Merge tag 'io_uring-6.6-2023-10-27' of git://git.kernel.dk/linux
[platform/kernel/linux-rpi.git] / drivers / power / supply / cpcap-battery.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Battery driver for CPCAP PMIC
4  *
5  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
6  *
7  * Some parts of the code based on earlier Motorola mapphone Linux kernel
8  * drivers:
9  *
10  * Copyright (C) 2009-2010 Motorola, Inc.
11  */
12
13 #include <linux/delay.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/power_supply.h>
21 #include <linux/reboot.h>
22 #include <linux/regmap.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/moduleparam.h>
25
26 #include <linux/iio/consumer.h>
27 #include <linux/iio/types.h>
28 #include <linux/mfd/motorola-cpcap.h>
29
30 /*
31  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
32  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
33  * to enable BATTDETEN, LOBAT and EOL features. We currently use
34  * LOBAT interrupts instead of EOL.
35  */
36 #define CPCAP_REG_BPEOL_BIT_EOL9        BIT(9)  /* Set for EOL irq */
37 #define CPCAP_REG_BPEOL_BIT_EOL8        BIT(8)  /* Set for EOL irq */
38 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7    BIT(7)
39 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6    BIT(6)
40 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5    BIT(5)
41 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI   BIT(4)  /* Set for multiple EOL irqs */
42 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3    BIT(3)
43 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2    BIT(2)
44 #define CPCAP_REG_BPEOL_BIT_BATTDETEN   BIT(1)  /* Enable battery detect */
45 #define CPCAP_REG_BPEOL_BIT_EOLSEL      BIT(0)  /* BPDET = 0, EOL = 1 */
46
47 /*
48  * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
49  * coulomb counter registers rather than the mc13892 registers. Both twl6030
50  * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
51  * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
52  * the coulomb counter like cpcap does. So for now, we use the twl6030 style
53  * naming for the registers.
54  */
55 #define CPCAP_REG_CCC1_ACTIVE_MODE1     BIT(4)  /* Update rate */
56 #define CPCAP_REG_CCC1_ACTIVE_MODE0     BIT(3)  /* Update rate */
57 #define CPCAP_REG_CCC1_AUTOCLEAR        BIT(2)  /* Resets sample registers */
58 #define CPCAP_REG_CCC1_CAL_EN           BIT(1)  /* Clears after write in 1s */
59 #define CPCAP_REG_CCC1_PAUSE            BIT(0)  /* Stop counters, allow write */
60 #define CPCAP_REG_CCC1_RESET_MASK       (CPCAP_REG_CCC1_AUTOCLEAR | \
61                                          CPCAP_REG_CCC1_CAL_EN)
62
63 #define CPCAP_REG_CCCC2_RATE1           BIT(5)
64 #define CPCAP_REG_CCCC2_RATE0           BIT(4)
65 #define CPCAP_REG_CCCC2_ENABLE          BIT(3)
66
67 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS       250
68
69 #define CPCAP_BATTERY_EB41_HW4X_ID 0x9E
70 #define CPCAP_BATTERY_BW8X_ID 0x98
71
72 enum {
73         CPCAP_BATTERY_IIO_BATTDET,
74         CPCAP_BATTERY_IIO_VOLTAGE,
75         CPCAP_BATTERY_IIO_CHRG_CURRENT,
76         CPCAP_BATTERY_IIO_BATT_CURRENT,
77         CPCAP_BATTERY_IIO_NR,
78 };
79
80 enum cpcap_battery_irq_action {
81         CPCAP_BATTERY_IRQ_ACTION_NONE,
82         CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
83         CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
84         CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
85 };
86
87 struct cpcap_interrupt_desc {
88         const char *name;
89         struct list_head node;
90         int irq;
91         enum cpcap_battery_irq_action action;
92 };
93
94 struct cpcap_battery_config {
95         int cd_factor;
96         struct power_supply_info info;
97         struct power_supply_battery_info bat;
98 };
99
100 struct cpcap_coulomb_counter_data {
101         s32 sample;             /* 24 or 32 bits */
102         s32 accumulator;
103         s16 offset;             /* 9 bits */
104         s16 integrator;         /* 13 or 16 bits */
105 };
106
107 enum cpcap_battery_state {
108         CPCAP_BATTERY_STATE_PREVIOUS,
109         CPCAP_BATTERY_STATE_LATEST,
110         CPCAP_BATTERY_STATE_EMPTY,
111         CPCAP_BATTERY_STATE_FULL,
112         CPCAP_BATTERY_STATE_NR,
113 };
114
115 struct cpcap_battery_state_data {
116         int voltage;
117         int current_ua;
118         int counter_uah;
119         int temperature;
120         ktime_t time;
121         struct cpcap_coulomb_counter_data cc;
122 };
123
124 struct cpcap_battery_ddata {
125         struct device *dev;
126         struct regmap *reg;
127         struct list_head irq_list;
128         struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
129         struct power_supply *psy;
130         struct cpcap_battery_config config;
131         struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
132         u32 cc_lsb;             /* μAms per LSB */
133         atomic_t active;
134         int charge_full;
135         int status;
136         u16 vendor;
137         bool check_nvmem;
138         unsigned int is_full:1;
139 };
140
141 #define CPCAP_NO_BATTERY        -400
142
143 static bool ignore_temperature_probe;
144 module_param(ignore_temperature_probe, bool, 0660);
145
146 static struct cpcap_battery_state_data *
147 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
148                         enum cpcap_battery_state state)
149 {
150         if (state >= CPCAP_BATTERY_STATE_NR)
151                 return NULL;
152
153         return &ddata->state[state];
154 }
155
156 static struct cpcap_battery_state_data *
157 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
158 {
159         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
160 }
161
162 static struct cpcap_battery_state_data *
163 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
164 {
165         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
166 }
167
168 static struct cpcap_battery_state_data *
169 cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
170 {
171         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
172 }
173
174 static struct cpcap_battery_state_data *
175 cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
176 {
177         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
178 }
179
180 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
181                                              int *value)
182 {
183         struct iio_channel *channel;
184         int error;
185
186         channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
187         error = iio_read_channel_processed(channel, value);
188         if (error < 0) {
189                 if (!ignore_temperature_probe)
190                         dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
191                 *value = CPCAP_NO_BATTERY;
192
193                 return error;
194         }
195
196         *value /= 100;
197
198         return 0;
199 }
200
201 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
202 {
203         struct iio_channel *channel;
204         int error, value = 0;
205
206         channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
207         error = iio_read_channel_processed(channel, &value);
208         if (error < 0) {
209                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
210
211                 return 0;
212         }
213
214         return value * 1000;
215 }
216
217 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
218 {
219         struct iio_channel *channel;
220         int error, value = 0;
221
222         channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
223         error = iio_read_channel_processed(channel, &value);
224         if (error < 0) {
225                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
226
227                 return 0;
228         }
229
230         return value * 1000;
231 }
232
233 /**
234  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
235  * @ddata: device driver data
236  * @sample: coulomb counter sample value
237  * @accumulator: coulomb counter integrator value
238  * @offset: coulomb counter offset value
239  * @divider: conversion divider
240  *
241  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
242  * function data_get_avg_curr_ua() and seem to be based on measured test
243  * results. It also has the following comment:
244  *
245  * Adjustment factors are applied here as a temp solution per the test
246  * results. Need to work out a formal solution for this adjustment.
247  *
248  * A coulomb counter for similar hardware seems to be documented in
249  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
250  * "10 Calculating Accumulated Current". We however follow what the
251  * Motorola mapphone Linux kernel is doing as there may be either a
252  * TI or ST coulomb counter in the PMIC.
253  */
254 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
255                                     s32 sample, s32 accumulator,
256                                     s16 offset, u32 divider)
257 {
258         s64 acc;
259
260         if (!divider)
261                 return 0;
262
263         acc = accumulator;
264         acc -= (s64)sample * offset;
265         acc *= ddata->cc_lsb;
266         acc *= -1;
267         acc = div_s64(acc, divider);
268
269         return acc;
270 }
271
272 /* 3600000μAms = 1μAh */
273 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
274                                    s32 sample, s32 accumulator,
275                                    s16 offset)
276 {
277         return cpcap_battery_cc_raw_div(ddata, sample,
278                                         accumulator, offset,
279                                         3600000);
280 }
281
282 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
283                                   s32 sample, s32 accumulator,
284                                   s16 offset)
285 {
286         return cpcap_battery_cc_raw_div(ddata, sample,
287                                         accumulator, offset,
288                                         sample *
289                                         CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
290 }
291
292 /**
293  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
294  * @ddata: device driver data
295  * @ccd: coulomb counter values
296  *
297  * Based on Motorola mapphone kernel function data_read_regs().
298  * Looking at the registers, the coulomb counter seems similar to
299  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
300  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
301  *
302  * Note that swca095a.pdf instructs to stop the coulomb counter
303  * before reading to avoid values changing. Motorola mapphone
304  * Linux kernel does not do it, so let's assume they've verified
305  * the data produced is correct.
306  */
307 static int
308 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
309                                struct cpcap_coulomb_counter_data *ccd)
310 {
311         u16 buf[7];     /* CPCAP_REG_CCS1 to CCI */
312         int error;
313
314         ccd->sample = 0;
315         ccd->accumulator = 0;
316         ccd->offset = 0;
317         ccd->integrator = 0;
318
319         /* Read coulomb counter register range */
320         error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
321                                  buf, ARRAY_SIZE(buf));
322         if (error)
323                 return 0;
324
325         /* Sample value CPCAP_REG_CCS1 & 2 */
326         ccd->sample = (buf[1] & 0x0fff) << 16;
327         ccd->sample |= buf[0];
328         if (ddata->vendor == CPCAP_VENDOR_TI)
329                 ccd->sample = sign_extend32(24, ccd->sample);
330
331         /* Accumulator value CPCAP_REG_CCA1 & 2 */
332         ccd->accumulator = ((s16)buf[3]) << 16;
333         ccd->accumulator |= buf[2];
334
335         /*
336          * Coulomb counter calibration offset is CPCAP_REG_CCM,
337          * REG_CCO seems unused
338          */
339         ccd->offset = buf[4];
340         ccd->offset = sign_extend32(ccd->offset, 9);
341
342         /* Integrator register CPCAP_REG_CCI */
343         if (ddata->vendor == CPCAP_VENDOR_TI)
344                 ccd->integrator = sign_extend32(buf[6], 13);
345         else
346                 ccd->integrator = (s16)buf[6];
347
348         return cpcap_battery_cc_to_uah(ddata,
349                                        ccd->sample,
350                                        ccd->accumulator,
351                                        ccd->offset);
352 }
353
354
355 /*
356  * Based on the values from Motorola mapphone Linux kernel for the
357  * stock Droid 4 battery eb41. In the Motorola mapphone Linux
358  * kernel tree the value for pm_cd_factor is passed to the kernel
359  * via device tree. If it turns out to be something device specific
360  * we can consider that too later. These values are also fine for
361  * Bionic's hw4x.
362  *
363  * And looking at the battery full and shutdown values for the stock
364  * kernel on droid 4, full is 4351000 and software initiates shutdown
365  * at 3078000. The device will die around 2743000.
366  */
367 static const struct cpcap_battery_config cpcap_battery_eb41_data = {
368         .cd_factor = 0x3cc,
369         .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
370         .info.voltage_max_design = 4351000,
371         .info.voltage_min_design = 3100000,
372         .info.charge_full_design = 1740000,
373         .bat.constant_charge_voltage_max_uv = 4200000,
374 };
375
376 /* Values for the extended Droid Bionic battery bw8x. */
377 static const struct cpcap_battery_config cpcap_battery_bw8x_data = {
378         .cd_factor = 0x3cc,
379         .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
380         .info.voltage_max_design = 4200000,
381         .info.voltage_min_design = 3200000,
382         .info.charge_full_design = 2760000,
383         .bat.constant_charge_voltage_max_uv = 4200000,
384 };
385
386 /*
387  * Safe values for any lipo battery likely to fit into a mapphone
388  * battery bay.
389  */
390 static const struct cpcap_battery_config cpcap_battery_unkown_data = {
391         .cd_factor = 0x3cc,
392         .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
393         .info.voltage_max_design = 4200000,
394         .info.voltage_min_design = 3200000,
395         .info.charge_full_design = 3000000,
396         .bat.constant_charge_voltage_max_uv = 4200000,
397 };
398
399 static int cpcap_battery_match_nvmem(struct device *dev, const void *data)
400 {
401         if (strcmp(dev_name(dev), "89-500029ba0f73") == 0)
402                 return 1;
403         else
404                 return 0;
405 }
406
407 static void cpcap_battery_detect_battery_type(struct cpcap_battery_ddata *ddata)
408 {
409         struct nvmem_device *nvmem;
410         u8 battery_id = 0;
411
412         ddata->check_nvmem = false;
413
414         nvmem = nvmem_device_find(NULL, &cpcap_battery_match_nvmem);
415         if (IS_ERR_OR_NULL(nvmem)) {
416                 ddata->check_nvmem = true;
417                 dev_info_once(ddata->dev, "Can not find battery nvmem device. Assuming generic lipo battery\n");
418         } else if (nvmem_device_read(nvmem, 2, 1, &battery_id) < 0) {
419                 battery_id = 0;
420                 ddata->check_nvmem = true;
421                 dev_warn(ddata->dev, "Can not read battery nvmem device. Assuming generic lipo battery\n");
422         }
423
424         switch (battery_id) {
425         case CPCAP_BATTERY_EB41_HW4X_ID:
426                 ddata->config = cpcap_battery_eb41_data;
427                 break;
428         case CPCAP_BATTERY_BW8X_ID:
429                 ddata->config = cpcap_battery_bw8x_data;
430                 break;
431         default:
432                 ddata->config = cpcap_battery_unkown_data;
433         }
434 }
435
436 /**
437  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
438  * @ddata: cpcap battery driver device data
439  */
440 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
441 {
442         int value, acc, error;
443         s32 sample;
444         s16 offset;
445
446         /* Coulomb counter integrator */
447         error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
448         if (error)
449                 return error;
450
451         if (ddata->vendor == CPCAP_VENDOR_TI) {
452                 acc = sign_extend32(value, 13);
453                 sample = 1;
454         } else {
455                 acc = (s16)value;
456                 sample = 4;
457         }
458
459         /* Coulomb counter calibration offset  */
460         error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
461         if (error)
462                 return error;
463
464         offset = sign_extend32(value, 9);
465
466         return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
467 }
468
469 static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
470                                             int *val)
471 {
472         union power_supply_propval prop;
473         struct power_supply *charger;
474         int error;
475
476         charger = power_supply_get_by_name("usb");
477         if (!charger)
478                 return -ENODEV;
479
480         error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
481                                           &prop);
482         if (error)
483                 *val = POWER_SUPPLY_STATUS_UNKNOWN;
484         else
485                 *val = prop.intval;
486
487         power_supply_put(charger);
488
489         return error;
490 }
491
492 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
493 {
494         struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
495         unsigned int vfull;
496         int error, val;
497
498         error = cpcap_battery_get_charger_status(ddata, &val);
499         if (!error) {
500                 switch (val) {
501                 case POWER_SUPPLY_STATUS_DISCHARGING:
502                         dev_dbg(ddata->dev, "charger disconnected\n");
503                         ddata->is_full = 0;
504                         break;
505                 case POWER_SUPPLY_STATUS_FULL:
506                         dev_dbg(ddata->dev, "charger full status\n");
507                         ddata->is_full = 1;
508                         break;
509                 default:
510                         break;
511                 }
512         }
513
514         /*
515          * The full battery voltage here can be inaccurate, it's used just to
516          * filter out any trickle charging events. We clear the is_full status
517          * on charger disconnect above anyways.
518          */
519         vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
520
521         if (ddata->is_full && state->voltage < vfull)
522                 ddata->is_full = 0;
523
524         return ddata->is_full;
525 }
526
527 static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
528 {
529         struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
530         static bool is_low;
531
532         if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
533                 is_low = true;
534         else
535                 is_low = false;
536
537         return is_low;
538 }
539
540 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
541 {
542         struct cpcap_battery_state_data state, *latest, *previous,
543                                         *empty, *full;
544         ktime_t now;
545         int error;
546
547         memset(&state, 0, sizeof(state));
548         now = ktime_get();
549
550         latest = cpcap_battery_latest(ddata);
551         if (latest) {
552                 s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
553
554                 if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
555                         return delta_ms;
556         }
557
558         state.time = now;
559         state.voltage = cpcap_battery_get_voltage(ddata);
560         state.current_ua = cpcap_battery_get_current(ddata);
561         state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
562
563         error = cpcap_charger_battery_temperature(ddata,
564                                                   &state.temperature);
565         if (error)
566                 return error;
567
568         previous = cpcap_battery_previous(ddata);
569         memcpy(previous, latest, sizeof(*previous));
570         memcpy(latest, &state, sizeof(*latest));
571
572         if (cpcap_battery_full(ddata)) {
573                 full = cpcap_battery_get_full(ddata);
574                 memcpy(full, latest, sizeof(*full));
575
576                 empty = cpcap_battery_get_empty(ddata);
577                 if (empty->voltage && empty->voltage != -1) {
578                         empty->voltage = -1;
579                         ddata->charge_full =
580                                 empty->counter_uah - full->counter_uah;
581                 } else if (ddata->charge_full) {
582                         empty->voltage = -1;
583                         empty->counter_uah =
584                                 full->counter_uah + ddata->charge_full;
585                 }
586         } else if (cpcap_battery_low(ddata)) {
587                 empty = cpcap_battery_get_empty(ddata);
588                 memcpy(empty, latest, sizeof(*empty));
589
590                 full = cpcap_battery_get_full(ddata);
591                 if (full->voltage) {
592                         full->voltage = 0;
593                         ddata->charge_full =
594                                 empty->counter_uah - full->counter_uah;
595                 }
596         }
597
598         return 0;
599 }
600
601 /*
602  * Update battery status when cpcap-charger calls power_supply_changed().
603  * This allows us to detect battery full condition before the charger
604  * disconnects.
605  */
606 static void cpcap_battery_external_power_changed(struct power_supply *psy)
607 {
608         union power_supply_propval prop;
609
610         power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
611 }
612
613 static enum power_supply_property cpcap_battery_props[] = {
614         POWER_SUPPLY_PROP_STATUS,
615         POWER_SUPPLY_PROP_PRESENT,
616         POWER_SUPPLY_PROP_TECHNOLOGY,
617         POWER_SUPPLY_PROP_VOLTAGE_NOW,
618         POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
619         POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
620         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
621         POWER_SUPPLY_PROP_CURRENT_AVG,
622         POWER_SUPPLY_PROP_CURRENT_NOW,
623         POWER_SUPPLY_PROP_CHARGE_FULL,
624         POWER_SUPPLY_PROP_CHARGE_NOW,
625         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
626         POWER_SUPPLY_PROP_CHARGE_COUNTER,
627         POWER_SUPPLY_PROP_POWER_NOW,
628         POWER_SUPPLY_PROP_POWER_AVG,
629         POWER_SUPPLY_PROP_CAPACITY,
630         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
631         POWER_SUPPLY_PROP_SCOPE,
632         POWER_SUPPLY_PROP_TEMP,
633 };
634
635 static int cpcap_battery_get_property(struct power_supply *psy,
636                                       enum power_supply_property psp,
637                                       union power_supply_propval *val)
638 {
639         struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
640         struct cpcap_battery_state_data *latest, *previous, *empty;
641         u32 sample;
642         s32 accumulator;
643         int cached;
644         s64 tmp;
645
646         cached = cpcap_battery_update_status(ddata);
647         if (cached < 0)
648                 return cached;
649
650         latest = cpcap_battery_latest(ddata);
651         previous = cpcap_battery_previous(ddata);
652
653         if (ddata->check_nvmem)
654                 cpcap_battery_detect_battery_type(ddata);
655
656         switch (psp) {
657         case POWER_SUPPLY_PROP_PRESENT:
658                 if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
659                         val->intval = 1;
660                 else
661                         val->intval = 0;
662                 break;
663         case POWER_SUPPLY_PROP_STATUS:
664                 if (cpcap_battery_full(ddata)) {
665                         val->intval = POWER_SUPPLY_STATUS_FULL;
666                         break;
667                 }
668                 if (cpcap_battery_cc_get_avg_current(ddata) < 0)
669                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
670                 else
671                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
672                 break;
673         case POWER_SUPPLY_PROP_TECHNOLOGY:
674                 val->intval = ddata->config.info.technology;
675                 break;
676         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
677                 val->intval = cpcap_battery_get_voltage(ddata);
678                 break;
679         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
680                 val->intval = ddata->config.info.voltage_max_design;
681                 break;
682         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
683                 val->intval = ddata->config.info.voltage_min_design;
684                 break;
685         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
686                 val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
687                 break;
688         case POWER_SUPPLY_PROP_CURRENT_AVG:
689                 sample = latest->cc.sample - previous->cc.sample;
690                 if (!sample) {
691                         val->intval = cpcap_battery_cc_get_avg_current(ddata);
692                         break;
693                 }
694                 accumulator = latest->cc.accumulator - previous->cc.accumulator;
695                 val->intval = cpcap_battery_cc_to_ua(ddata, sample,
696                                                      accumulator,
697                                                      latest->cc.offset);
698                 break;
699         case POWER_SUPPLY_PROP_CURRENT_NOW:
700                 val->intval = latest->current_ua;
701                 break;
702         case POWER_SUPPLY_PROP_CHARGE_COUNTER:
703                 val->intval = latest->counter_uah;
704                 break;
705         case POWER_SUPPLY_PROP_POWER_NOW:
706                 tmp = (latest->voltage / 10000) * latest->current_ua;
707                 val->intval = div64_s64(tmp, 100);
708                 break;
709         case POWER_SUPPLY_PROP_POWER_AVG:
710                 sample = latest->cc.sample - previous->cc.sample;
711                 if (!sample) {
712                         tmp = cpcap_battery_cc_get_avg_current(ddata);
713                         tmp *= (latest->voltage / 10000);
714                         val->intval = div64_s64(tmp, 100);
715                         break;
716                 }
717                 accumulator = latest->cc.accumulator - previous->cc.accumulator;
718                 tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
719                                              latest->cc.offset);
720                 tmp *= ((latest->voltage + previous->voltage) / 20000);
721                 val->intval = div64_s64(tmp, 100);
722                 break;
723         case POWER_SUPPLY_PROP_CAPACITY:
724                 empty = cpcap_battery_get_empty(ddata);
725                 if (!empty->voltage || !ddata->charge_full)
726                         return -ENODATA;
727                 /* (ddata->charge_full / 200) is needed for rounding */
728                 val->intval = empty->counter_uah - latest->counter_uah +
729                         ddata->charge_full / 200;
730                 val->intval = clamp(val->intval, 0, ddata->charge_full);
731                 val->intval = val->intval * 100 / ddata->charge_full;
732                 break;
733         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
734                 if (cpcap_battery_full(ddata))
735                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
736                 else if (latest->voltage >= 3750000)
737                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
738                 else if (latest->voltage >= 3300000)
739                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
740                 else if (latest->voltage > 3100000)
741                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
742                 else if (latest->voltage <= 3100000)
743                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
744                 else
745                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
746                 break;
747         case POWER_SUPPLY_PROP_CHARGE_NOW:
748                 empty = cpcap_battery_get_empty(ddata);
749                 if (!empty->voltage)
750                         return -ENODATA;
751                 val->intval = empty->counter_uah - latest->counter_uah;
752                 if (val->intval < 0) {
753                         /* Assume invalid config if CHARGE_NOW is -20% */
754                         if (ddata->charge_full && abs(val->intval) > ddata->charge_full/5) {
755                                 empty->voltage = 0;
756                                 ddata->charge_full = 0;
757                                 return -ENODATA;
758                         }
759                         val->intval = 0;
760                 } else if (ddata->charge_full && ddata->charge_full < val->intval) {
761                         /* Assume invalid config if CHARGE_NOW exceeds CHARGE_FULL by 20% */
762                         if (val->intval > (6*ddata->charge_full)/5) {
763                                 empty->voltage = 0;
764                                 ddata->charge_full = 0;
765                                 return -ENODATA;
766                         }
767                         val->intval = ddata->charge_full;
768                 }
769                 break;
770         case POWER_SUPPLY_PROP_CHARGE_FULL:
771                 if (!ddata->charge_full)
772                         return -ENODATA;
773                 val->intval = ddata->charge_full;
774                 break;
775         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
776                 val->intval = ddata->config.info.charge_full_design;
777                 break;
778         case POWER_SUPPLY_PROP_SCOPE:
779                 val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
780                 break;
781         case POWER_SUPPLY_PROP_TEMP:
782                 if (ignore_temperature_probe)
783                         return -ENODATA;
784                 val->intval = latest->temperature;
785                 break;
786         default:
787                 return -EINVAL;
788         }
789
790         return 0;
791 }
792
793 static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
794                                         int const_charge_voltage)
795 {
796         union power_supply_propval prop;
797         union power_supply_propval val;
798         struct power_supply *charger;
799         int error;
800
801         charger = power_supply_get_by_name("usb");
802         if (!charger)
803                 return -ENODEV;
804
805         error = power_supply_get_property(charger,
806                                 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
807                                 &prop);
808         if (error)
809                 goto out_put;
810
811         /* Allow charger const voltage lower than battery const voltage */
812         if (const_charge_voltage > prop.intval)
813                 goto out_put;
814
815         val.intval = const_charge_voltage;
816
817         error = power_supply_set_property(charger,
818                         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
819                         &val);
820 out_put:
821         power_supply_put(charger);
822
823         return error;
824 }
825
826 static int cpcap_battery_set_property(struct power_supply *psy,
827                                       enum power_supply_property psp,
828                                       const union power_supply_propval *val)
829 {
830         struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
831
832         switch (psp) {
833         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
834                 if (val->intval < ddata->config.info.voltage_min_design)
835                         return -EINVAL;
836                 if (val->intval > ddata->config.info.voltage_max_design)
837                         return -EINVAL;
838
839                 ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
840
841                 return cpcap_battery_update_charger(ddata, val->intval);
842         case POWER_SUPPLY_PROP_CHARGE_FULL:
843                 if (val->intval < 0)
844                         return -EINVAL;
845                 if (val->intval > (6*ddata->config.info.charge_full_design)/5)
846                         return -EINVAL;
847
848                 ddata->charge_full = val->intval;
849
850                 return 0;
851         default:
852                 return -EINVAL;
853         }
854
855         return 0;
856 }
857
858 static int cpcap_battery_property_is_writeable(struct power_supply *psy,
859                                                enum power_supply_property psp)
860 {
861         switch (psp) {
862         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
863         case POWER_SUPPLY_PROP_CHARGE_FULL:
864                 return 1;
865         default:
866                 return 0;
867         }
868 }
869
870 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
871 {
872         struct cpcap_battery_ddata *ddata = data;
873         struct cpcap_battery_state_data *latest;
874         struct cpcap_interrupt_desc *d;
875
876         if (!atomic_read(&ddata->active))
877                 return IRQ_NONE;
878
879         list_for_each_entry(d, &ddata->irq_list, node) {
880                 if (irq == d->irq)
881                         break;
882         }
883
884         if (list_entry_is_head(d, &ddata->irq_list, node))
885                 return IRQ_NONE;
886
887         latest = cpcap_battery_latest(ddata);
888
889         switch (d->action) {
890         case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
891                 dev_info(ddata->dev, "Coulomb counter calibration done\n");
892                 break;
893         case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
894                 if (latest->current_ua >= 0)
895                         dev_warn(ddata->dev, "Battery low at %imV!\n",
896                                 latest->voltage / 1000);
897                 break;
898         case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
899                 if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
900                         dev_emerg(ddata->dev,
901                                   "Battery empty at %imV, powering off\n",
902                                   latest->voltage / 1000);
903                         orderly_poweroff(true);
904                 }
905                 break;
906         default:
907                 break;
908         }
909
910         power_supply_changed(ddata->psy);
911
912         return IRQ_HANDLED;
913 }
914
915 static int cpcap_battery_init_irq(struct platform_device *pdev,
916                                   struct cpcap_battery_ddata *ddata,
917                                   const char *name)
918 {
919         struct cpcap_interrupt_desc *d;
920         int irq, error;
921
922         irq = platform_get_irq_byname(pdev, name);
923         if (irq < 0)
924                 return irq;
925
926         error = devm_request_threaded_irq(ddata->dev, irq, NULL,
927                                           cpcap_battery_irq_thread,
928                                           IRQF_SHARED | IRQF_ONESHOT,
929                                           name, ddata);
930         if (error) {
931                 dev_err(ddata->dev, "could not get irq %s: %i\n",
932                         name, error);
933
934                 return error;
935         }
936
937         d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
938         if (!d)
939                 return -ENOMEM;
940
941         d->name = name;
942         d->irq = irq;
943
944         if (!strncmp(name, "cccal", 5))
945                 d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
946         else if (!strncmp(name, "lowbph", 6))
947                 d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
948         else if (!strncmp(name, "lowbpl", 6))
949                 d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
950
951         list_add(&d->node, &ddata->irq_list);
952
953         return 0;
954 }
955
956 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
957                                          struct cpcap_battery_ddata *ddata)
958 {
959         static const char * const cpcap_battery_irqs[] = {
960                 "eol", "lowbph", "lowbpl",
961                 "chrgcurr1", "battdetb"
962         };
963         int i, error;
964
965         for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
966                 error = cpcap_battery_init_irq(pdev, ddata,
967                                                cpcap_battery_irqs[i]);
968                 if (error)
969                         return error;
970         }
971
972         /* Enable calibration interrupt if already available in dts */
973         cpcap_battery_init_irq(pdev, ddata, "cccal");
974
975         /* Enable low battery interrupts for 3.3V high and 3.1V low */
976         error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
977                                    0xffff,
978                                    CPCAP_REG_BPEOL_BIT_BATTDETEN);
979         if (error)
980                 return error;
981
982         return 0;
983 }
984
985 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
986 {
987         const char * const names[CPCAP_BATTERY_IIO_NR] = {
988                 "battdetb", "battp", "chg_isense", "batti",
989         };
990         int error, i;
991
992         for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
993                 ddata->channels[i] = devm_iio_channel_get(ddata->dev,
994                                                           names[i]);
995                 if (IS_ERR(ddata->channels[i])) {
996                         error = PTR_ERR(ddata->channels[i]);
997                         goto out_err;
998                 }
999
1000                 if (!ddata->channels[i]->indio_dev) {
1001                         error = -ENXIO;
1002                         goto out_err;
1003                 }
1004         }
1005
1006         return 0;
1007
1008 out_err:
1009         return dev_err_probe(ddata->dev, error,
1010                              "could not initialize VBUS or ID IIO\n");
1011 }
1012
1013 /* Calibrate coulomb counter */
1014 static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
1015 {
1016         int error, ccc1, value;
1017         unsigned long timeout;
1018
1019         error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
1020         if (error)
1021                 return error;
1022
1023         timeout = jiffies + msecs_to_jiffies(6000);
1024
1025         /* Start calibration */
1026         error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
1027                                    0xffff,
1028                                    CPCAP_REG_CCC1_CAL_EN);
1029         if (error)
1030                 goto restore;
1031
1032         while (time_before(jiffies, timeout)) {
1033                 error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
1034                 if (error)
1035                         goto restore;
1036
1037                 if (!(value & CPCAP_REG_CCC1_CAL_EN))
1038                         break;
1039
1040                 error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
1041                 if (error)
1042                         goto restore;
1043
1044                 msleep(300);
1045         }
1046
1047         /* Read calibration offset from CCM */
1048         error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
1049         if (error)
1050                 goto restore;
1051
1052         dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
1053
1054 restore:
1055         if (error)
1056                 dev_err(ddata->dev, "%s: error %i\n", __func__, error);
1057
1058         error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
1059                                    0xffff, ccc1);
1060         if (error)
1061                 dev_err(ddata->dev, "%s: restore error %i\n",
1062                         __func__, error);
1063
1064         return error;
1065 }
1066
1067 #ifdef CONFIG_OF
1068 static const struct of_device_id cpcap_battery_id_table[] = {
1069         {
1070                 .compatible = "motorola,cpcap-battery",
1071         },
1072         {},
1073 };
1074 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
1075 #endif
1076
1077 static const struct power_supply_desc cpcap_charger_battery_desc = {
1078         .name           = "battery",
1079         .type           = POWER_SUPPLY_TYPE_BATTERY,
1080         .properties     = cpcap_battery_props,
1081         .num_properties = ARRAY_SIZE(cpcap_battery_props),
1082         .get_property   = cpcap_battery_get_property,
1083         .set_property   = cpcap_battery_set_property,
1084         .property_is_writeable = cpcap_battery_property_is_writeable,
1085         .external_power_changed = cpcap_battery_external_power_changed,
1086 };
1087
1088 static int cpcap_battery_probe(struct platform_device *pdev)
1089 {
1090         struct cpcap_battery_ddata *ddata;
1091         struct power_supply_config psy_cfg = {};
1092         int error;
1093
1094         ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
1095         if (!ddata)
1096                 return -ENOMEM;
1097
1098         cpcap_battery_detect_battery_type(ddata);
1099
1100         INIT_LIST_HEAD(&ddata->irq_list);
1101         ddata->dev = &pdev->dev;
1102
1103         ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
1104         if (!ddata->reg)
1105                 return -ENODEV;
1106
1107         error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1108         if (error)
1109                 return error;
1110
1111         switch (ddata->vendor) {
1112         case CPCAP_VENDOR_ST:
1113                 ddata->cc_lsb = 95374;  /* μAms per LSB */
1114                 break;
1115         case CPCAP_VENDOR_TI:
1116                 ddata->cc_lsb = 91501;  /* μAms per LSB */
1117                 break;
1118         default:
1119                 return -EINVAL;
1120         }
1121         ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
1122
1123         platform_set_drvdata(pdev, ddata);
1124
1125         error = cpcap_battery_init_interrupts(pdev, ddata);
1126         if (error)
1127                 return error;
1128
1129         error = cpcap_battery_init_iio(ddata);
1130         if (error)
1131                 return error;
1132
1133         psy_cfg.of_node = pdev->dev.of_node;
1134         psy_cfg.drv_data = ddata;
1135
1136         ddata->psy = devm_power_supply_register(ddata->dev,
1137                                                 &cpcap_charger_battery_desc,
1138                                                 &psy_cfg);
1139         error = PTR_ERR_OR_ZERO(ddata->psy);
1140         if (error) {
1141                 dev_err(ddata->dev, "failed to register power supply\n");
1142                 return error;
1143         }
1144
1145         atomic_set(&ddata->active, 1);
1146
1147         error = cpcap_battery_calibrate(ddata);
1148         if (error)
1149                 return error;
1150
1151         return 0;
1152 }
1153
1154 static int cpcap_battery_remove(struct platform_device *pdev)
1155 {
1156         struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
1157         int error;
1158
1159         atomic_set(&ddata->active, 0);
1160         error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
1161                                    0xffff, 0);
1162         if (error)
1163                 dev_err(&pdev->dev, "could not disable: %i\n", error);
1164
1165         return 0;
1166 }
1167
1168 static struct platform_driver cpcap_battery_driver = {
1169         .driver = {
1170                 .name           = "cpcap_battery",
1171                 .of_match_table = of_match_ptr(cpcap_battery_id_table),
1172         },
1173         .probe  = cpcap_battery_probe,
1174         .remove = cpcap_battery_remove,
1175 };
1176 module_platform_driver(cpcap_battery_driver);
1177
1178 MODULE_LICENSE("GPL v2");
1179 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
1180 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");