if (ptp->kworker)
314                         kthread_destroy_worker(ptp->kworker);
315
316                 put_device(&ptp->dev);
317
318                 pr_err("failed to create posix clock\n");
319                 return ERR_PTR(err);
320         }
321
322         return ptp;
323
324 no_pps:
325         ptp_cleanup_pin_groups(ptp);
326 no_pin_groups:
327         kfree(ptp->vclock_index);
328 no_mem_for_vclocks:
329         if (ptp->kworker)
330                 kthread_destroy_worker(ptp->kworker);
331 kworker_err:
332         mutex_destroy(&ptp->tsevq_mux);
333         mutex_destroy(&ptp->pincfg_mux);
334         mutex_destroy(&ptp->n_vclocks_mux);
335         ida_simple_remove(&ptp_clocks_map, index);
336 no_slot:
337         kfree(ptp);
338 no_memory:
339         return ERR_PTR(err);
340 }
341 EXPORT_SYMBOL(ptp_clock_register);
342
343 static int unregister_vclock(struct device *dev, void *data)
344 {
345         struct ptp_clock *ptp = dev_get_drvdata(dev);
346
347         ptp_vclock_unregister(info_to_vclock(ptp->info));
348         return 0;
349 }
350
351 int ptp_clock_unregister(struct ptp_clock *ptp)
352 {
353         if (ptp_vclock_in_use(ptp)) {
354                 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
355         }
356
357         ptp->defunct = 1;
358         wake_up_interruptible(&ptp->tsev_wq);
359
360         if (ptp->kworker) {
361                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
362                 kthread_destroy_worker(ptp->kworker);
363         }
364
365         /* Release the clock's resources. */
366         if (ptp->pps_source)
367                 pps_unregister_source(ptp->pps_source);
368
369         posix_clock_unregister(&ptp->clock);
370
371         return 0;
372 }
373 EXPORT_SYMBOL(ptp_clock_unregister);
374
375 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
376 {
377         struct pps_event_time evt;
378
379         switch (event->type) {
380
381         case PTP_CLOCK_ALARM:
382                 break;
383
384         case PTP_CLOCK_EXTTS:
385                 enqueue_external_timestamp(&ptp->tsevq, event);
386                 wake_up_interruptible(&ptp->tsev_wq);
387                 break;
388
389         case PTP_CLOCK_PPS:
390                 pps_get_ts(&evt);
391                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
392                 break;
393
394         case PTP_CLOCK_PPSUSR:
395                 pps_event(ptp->pps_source, &event->pps_times,
396                           PTP_PPS_EVENT, NULL);
397                 break;
398         }
399 }
400 EXPORT_SYMBOL(ptp_clock_event);
401
402 int ptp_clock_index(struct ptp_clock *ptp)
403 {
404         return ptp->index;
405 }
406 EXPORT_SYMBOL(ptp_clock_index);
407
408 int ptp_find_pin(struct ptp_clock *ptp,
409                  enum ptp_pin_function func, unsigned int chan)
410 {
411         struct ptp_pin_desc *pin = NULL;
412         int i;
413
414         for (i = 0; i < ptp->info->n_pins; i++) {
415                 if (ptp->info->pin_config[i].func == func &&
416                     ptp->info->pin_config[i].chan == chan) {
417                         pin = &ptp->info->pin_config[i];
418                         break;
419                 }
420         }
421
422         return pin ? i : -1;
423 }
424 EXPORT_SYMBOL(ptp_find_pin);
425
426 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
427                           enum ptp_pin_function func, unsigned int chan)
428 {
429         int result;
430
431         mutex_lock(&ptp->pincfg_mux);
432
433         result = ptp_find_pin(ptp, func, chan);
434
435         mutex_unlock(&ptp->pincfg_mux);
436
437         return result;
438 }
439 EXPORT_SYMBOL(ptp_find_pin_unlocked);
440
441 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
442 {
443         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
444 }
445 EXPORT_SYMBOL(ptp_schedule_worker);
446
447 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
448 {
449         kthread_cancel_delayed_work_sync(&ptp->aux_work);
450 }
451 EXPORT_SYMBOL(ptp_cancel_worker_sync);
452
453 /* module operations */
454
455 static void __exit ptp_exit(void)
456 {
457         class_destroy(ptp_class);
458         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
459         ida_destroy(&ptp_clocks_map);
460 }
461
462 static int __init ptp_init(void)
463 {
464         int err;
465
466         ptp_class = class_create(THIS_MODULE, "ptp");
467         if (IS_ERR(ptp_class)) {
468                 pr_err("ptp: failed to allocate class\n");
469                 return PTR_ERR(ptp_class);
470         }
471
472         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
473         if (err < 0) {
474                 pr_err("ptp: failed to allocate device region\n");
475                 goto no_region;
476         }
477
478         ptp_class->dev_groups = ptp_groups;
479         pr_info("PTP clock support registered\n");
480         return 0;
481
482 no_region:
483         class_destroy(ptp_class);
484         return err;
485 }
486
487 subsys_initcall(ptp_init);
488 module_exit(ptp_exit);
489
490 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
491 MODULE_DESCRIPTION("PTP clocks support");
492 MODULE_LICENSE("GPL");