Merge tag 'for-6.1-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-starfive.git] / drivers / power / supply / bd99954-charger.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ROHM BD99954 charger driver
4  *
5  * Copyright (C) 2020 Rohm Semiconductors
6  *      Originally written by:
7  *              Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
8  *              Markus Laine <markus.laine@fi.rohmeurope.com>
9  *      Bugs added by:
10  *              Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
11  */
12
13 /*
14  *   The battery charging profile of BD99954.
15  *
16  *   Curve (1) represents charging current.
17  *   Curve (2) represents battery voltage.
18  *
19  *   The BD99954 data sheet divides charging to three phases.
20  *   a) Trickle-charge with constant current (8).
21  *   b) pre-charge with constant current (6)
22  *   c) fast-charge, first with constant current (5) phase. After
23  *      the battery voltage has reached target level (4) we have constant
24  *      voltage phase until charging current has dropped to termination
25  *      level (7)
26  *
27  *    V ^                                                        ^ I
28  *      .                                                        .
29  *      .                                                        .
30  *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
31  *      .                           :/                           .
32  *      .                     o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
33  *      .                     +   ::  +                          .
34  *      .                     +  /-   --                         .
35  *      .                     +`/-     +                         .
36  *      .                     o/-      -:                        .
37  *      .                    .s.        +`                       .
38  *      .                  .--+         `/                       .
39  *      .               ..``  +          .:                      .
40  *      .             -`      +           --                     .
41  *      .    (2)  ...``       +            :-                    .
42  *      .    ...``            +             -:                   .
43  *(3)` `.`.""  ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
44  *      .             +                       `:.                .
45  *      .             +                         -:               .
46  *      .             +                           -:.            .
47  *      .             +                             .--.         .
48  *      .   (1)       +                                `.+` ` ` `.` ` (7)
49  *      -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
50  *      .                                                +       -
51  *      -------------------------------------------------+++++++++-->
52  *      |   trickle   |  pre  |          fast            |
53  *
54  * Details of DT properties for different limits can be found from BD99954
55  * device tree binding documentation.
56  */
57
58 #include <linux/delay.h>
59 #include <linux/gpio/consumer.h>
60 #include <linux/interrupt.h>
61 #include <linux/i2c.h>
62 #include <linux/kernel.h>
63 #include <linux/linear_range.h>
64 #include <linux/module.h>
65 #include <linux/mod_devicetable.h>
66 #include <linux/power_supply.h>
67 #include <linux/property.h>
68 #include <linux/regmap.h>
69 #include <linux/types.h>
70
71 #include "bd99954-charger.h"
72
73 struct battery_data {
74         u16 precharge_current;  /* Trickle-charge Current */
75         u16 fc_reg_voltage;     /* Fast Charging Regulation Voltage */
76         u16 voltage_min;
77         u16 voltage_max;
78 };
79
80 /* Initial field values, converted to initial register values */
81 struct bd9995x_init_data {
82         u16 vsysreg_set;        /* VSYS Regulation Setting */
83         u16 ibus_lim_set;       /* VBUS input current limitation */
84         u16 icc_lim_set;        /* VCC/VACP Input Current Limit Setting */
85         u16 itrich_set;         /* Trickle-charge Current Setting */
86         u16 iprech_set;         /* Pre-Charge Current Setting */
87         u16 ichg_set;           /* Fast-Charge constant current */
88         u16 vfastchg_reg_set1;  /* Fast Charging Regulation Voltage */
89         u16 vprechg_th_set;     /* Pre-charge Voltage Threshold Setting */
90         u16 vrechg_set;         /* Re-charge Battery Voltage Setting */
91         u16 vbatovp_set;        /* Battery Over Voltage Threshold Setting */
92         u16 iterm_set;          /* Charging termination current */
93 };
94
95 struct bd9995x_state {
96         u8 online;
97         u16 chgstm_status;
98         u16 vbat_vsys_status;
99         u16 vbus_vcc_status;
100 };
101
102 struct bd9995x_device {
103         struct i2c_client *client;
104         struct device *dev;
105         struct power_supply *charger;
106
107         struct regmap *rmap;
108         struct regmap_field *rmap_fields[F_MAX_FIELDS];
109
110         int chip_id;
111         int chip_rev;
112         struct bd9995x_init_data init_data;
113         struct bd9995x_state state;
114
115         struct mutex lock; /* Protect state data */
116 };
117
118 static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
119         regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
120         regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
121         regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
122         regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
123         regmap_reg_range(CHIP_ID, CHIP_REV),
124         regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
125         regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
126         regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
127 };
128
129 static const struct regmap_access_table bd9995x_writeable_regs = {
130         .no_ranges = bd9995x_readonly_reg_ranges,
131         .n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
132 };
133
134 static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
135         regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
136         regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
137         regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
138         regmap_reg_range(INT0_STATUS, INT7_STATUS),
139         regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
140         regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
141 };
142
143 static const struct regmap_access_table bd9995x_volatile_regs = {
144         .yes_ranges = bd9995x_volatile_reg_ranges,
145         .n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
146 };
147
148 static const struct regmap_range_cfg regmap_range_cfg[] = {
149         {
150         .selector_reg     = MAP_SET,
151         .selector_mask    = 0xFFFF,
152         .selector_shift   = 0,
153         .window_start     = 0,
154         .window_len       = 0x100,
155         .range_min        = 0 * 0x100,
156         .range_max        = 3 * 0x100,
157         },
158 };
159
160 static const struct regmap_config bd9995x_regmap_config = {
161         .reg_bits = 8,
162         .val_bits = 16,
163         .reg_stride = 1,
164
165         .max_register = 3 * 0x100,
166         .cache_type = REGCACHE_RBTREE,
167
168         .ranges = regmap_range_cfg,
169         .num_ranges = ARRAY_SIZE(regmap_range_cfg),
170         .val_format_endian = REGMAP_ENDIAN_LITTLE,
171         .wr_table = &bd9995x_writeable_regs,
172         .volatile_table = &bd9995x_volatile_regs,
173 };
174
175 enum bd9995x_chrg_fault {
176         CHRG_FAULT_NORMAL,
177         CHRG_FAULT_INPUT,
178         CHRG_FAULT_THERMAL_SHUTDOWN,
179         CHRG_FAULT_TIMER_EXPIRED,
180 };
181
182 static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
183 {
184         int ret, tmp;
185
186         ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
187         if (ret)
188                 return POWER_SUPPLY_HEALTH_UNKNOWN;
189
190         /* TODO: Check these against datasheet page 34 */
191
192         switch (tmp) {
193         case ROOM:
194                 return POWER_SUPPLY_HEALTH_GOOD;
195         case HOT1:
196         case HOT2:
197         case HOT3:
198                 return POWER_SUPPLY_HEALTH_OVERHEAT;
199         case COLD1:
200         case COLD2:
201                 return POWER_SUPPLY_HEALTH_COLD;
202         case TEMP_DIS:
203         case BATT_OPEN:
204         default:
205                 return POWER_SUPPLY_HEALTH_UNKNOWN;
206         }
207 }
208
209 static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
210 {
211         int ret, tmp;
212
213         ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
214         if (ret)
215                 return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
216
217         switch (tmp) {
218         case CHGSTM_TRICKLE_CHARGE:
219         case CHGSTM_PRE_CHARGE:
220                 return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
221         case CHGSTM_FAST_CHARGE:
222                 return POWER_SUPPLY_CHARGE_TYPE_FAST;
223         case CHGSTM_TOP_OFF:
224         case CHGSTM_DONE:
225         case CHGSTM_SUSPEND:
226                 return POWER_SUPPLY_CHARGE_TYPE_NONE;
227         default: /* Rest of the states are error related, no charging */
228                 return POWER_SUPPLY_CHARGE_TYPE_NONE;
229         }
230 }
231
232 static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
233 {
234         int ret, tmp;
235
236         ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
237         if (ret)
238                 return false;
239
240         return tmp != BATT_OPEN;
241 }
242
243 static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
244 {
245         int ret, tmp;
246
247         ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
248         if (ret)
249                 return 0;
250
251         tmp = min(tmp, 19200);
252
253         return tmp * 1000;
254 }
255
256 static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
257 {
258         int ret, tmp;
259
260         ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
261         if (ret)
262                 return 0;
263
264         return tmp * 1000;
265 }
266
267 #define DEFAULT_BATTERY_TEMPERATURE 250
268
269 static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
270 {
271         int ret, tmp;
272
273         ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
274         if (ret)
275                 return DEFAULT_BATTERY_TEMPERATURE;
276
277         return (200 - tmp) * 10;
278 }
279
280 static int bd9995x_power_supply_get_property(struct power_supply *psy,
281                                              enum power_supply_property psp,
282                                              union power_supply_propval *val)
283 {
284         int ret, tmp;
285         struct bd9995x_device *bd = power_supply_get_drvdata(psy);
286         struct bd9995x_state state;
287
288         mutex_lock(&bd->lock);
289         state = bd->state;
290         mutex_unlock(&bd->lock);
291
292         switch (psp) {
293         case POWER_SUPPLY_PROP_STATUS:
294                 switch (state.chgstm_status) {
295                 case CHGSTM_TRICKLE_CHARGE:
296                 case CHGSTM_PRE_CHARGE:
297                 case CHGSTM_FAST_CHARGE:
298                 case CHGSTM_TOP_OFF:
299                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
300                         break;
301
302                 case CHGSTM_DONE:
303                         val->intval = POWER_SUPPLY_STATUS_FULL;
304                         break;
305
306                 case CHGSTM_SUSPEND:
307                 case CHGSTM_TEMPERATURE_ERROR_1:
308                 case CHGSTM_TEMPERATURE_ERROR_2:
309                 case CHGSTM_TEMPERATURE_ERROR_3:
310                 case CHGSTM_TEMPERATURE_ERROR_4:
311                 case CHGSTM_TEMPERATURE_ERROR_5:
312                 case CHGSTM_TEMPERATURE_ERROR_6:
313                 case CHGSTM_TEMPERATURE_ERROR_7:
314                 case CHGSTM_THERMAL_SHUT_DOWN_1:
315                 case CHGSTM_THERMAL_SHUT_DOWN_2:
316                 case CHGSTM_THERMAL_SHUT_DOWN_3:
317                 case CHGSTM_THERMAL_SHUT_DOWN_4:
318                 case CHGSTM_THERMAL_SHUT_DOWN_5:
319                 case CHGSTM_THERMAL_SHUT_DOWN_6:
320                 case CHGSTM_THERMAL_SHUT_DOWN_7:
321                 case CHGSTM_BATTERY_ERROR:
322                         val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
323                         break;
324
325                 default:
326                         val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
327                         break;
328                 }
329                 break;
330
331         case POWER_SUPPLY_PROP_MANUFACTURER:
332                 val->strval = BD9995X_MANUFACTURER;
333                 break;
334
335         case POWER_SUPPLY_PROP_ONLINE:
336                 val->intval = state.online;
337                 break;
338
339         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
340                 ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
341                 if (ret)
342                         return ret;
343                 val->intval = tmp * 1000;
344                 break;
345
346         case POWER_SUPPLY_PROP_CHARGE_AVG:
347                 ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
348                 if (ret)
349                         return ret;
350                 val->intval = tmp * 1000;
351                 break;
352
353         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
354                 /*
355                  * Currently the DT uses this property to give the
356                  * target current for fast-charging constant current phase.
357                  * I think it is correct in a sense.
358                  *
359                  * Yet, this prop we read and return here is the programmed
360                  * safety limit for combined input currents. This feels
361                  * also correct in a sense.
362                  *
363                  * However, this results a mismatch to DT value and value
364                  * read from sysfs.
365                  */
366                 ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
367                 if (ret)
368                         return ret;
369                 val->intval = tmp * 1000;
370                 break;
371
372         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
373                 if (!state.online) {
374                         val->intval = 0;
375                         break;
376                 }
377
378                 ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
379                                         &tmp);
380                 if (ret)
381                         return ret;
382
383                 /*
384                  * The actual range : 2560 to 19200 mV. No matter what the
385                  * register says
386                  */
387                 val->intval = clamp_val(tmp << 4, 2560, 19200);
388                 val->intval *= 1000;
389                 break;
390
391         case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
392                 ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
393                 if (ret)
394                         return ret;
395                 /* Start step is 64 mA */
396                 val->intval = tmp << 6;
397                 /* Maximum is 1024 mA - no matter what register says */
398                 val->intval = min(val->intval, 1024);
399                 val->intval *= 1000;
400                 break;
401
402         /* Battery properties which we access through charger */
403         case POWER_SUPPLY_PROP_PRESENT:
404                 val->intval = bd9995x_get_prop_batt_present(bd);
405                 break;
406
407         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
408                 val->intval = bd9995x_get_prop_batt_voltage(bd);
409                 break;
410
411         case POWER_SUPPLY_PROP_CURRENT_NOW:
412                 val->intval = bd9995x_get_prop_batt_current(bd);
413                 break;
414
415         case POWER_SUPPLY_PROP_CHARGE_TYPE:
416                 val->intval = bd9995x_get_prop_charge_type(bd);
417                 break;
418
419         case POWER_SUPPLY_PROP_HEALTH:
420                 val->intval = bd9995x_get_prop_batt_health(bd);
421                 break;
422
423         case POWER_SUPPLY_PROP_TEMP:
424                 val->intval = bd9995x_get_prop_batt_temp(bd);
425                 break;
426
427         case POWER_SUPPLY_PROP_TECHNOLOGY:
428                 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
429                 break;
430
431         case POWER_SUPPLY_PROP_MODEL_NAME:
432                 val->strval = "bd99954";
433                 break;
434
435         default:
436                 return -EINVAL;
437
438         }
439
440         return 0;
441 }
442
443 static int bd9995x_get_chip_state(struct bd9995x_device *bd,
444                                   struct bd9995x_state *state)
445 {
446         int i, ret, tmp;
447         struct {
448                 struct regmap_field *id;
449                 u16 *data;
450         } state_fields[] = {
451                 {
452                         bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
453                 }, {
454                         bd->rmap_fields[F_VBAT_VSYS_STATUS],
455                         &state->vbat_vsys_status,
456                 }, {
457                         bd->rmap_fields[F_VBUS_VCC_STATUS],
458                         &state->vbus_vcc_status,
459                 },
460         };
461
462
463         for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
464                 ret = regmap_field_read(state_fields[i].id, &tmp);
465                 if (ret)
466                         return ret;
467
468                 *state_fields[i].data = tmp;
469         }
470
471         if (state->vbus_vcc_status & STATUS_VCC_DET ||
472             state->vbus_vcc_status & STATUS_VBUS_DET)
473                 state->online = 1;
474         else
475                 state->online = 0;
476
477         return 0;
478 }
479
480 static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
481 {
482         struct bd9995x_device *bd = private;
483         int ret, status, mask, i;
484         unsigned long tmp;
485         struct bd9995x_state state;
486
487         /*
488          * The bd9995x does not seem to generate big amount of interrupts.
489          * The logic regarding which interrupts can cause relevant
490          * status changes seem to be pretty complex.
491          *
492          * So lets implement really simple and hopefully bullet-proof handler:
493          * It does not really matter which IRQ we handle, we just go and
494          * re-read all interesting statuses + give the framework a nudge.
495          *
496          * Other option would be building a _complex_ and error prone logic
497          * trying to decide what could have been changed (resulting this IRQ
498          * we are now handling). During the normal operation the BD99954 does
499          * not seem to be generating much of interrupts so benefit from such
500          * logic would probably be minimal.
501          */
502
503         ret = regmap_read(bd->rmap, INT0_STATUS, &status);
504         if (ret) {
505                 dev_err(bd->dev, "Failed to read IRQ status\n");
506                 return IRQ_NONE;
507         }
508
509         ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
510         if (ret) {
511                 dev_err(bd->dev, "Failed to read IRQ mask\n");
512                 return IRQ_NONE;
513         }
514
515         /* Handle only IRQs that are not masked */
516         status &= mask;
517         tmp = status;
518
519         /* Lowest bit does not represent any sub-registers */
520         tmp >>= 1;
521
522         /*
523          * Mask and ack IRQs we will handle (+ the idiot bit)
524          */
525         ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
526         if (ret) {
527                 dev_err(bd->dev, "Failed to mask F_INT0\n");
528                 return IRQ_NONE;
529         }
530
531         ret = regmap_write(bd->rmap, INT0_STATUS, status);
532         if (ret) {
533                 dev_err(bd->dev, "Failed to ack F_INT0\n");
534                 goto err_umask;
535         }
536
537         for_each_set_bit(i, &tmp, 7) {
538                 int sub_status, sub_mask;
539                 int sub_status_reg[] = {
540                         INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
541                         INT5_STATUS, INT6_STATUS, INT7_STATUS,
542                 };
543                 struct regmap_field *sub_mask_f[] = {
544                         bd->rmap_fields[F_INT1_SET],
545                         bd->rmap_fields[F_INT2_SET],
546                         bd->rmap_fields[F_INT3_SET],
547                         bd->rmap_fields[F_INT4_SET],
548                         bd->rmap_fields[F_INT5_SET],
549                         bd->rmap_fields[F_INT6_SET],
550                         bd->rmap_fields[F_INT7_SET],
551                 };
552
553                 /* Clear sub IRQs */
554                 ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
555                 if (ret) {
556                         dev_err(bd->dev, "Failed to read IRQ sub-status\n");
557                         goto err_umask;
558                 }
559
560                 ret = regmap_field_read(sub_mask_f[i], &sub_mask);
561                 if (ret) {
562                         dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
563                         goto err_umask;
564                 }
565
566                 /* Ack active sub-statuses */
567                 sub_status &= sub_mask;
568
569                 ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
570                 if (ret) {
571                         dev_err(bd->dev, "Failed to ack sub-IRQ\n");
572                         goto err_umask;
573                 }
574         }
575
576         ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
577         if (ret)
578                 /* May as well retry once */
579                 goto err_umask;
580
581         /* Read whole chip state */
582         ret = bd9995x_get_chip_state(bd, &state);
583         if (ret < 0) {
584                 dev_err(bd->dev, "Failed to read chip state\n");
585         } else {
586                 mutex_lock(&bd->lock);
587                 bd->state = state;
588                 mutex_unlock(&bd->lock);
589
590                 power_supply_changed(bd->charger);
591         }
592
593         return IRQ_HANDLED;
594
595 err_umask:
596         ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
597         if (ret)
598                 dev_err(bd->dev,
599                 "Failed to un-mask F_INT0 - IRQ permanently disabled\n");
600
601         return IRQ_NONE;
602 }
603
604 static int __bd9995x_chip_reset(struct bd9995x_device *bd)
605 {
606         int ret, state;
607         int rst_check_counter = 10;
608         u16 tmp = ALLRST | OTPLD;
609
610         ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
611         if (ret < 0)
612                 return ret;
613
614         do {
615                 ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
616                 if (ret)
617                         return ret;
618
619                 msleep(10);
620         } while (state == 0 && --rst_check_counter);
621
622         if (!rst_check_counter) {
623                 dev_err(bd->dev, "chip reset not completed\n");
624                 return -ETIMEDOUT;
625         }
626
627         tmp = 0;
628         ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
629
630         return ret;
631 }
632
633 static int bd9995x_hw_init(struct bd9995x_device *bd)
634 {
635         int ret;
636         int i;
637         struct bd9995x_state state;
638         struct bd9995x_init_data *id = &bd->init_data;
639
640         const struct {
641                 enum bd9995x_fields id;
642                 u16 value;
643         } init_data[] = {
644                 /* Enable the charging trigger after SDP charger attached */
645                 {F_SDP_CHG_TRIG_EN,     1},
646                 /* Enable charging trigger after SDP charger attached */
647                 {F_SDP_CHG_TRIG,        1},
648                 /* Disable charging trigger by BC1.2 detection */
649                 {F_VBUS_BC_DISEN,       1},
650                 /* Disable charging trigger by BC1.2 detection */
651                 {F_VCC_BC_DISEN,        1},
652                 /* Disable automatic limitation of the input current */
653                 {F_ILIM_AUTO_DISEN,     1},
654                 /* Select current limitation when SDP charger attached*/
655                 {F_SDP_500_SEL,         1},
656                 /* Select current limitation when DCP charger attached */
657                 {F_DCP_2500_SEL,        1},
658                 {F_VSYSREG_SET,         id->vsysreg_set},
659                 /* Activate USB charging and DC/DC converter */
660                 {F_USB_SUS,             0},
661                 /* DCDC clock: 1200 kHz*/
662                 {F_DCDC_CLK_SEL,        3},
663                 /* Enable charging */
664                 {F_CHG_EN,              1},
665                 /* Disable Input current Limit setting voltage measurement */
666                 {F_EXTIADPEN,           0},
667                 /* Disable input current limiting */
668                 {F_VSYS_PRIORITY,       1},
669                 {F_IBUS_LIM_SET,        id->ibus_lim_set},
670                 {F_ICC_LIM_SET,         id->icc_lim_set},
671                 /* Charge Termination Current Setting to 0*/
672                 {F_ITERM_SET,           id->iterm_set},
673                 /* Trickle-charge Current Setting */
674                 {F_ITRICH_SET,          id->itrich_set},
675                 /* Pre-charge Current setting */
676                 {F_IPRECH_SET,          id->iprech_set},
677                 /* Fast Charge Current for constant current phase */
678                 {F_ICHG_SET,            id->ichg_set},
679                 /* Fast Charge Voltage Regulation Setting */
680                 {F_VFASTCHG_REG_SET1,   id->vfastchg_reg_set1},
681                 /* Set Pre-charge Voltage Threshold for trickle charging. */
682                 {F_VPRECHG_TH_SET,      id->vprechg_th_set},
683                 {F_VRECHG_SET,          id->vrechg_set},
684                 {F_VBATOVP_SET,         id->vbatovp_set},
685                 /* Reverse buck boost voltage Setting */
686                 {F_VRBOOST_SET,         0},
687                 /* Disable fast-charging watchdog */
688                 {F_WDT_FST,             0},
689                 /* Disable pre-charging watchdog */
690                 {F_WDT_PRE,             0},
691                 /* Power save off */
692                 {F_POWER_SAVE_MODE,     0},
693                 {F_INT1_SET,            INT1_ALL},
694                 {F_INT2_SET,            INT2_ALL},
695                 {F_INT3_SET,            INT3_ALL},
696                 {F_INT4_SET,            INT4_ALL},
697                 {F_INT5_SET,            INT5_ALL},
698                 {F_INT6_SET,            INT6_ALL},
699                 {F_INT7_SET,            INT7_ALL},
700         };
701
702         /*
703          * Currently we initialize charger to a known state at startup.
704          * If we want to allow for example the boot code to initialize
705          * charger we should get rid of this.
706          */
707         ret = __bd9995x_chip_reset(bd);
708         if (ret < 0)
709                 return ret;
710
711         /* Initialize currents/voltages and other parameters */
712         for (i = 0; i < ARRAY_SIZE(init_data); i++) {
713                 ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
714                                          init_data[i].value);
715                 if (ret) {
716                         dev_err(bd->dev, "failed to initialize charger (%d)\n",
717                                 ret);
718                         return ret;
719                 }
720         }
721
722         ret = bd9995x_get_chip_state(bd, &state);
723         if (ret < 0)
724                 return ret;
725
726         mutex_lock(&bd->lock);
727         bd->state = state;
728         mutex_unlock(&bd->lock);
729
730         return 0;
731 }
732
733 static enum power_supply_property bd9995x_power_supply_props[] = {
734         POWER_SUPPLY_PROP_MANUFACTURER,
735         POWER_SUPPLY_PROP_STATUS,
736         POWER_SUPPLY_PROP_ONLINE,
737         POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
738         POWER_SUPPLY_PROP_CHARGE_AVG,
739         POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
740         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
741         POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
742         /* Battery props we access through charger */
743         POWER_SUPPLY_PROP_PRESENT,
744         POWER_SUPPLY_PROP_VOLTAGE_NOW,
745         POWER_SUPPLY_PROP_CURRENT_NOW,
746         POWER_SUPPLY_PROP_CHARGE_TYPE,
747         POWER_SUPPLY_PROP_HEALTH,
748         POWER_SUPPLY_PROP_TEMP,
749         POWER_SUPPLY_PROP_TECHNOLOGY,
750         POWER_SUPPLY_PROP_MODEL_NAME,
751 };
752
753 static const struct power_supply_desc bd9995x_power_supply_desc = {
754         .name = "bd9995x-charger",
755         .type = POWER_SUPPLY_TYPE_USB,
756         .properties = bd9995x_power_supply_props,
757         .num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
758         .get_property = bd9995x_power_supply_get_property,
759 };
760
761 /*
762  * Limit configurations for vbus-input-current and vcc-vacp-input-current
763  * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
764  * configured by writing a register so that each increment in register
765  * value equals to 32000 uA limit increment.
766  *
767  * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
768  * Describe the setting in linear_range table.
769  */
770 static const struct linear_range input_current_limit_ranges[] = {
771         {
772                 .min = 0,
773                 .step = 32000,
774                 .min_sel = 0x0,
775                 .max_sel = 0x1ff,
776         },
777 };
778
779 /* Possible trickle, pre-charging and termination current values */
780 static const struct linear_range charging_current_ranges[] = {
781         {
782                 .min = 0,
783                 .step = 64000,
784                 .min_sel = 0x0,
785                 .max_sel = 0x10,
786         }, {
787                 .min = 1024000,
788                 .step = 0,
789                 .min_sel = 0x11,
790                 .max_sel = 0x1f,
791         },
792 };
793
794 /*
795  * Fast charging voltage regulation, starting re-charging limit
796  * and battery over voltage protection have same possible values
797  */
798 static const struct linear_range charge_voltage_regulation_ranges[] = {
799         {
800                 .min = 2560000,
801                 .step = 0,
802                 .min_sel = 0,
803                 .max_sel = 0xA0,
804         }, {
805                 .min = 2560000,
806                 .step = 16000,
807                 .min_sel = 0xA0,
808                 .max_sel = 0x4B0,
809         }, {
810                 .min = 19200000,
811                 .step = 0,
812                 .min_sel = 0x4B0,
813                 .max_sel = 0x7FF,
814         },
815 };
816
817 /* Possible VSYS voltage regulation values */
818 static const struct linear_range vsys_voltage_regulation_ranges[] = {
819         {
820                 .min = 2560000,
821                 .step = 0,
822                 .min_sel = 0,
823                 .max_sel = 0x28,
824         }, {
825                 .min = 2560000,
826                 .step = 64000,
827                 .min_sel = 0x28,
828                 .max_sel = 0x12C,
829         }, {
830                 .min = 19200000,
831                 .step = 0,
832                 .min_sel = 0x12C,
833                 .max_sel = 0x1FF,
834         },
835 };
836
837 /* Possible settings for switching from trickle to pre-charging limits */
838 static const struct linear_range trickle_to_pre_threshold_ranges[] = {
839         {
840                 .min = 2048000,
841                 .step = 0,
842                 .min_sel = 0,
843                 .max_sel = 0x20,
844         }, {
845                 .min = 2048000,
846                 .step = 64000,
847                 .min_sel = 0x20,
848                 .max_sel = 0x12C,
849         }, {
850                 .min = 19200000,
851                 .step = 0,
852                 .min_sel = 0x12C,
853                 .max_sel = 0x1FF
854         }
855 };
856
857 /* Possible current values for fast-charging constant current phase */
858 static const struct linear_range fast_charge_current_ranges[] = {
859         {
860                 .min = 0,
861                 .step = 64000,
862                 .min_sel = 0,
863                 .max_sel = 0xFF,
864         }
865 };
866
867 struct battery_init {
868         const char *name;
869         int *info_data;
870         const struct linear_range *range;
871         int ranges;
872         u16 *data;
873 };
874
875 struct dt_init {
876         char *prop;
877         const struct linear_range *range;
878         int ranges;
879         u16 *data;
880 };
881
882 static int bd9995x_fw_probe(struct bd9995x_device *bd)
883 {
884         int ret;
885         struct power_supply_battery_info *info;
886         u32 property;
887         int i;
888         int regval;
889         bool found;
890         struct bd9995x_init_data *init = &bd->init_data;
891         struct battery_init battery_inits[] = {
892                 {
893                         .name = "trickle-charging current",
894                         .range = &charging_current_ranges[0],
895                         .ranges = 2,
896                         .data = &init->itrich_set,
897                 }, {
898                         .name = "pre-charging current",
899                         .range = &charging_current_ranges[0],
900                         .ranges = 2,
901                         .data = &init->iprech_set,
902                 }, {
903                         .name = "pre-to-trickle charge voltage threshold",
904                         .range = &trickle_to_pre_threshold_ranges[0],
905                         .ranges = 2,
906                         .data = &init->vprechg_th_set,
907                 }, {
908                         .name = "charging termination current",
909                         .range = &charging_current_ranges[0],
910                         .ranges = 2,
911                         .data = &init->iterm_set,
912                 }, {
913                         .name = "charging re-start voltage",
914                         .range = &charge_voltage_regulation_ranges[0],
915                         .ranges = 2,
916                         .data = &init->vrechg_set,
917                 }, {
918                         .name = "battery overvoltage limit",
919                         .range = &charge_voltage_regulation_ranges[0],
920                         .ranges = 2,
921                         .data = &init->vbatovp_set,
922                 }, {
923                         .name = "fast-charging max current",
924                         .range = &fast_charge_current_ranges[0],
925                         .ranges = 1,
926                         .data = &init->ichg_set,
927                 }, {
928                         .name = "fast-charging voltage",
929                         .range = &charge_voltage_regulation_ranges[0],
930                         .ranges = 2,
931                         .data = &init->vfastchg_reg_set1,
932                 },
933         };
934         struct dt_init props[] = {
935                 {
936                         .prop = "rohm,vsys-regulation-microvolt",
937                         .range = &vsys_voltage_regulation_ranges[0],
938                         .ranges = 2,
939                         .data = &init->vsysreg_set,
940                 }, {
941                         .prop = "rohm,vbus-input-current-limit-microamp",
942                         .range = &input_current_limit_ranges[0],
943                         .ranges = 1,
944                         .data = &init->ibus_lim_set,
945                 }, {
946                         .prop = "rohm,vcc-input-current-limit-microamp",
947                         .range = &input_current_limit_ranges[0],
948                         .ranges = 1,
949                         .data = &init->icc_lim_set,
950                 },
951         };
952
953         /*
954          * The power_supply_get_battery_info() does not support getting values
955          * from ACPI. Let's fix it if ACPI is required here.
956          */
957         ret = power_supply_get_battery_info(bd->charger, &info);
958         if (ret < 0)
959                 return ret;
960
961         /* Put pointers to the generic battery info */
962         battery_inits[0].info_data = &info->tricklecharge_current_ua;
963         battery_inits[1].info_data = &info->precharge_current_ua;
964         battery_inits[2].info_data = &info->precharge_voltage_max_uv;
965         battery_inits[3].info_data = &info->charge_term_current_ua;
966         battery_inits[4].info_data = &info->charge_restart_voltage_uv;
967         battery_inits[5].info_data = &info->overvoltage_limit_uv;
968         battery_inits[6].info_data = &info->constant_charge_current_max_ua;
969         battery_inits[7].info_data = &info->constant_charge_voltage_max_uv;
970
971         for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
972                 int val = *battery_inits[i].info_data;
973                 const struct linear_range *range = battery_inits[i].range;
974                 int ranges = battery_inits[i].ranges;
975
976                 if (val == -EINVAL)
977                         continue;
978
979                 ret = linear_range_get_selector_low_array(range, ranges, val,
980                                                           &regval, &found);
981                 if (ret) {
982                         dev_err(bd->dev, "Unsupported value for %s\n",
983                                 battery_inits[i].name);
984
985                         power_supply_put_battery_info(bd->charger, info);
986                         return -EINVAL;
987                 }
988                 if (!found) {
989                         dev_warn(bd->dev,
990                                  "Unsupported value for %s - using smaller\n",
991                                  battery_inits[i].name);
992                 }
993                 *(battery_inits[i].data) = regval;
994         }
995
996         power_supply_put_battery_info(bd->charger, info);
997
998         for (i = 0; i < ARRAY_SIZE(props); i++) {
999                 ret = device_property_read_u32(bd->dev, props[i].prop,
1000                                                &property);
1001                 if (ret < 0) {
1002                         dev_err(bd->dev, "failed to read %s", props[i].prop);
1003
1004                         return ret;
1005                 }
1006
1007                 ret = linear_range_get_selector_low_array(props[i].range,
1008                                                           props[i].ranges,
1009                                                           property, &regval,
1010                                                           &found);
1011                 if (ret) {
1012                         dev_err(bd->dev, "Unsupported value for '%s'\n",
1013                                 props[i].prop);
1014
1015                         return -EINVAL;
1016                 }
1017
1018                 if (!found) {
1019                         dev_warn(bd->dev,
1020                                  "Unsupported value for '%s' - using smaller\n",
1021                                  props[i].prop);
1022                 }
1023
1024                 *(props[i].data) = regval;
1025         }
1026
1027         return 0;
1028 }
1029
1030 static void bd9995x_chip_reset(void *bd)
1031 {
1032         __bd9995x_chip_reset(bd);
1033 }
1034
1035 static int bd9995x_probe(struct i2c_client *client)
1036 {
1037         struct device *dev = &client->dev;
1038         struct bd9995x_device *bd;
1039         struct power_supply_config psy_cfg = {};
1040         int ret;
1041         int i;
1042
1043         bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
1044         if (!bd)
1045                 return -ENOMEM;
1046
1047         bd->client = client;
1048         bd->dev = dev;
1049         psy_cfg.drv_data = bd;
1050         psy_cfg.of_node = dev->of_node;
1051
1052         mutex_init(&bd->lock);
1053
1054         bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
1055         if (IS_ERR(bd->rmap)) {
1056                 dev_err(dev, "Failed to setup register access via i2c\n");
1057                 return PTR_ERR(bd->rmap);
1058         }
1059
1060         for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
1061                 const struct reg_field *reg_fields = bd9995x_reg_fields;
1062
1063                 bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
1064                                                              reg_fields[i]);
1065                 if (IS_ERR(bd->rmap_fields[i])) {
1066                         dev_err(dev, "cannot allocate regmap field\n");
1067                         return PTR_ERR(bd->rmap_fields[i]);
1068                 }
1069         }
1070
1071         i2c_set_clientdata(client, bd);
1072
1073         ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
1074         if (ret) {
1075                 dev_err(dev, "Cannot read chip ID.\n");
1076                 return ret;
1077         }
1078
1079         if (bd->chip_id != BD99954_ID) {
1080                 dev_err(dev, "Chip with ID=0x%x, not supported!\n",
1081                         bd->chip_id);
1082                 return -ENODEV;
1083         }
1084
1085         ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
1086         if (ret) {
1087                 dev_err(dev, "Cannot read revision.\n");
1088                 return ret;
1089         }
1090
1091         dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
1092
1093         /*
1094          * We need to init the psy before we can call
1095          * power_supply_get_battery_info() for it
1096          */
1097         bd->charger = devm_power_supply_register(bd->dev,
1098                                                  &bd9995x_power_supply_desc,
1099                                                 &psy_cfg);
1100         if (IS_ERR(bd->charger)) {
1101                 dev_err(dev, "Failed to register power supply\n");
1102                 return PTR_ERR(bd->charger);
1103         }
1104
1105         ret = bd9995x_fw_probe(bd);
1106         if (ret < 0) {
1107                 dev_err(dev, "Cannot read device properties.\n");
1108                 return ret;
1109         }
1110
1111         ret = bd9995x_hw_init(bd);
1112         if (ret < 0) {
1113                 dev_err(dev, "Cannot initialize the chip.\n");
1114                 return ret;
1115         }
1116
1117         ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
1118         if (ret)
1119                 return ret;
1120
1121         return devm_request_threaded_irq(dev, client->irq, NULL,
1122                                          bd9995x_irq_handler_thread,
1123                                          IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1124                                          BD9995X_IRQ_PIN, bd);
1125 }
1126
1127 static const struct of_device_id bd9995x_of_match[] = {
1128         { .compatible = "rohm,bd99954", },
1129         { }
1130 };
1131 MODULE_DEVICE_TABLE(of, bd9995x_of_match);
1132
1133 static struct i2c_driver bd9995x_driver = {
1134         .driver = {
1135                 .name = "bd9995x-charger",
1136                 .of_match_table = bd9995x_of_match,
1137         },
1138         .probe_new = bd9995x_probe,
1139 };
1140 module_i2c_driver(bd9995x_driver);
1141
1142 MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
1143 MODULE_DESCRIPTION("ROHM BD99954 charger driver");
1144 MODULE_LICENSE("GPL");