ab8500_fg: Balance IRQ enable
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / power / ab8500_fg.c
1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/of.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35
36 #define MILLI_TO_MICRO                  1000
37 #define FG_LSB_IN_MA                    1627
38 #define QLSB_NANO_AMP_HOURS_X10         1129
39 #define INS_CURR_TIMEOUT                (3 * HZ)
40
41 #define SEC_TO_SAMPLE(S)                (S * 4)
42
43 #define NBR_AVG_SAMPLES                 20
44
45 #define LOW_BAT_CHECK_INTERVAL          (2 * HZ)
46
47 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
48 #define BATT_OK_MIN                     2360 /* mV */
49 #define BATT_OK_INCREMENT               50 /* mV */
50 #define BATT_OK_MAX_NR_INCREMENTS       0xE
51
52 /* FG constants */
53 #define BATT_OVV                        0x01
54
55 #define interpolate(x, x1, y1, x2, y2) \
56         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
57
58 #define to_ab8500_fg_device_info(x) container_of((x), \
59         struct ab8500_fg, fg_psy);
60
61 /**
62  * struct ab8500_fg_interrupts - ab8500 fg interupts
63  * @name:       name of the interrupt
64  * @isr         function pointer to the isr
65  */
66 struct ab8500_fg_interrupts {
67         char *name;
68         irqreturn_t (*isr)(int irq, void *data);
69 };
70
71 enum ab8500_fg_discharge_state {
72         AB8500_FG_DISCHARGE_INIT,
73         AB8500_FG_DISCHARGE_INITMEASURING,
74         AB8500_FG_DISCHARGE_INIT_RECOVERY,
75         AB8500_FG_DISCHARGE_RECOVERY,
76         AB8500_FG_DISCHARGE_READOUT_INIT,
77         AB8500_FG_DISCHARGE_READOUT,
78         AB8500_FG_DISCHARGE_WAKEUP,
79 };
80
81 static char *discharge_state[] = {
82         "DISCHARGE_INIT",
83         "DISCHARGE_INITMEASURING",
84         "DISCHARGE_INIT_RECOVERY",
85         "DISCHARGE_RECOVERY",
86         "DISCHARGE_READOUT_INIT",
87         "DISCHARGE_READOUT",
88         "DISCHARGE_WAKEUP",
89 };
90
91 enum ab8500_fg_charge_state {
92         AB8500_FG_CHARGE_INIT,
93         AB8500_FG_CHARGE_READOUT,
94 };
95
96 static char *charge_state[] = {
97         "CHARGE_INIT",
98         "CHARGE_READOUT",
99 };
100
101 enum ab8500_fg_calibration_state {
102         AB8500_FG_CALIB_INIT,
103         AB8500_FG_CALIB_WAIT,
104         AB8500_FG_CALIB_END,
105 };
106
107 struct ab8500_fg_avg_cap {
108         int avg;
109         int samples[NBR_AVG_SAMPLES];
110         __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
111         int pos;
112         int nbr_samples;
113         int sum;
114 };
115
116 struct ab8500_fg_cap_scaling {
117         bool enable;
118         int cap_to_scale[2];
119         int disable_cap_level;
120         int scaled_cap;
121 };
122
123 struct ab8500_fg_battery_capacity {
124         int max_mah_design;
125         int max_mah;
126         int mah;
127         int permille;
128         int level;
129         int prev_mah;
130         int prev_percent;
131         int prev_level;
132         int user_mah;
133         struct ab8500_fg_cap_scaling cap_scale;
134 };
135
136 struct ab8500_fg_flags {
137         bool fg_enabled;
138         bool conv_done;
139         bool charging;
140         bool fully_charged;
141         bool force_full;
142         bool low_bat_delay;
143         bool low_bat;
144         bool bat_ovv;
145         bool batt_unknown;
146         bool calibrate;
147         bool user_cap;
148         bool batt_id_received;
149 };
150
151 struct inst_curr_result_list {
152         struct list_head list;
153         int *result;
154 };
155
156 /**
157  * struct ab8500_fg - ab8500 FG device information
158  * @dev:                Pointer to the structure device
159  * @node:               a list of AB8500 FGs, hence prepared for reentrance
160  * @irq                 holds the CCEOC interrupt number
161  * @vbat:               Battery voltage in mV
162  * @vbat_nom:           Nominal battery voltage in mV
163  * @inst_curr:          Instantenous battery current in mA
164  * @avg_curr:           Average battery current in mA
165  * @bat_temp            battery temperature
166  * @fg_samples:         Number of samples used in the FG accumulation
167  * @accu_charge:        Accumulated charge from the last conversion
168  * @recovery_cnt:       Counter for recovery mode
169  * @high_curr_cnt:      Counter for high current mode
170  * @init_cnt:           Counter for init mode
171  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
172  * @recovery_needed:    Indicate if recovery is needed
173  * @high_curr_mode:     Indicate if we're in high current mode
174  * @init_capacity:      Indicate if initial capacity measuring should be done
175  * @turn_off_fg:        True if fg was off before current measurement
176  * @calib_state         State during offset calibration
177  * @discharge_state:    Current discharge state
178  * @charge_state:       Current charge state
179  * @ab8500_fg_started   Completion struct used for the instant current start
180  * @ab8500_fg_complete  Completion struct used for the instant current reading
181  * @flags:              Structure for information about events triggered
182  * @bat_cap:            Structure for battery capacity specific parameters
183  * @avg_cap:            Average capacity filter
184  * @parent:             Pointer to the struct ab8500
185  * @gpadc:              Pointer to the struct gpadc
186  * @bm:                 Platform specific battery management information
187  * @fg_psy:             Structure that holds the FG specific battery properties
188  * @fg_wq:              Work queue for running the FG algorithm
189  * @fg_periodic_work:   Work to run the FG algorithm periodically
190  * @fg_low_bat_work:    Work to check low bat condition
191  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
192  * @fg_work:            Work to run the FG algorithm instantly
193  * @fg_acc_cur_work:    Work to read the FG accumulator
194  * @fg_check_hw_failure_work:   Work for checking HW state
195  * @cc_lock:            Mutex for locking the CC
196  * @fg_kobject:         Structure of type kobject
197  */
198 struct ab8500_fg {
199         struct device *dev;
200         struct list_head node;
201         int irq;
202         int vbat;
203         int vbat_nom;
204         int inst_curr;
205         int avg_curr;
206         int bat_temp;
207         int fg_samples;
208         int accu_charge;
209         int recovery_cnt;
210         int high_curr_cnt;
211         int init_cnt;
212         int nbr_cceoc_irq_cnt;
213         bool recovery_needed;
214         bool high_curr_mode;
215         bool init_capacity;
216         bool turn_off_fg;
217         enum ab8500_fg_calibration_state calib_state;
218         enum ab8500_fg_discharge_state discharge_state;
219         enum ab8500_fg_charge_state charge_state;
220         struct completion ab8500_fg_started;
221         struct completion ab8500_fg_complete;
222         struct ab8500_fg_flags flags;
223         struct ab8500_fg_battery_capacity bat_cap;
224         struct ab8500_fg_avg_cap avg_cap;
225         struct ab8500 *parent;
226         struct ab8500_gpadc *gpadc;
227         struct abx500_bm_data *bm;
228         struct power_supply fg_psy;
229         struct workqueue_struct *fg_wq;
230         struct delayed_work fg_periodic_work;
231         struct delayed_work fg_low_bat_work;
232         struct delayed_work fg_reinit_work;
233         struct work_struct fg_work;
234         struct work_struct fg_acc_cur_work;
235         struct delayed_work fg_check_hw_failure_work;
236         struct mutex cc_lock;
237         struct kobject fg_kobject;
238 };
239 static LIST_HEAD(ab8500_fg_list);
240
241 /**
242  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
243  * (i.e. the first fuel gauge in the instance list)
244  */
245 struct ab8500_fg *ab8500_fg_get(void)
246 {
247         struct ab8500_fg *fg;
248
249         if (list_empty(&ab8500_fg_list))
250                 return NULL;
251
252         fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
253         return fg;
254 }
255
256 /* Main battery properties */
257 static enum power_supply_property ab8500_fg_props[] = {
258         POWER_SUPPLY_PROP_VOLTAGE_NOW,
259         POWER_SUPPLY_PROP_CURRENT_NOW,
260         POWER_SUPPLY_PROP_CURRENT_AVG,
261         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
262         POWER_SUPPLY_PROP_ENERGY_FULL,
263         POWER_SUPPLY_PROP_ENERGY_NOW,
264         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
265         POWER_SUPPLY_PROP_CHARGE_FULL,
266         POWER_SUPPLY_PROP_CHARGE_NOW,
267         POWER_SUPPLY_PROP_CAPACITY,
268         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
269 };
270
271 /*
272  * This array maps the raw hex value to lowbat voltage used by the AB8500
273  * Values taken from the UM0836
274  */
275 static int ab8500_fg_lowbat_voltage_map[] = {
276         2300 ,
277         2325 ,
278         2350 ,
279         2375 ,
280         2400 ,
281         2425 ,
282         2450 ,
283         2475 ,
284         2500 ,
285         2525 ,
286         2550 ,
287         2575 ,
288         2600 ,
289         2625 ,
290         2650 ,
291         2675 ,
292         2700 ,
293         2725 ,
294         2750 ,
295         2775 ,
296         2800 ,
297         2825 ,
298         2850 ,
299         2875 ,
300         2900 ,
301         2925 ,
302         2950 ,
303         2975 ,
304         3000 ,
305         3025 ,
306         3050 ,
307         3075 ,
308         3100 ,
309         3125 ,
310         3150 ,
311         3175 ,
312         3200 ,
313         3225 ,
314         3250 ,
315         3275 ,
316         3300 ,
317         3325 ,
318         3350 ,
319         3375 ,
320         3400 ,
321         3425 ,
322         3450 ,
323         3475 ,
324         3500 ,
325         3525 ,
326         3550 ,
327         3575 ,
328         3600 ,
329         3625 ,
330         3650 ,
331         3675 ,
332         3700 ,
333         3725 ,
334         3750 ,
335         3775 ,
336         3800 ,
337         3825 ,
338         3850 ,
339         3850 ,
340 };
341
342 static u8 ab8500_volt_to_regval(int voltage)
343 {
344         int i;
345
346         if (voltage < ab8500_fg_lowbat_voltage_map[0])
347                 return 0;
348
349         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
350                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
351                         return (u8) i - 1;
352         }
353
354         /* If not captured above, return index of last element */
355         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
356 }
357
358 /**
359  * ab8500_fg_is_low_curr() - Low or high current mode
360  * @di:         pointer to the ab8500_fg structure
361  * @curr:       the current to base or our decision on
362  *
363  * Low current mode if the current consumption is below a certain threshold
364  */
365 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
366 {
367         /*
368          * We want to know if we're in low current mode
369          */
370         if (curr > -di->bm->fg_params->high_curr_threshold)
371                 return true;
372         else
373                 return false;
374 }
375
376 /**
377  * ab8500_fg_add_cap_sample() - Add capacity to average filter
378  * @di:         pointer to the ab8500_fg structure
379  * @sample:     the capacity in mAh to add to the filter
380  *
381  * A capacity is added to the filter and a new mean capacity is calculated and
382  * returned
383  */
384 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
385 {
386         struct timespec ts;
387         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
388
389         getnstimeofday(&ts);
390
391         do {
392                 avg->sum += sample - avg->samples[avg->pos];
393                 avg->samples[avg->pos] = sample;
394                 avg->time_stamps[avg->pos] = ts.tv_sec;
395                 avg->pos++;
396
397                 if (avg->pos == NBR_AVG_SAMPLES)
398                         avg->pos = 0;
399
400                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
401                         avg->nbr_samples++;
402
403                 /*
404                  * Check the time stamp for each sample. If too old,
405                  * replace with latest sample
406                  */
407         } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
408
409         avg->avg = avg->sum / avg->nbr_samples;
410
411         return avg->avg;
412 }
413
414 /**
415  * ab8500_fg_clear_cap_samples() - Clear average filter
416  * @di:         pointer to the ab8500_fg structure
417  *
418  * The capacity filter is is reset to zero.
419  */
420 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
421 {
422         int i;
423         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
424
425         avg->pos = 0;
426         avg->nbr_samples = 0;
427         avg->sum = 0;
428         avg->avg = 0;
429
430         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
431                 avg->samples[i] = 0;
432                 avg->time_stamps[i] = 0;
433         }
434 }
435
436 /**
437  * ab8500_fg_fill_cap_sample() - Fill average filter
438  * @di:         pointer to the ab8500_fg structure
439  * @sample:     the capacity in mAh to fill the filter with
440  *
441  * The capacity filter is filled with a capacity in mAh
442  */
443 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
444 {
445         int i;
446         struct timespec ts;
447         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
448
449         getnstimeofday(&ts);
450
451         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
452                 avg->samples[i] = sample;
453                 avg->time_stamps[i] = ts.tv_sec;
454         }
455
456         avg->pos = 0;
457         avg->nbr_samples = NBR_AVG_SAMPLES;
458         avg->sum = sample * NBR_AVG_SAMPLES;
459         avg->avg = sample;
460 }
461
462 /**
463  * ab8500_fg_coulomb_counter() - enable coulomb counter
464  * @di:         pointer to the ab8500_fg structure
465  * @enable:     enable/disable
466  *
467  * Enable/Disable coulomb counter.
468  * On failure returns negative value.
469  */
470 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
471 {
472         int ret = 0;
473         mutex_lock(&di->cc_lock);
474         if (enable) {
475                 /* To be able to reprogram the number of samples, we have to
476                  * first stop the CC and then enable it again */
477                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
478                         AB8500_RTC_CC_CONF_REG, 0x00);
479                 if (ret)
480                         goto cc_err;
481
482                 /* Program the samples */
483                 ret = abx500_set_register_interruptible(di->dev,
484                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
485                         di->fg_samples);
486                 if (ret)
487                         goto cc_err;
488
489                 /* Start the CC */
490                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
491                         AB8500_RTC_CC_CONF_REG,
492                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
493                 if (ret)
494                         goto cc_err;
495
496                 di->flags.fg_enabled = true;
497         } else {
498                 /* Clear any pending read requests */
499                 ret = abx500_mask_and_set_register_interruptible(di->dev,
500                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
501                         (RESET_ACCU | READ_REQ), 0);
502                 if (ret)
503                         goto cc_err;
504
505                 ret = abx500_set_register_interruptible(di->dev,
506                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
507                 if (ret)
508                         goto cc_err;
509
510                 /* Stop the CC */
511                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
512                         AB8500_RTC_CC_CONF_REG, 0);
513                 if (ret)
514                         goto cc_err;
515
516                 di->flags.fg_enabled = false;
517
518         }
519         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
520                 enable, di->fg_samples);
521
522         mutex_unlock(&di->cc_lock);
523
524         return ret;
525 cc_err:
526         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
527         mutex_unlock(&di->cc_lock);
528         return ret;
529 }
530
531 /**
532  * ab8500_fg_inst_curr_start() - start battery instantaneous current
533  * @di:         pointer to the ab8500_fg structure
534  *
535  * Returns 0 or error code
536  * Note: This is part "one" and has to be called before
537  * ab8500_fg_inst_curr_finalize()
538  */
539 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
540 {
541         u8 reg_val;
542         int ret;
543
544         mutex_lock(&di->cc_lock);
545
546         di->nbr_cceoc_irq_cnt = 0;
547         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
548                 AB8500_RTC_CC_CONF_REG, &reg_val);
549         if (ret < 0)
550                 goto fail;
551
552         if (!(reg_val & CC_PWR_UP_ENA)) {
553                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
554                 di->turn_off_fg = true;
555
556                 /* Program the samples */
557                 ret = abx500_set_register_interruptible(di->dev,
558                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
559                         SEC_TO_SAMPLE(10));
560                 if (ret)
561                         goto fail;
562
563                 /* Start the CC */
564                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
565                         AB8500_RTC_CC_CONF_REG,
566                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
567                 if (ret)
568                         goto fail;
569         } else {
570                 di->turn_off_fg = false;
571         }
572
573         /* Return and WFI */
574         INIT_COMPLETION(di->ab8500_fg_started);
575         INIT_COMPLETION(di->ab8500_fg_complete);
576         enable_irq(di->irq);
577
578         /* Note: cc_lock is still locked */
579         return 0;
580 fail:
581         mutex_unlock(&di->cc_lock);
582         return ret;
583 }
584
585 /**
586  * ab8500_fg_inst_curr_started() - check if fg conversion has started
587  * @di:         pointer to the ab8500_fg structure
588  *
589  * Returns 1 if conversion started, 0 if still waiting
590  */
591 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
592 {
593         return completion_done(&di->ab8500_fg_started);
594 }
595
596 /**
597  * ab8500_fg_inst_curr_done() - check if fg conversion is done
598  * @di:         pointer to the ab8500_fg structure
599  *
600  * Returns 1 if conversion done, 0 if still waiting
601  */
602 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
603 {
604         return completion_done(&di->ab8500_fg_complete);
605 }
606
607 /**
608  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
609  * @di:         pointer to the ab8500_fg structure
610  * @res:        battery instantenous current(on success)
611  *
612  * Returns 0 or an error code
613  * Note: This is part "two" and has to be called at earliest 250 ms
614  * after ab8500_fg_inst_curr_start()
615  */
616 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
617 {
618         u8 low, high;
619         int val;
620         int ret;
621         int timeout;
622
623         if (!completion_done(&di->ab8500_fg_complete)) {
624                 timeout = wait_for_completion_timeout(
625                         &di->ab8500_fg_complete,
626                         INS_CURR_TIMEOUT);
627                 dev_dbg(di->dev, "Finalize time: %d ms\n",
628                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
629                 if (!timeout) {
630                         ret = -ETIME;
631                         disable_irq(di->irq);
632                         di->nbr_cceoc_irq_cnt = 0;
633                         dev_err(di->dev, "completion timed out [%d]\n",
634                                 __LINE__);
635                         goto fail;
636                 }
637         }
638
639         disable_irq(di->irq);
640         di->nbr_cceoc_irq_cnt = 0;
641
642         ret = abx500_mask_and_set_register_interruptible(di->dev,
643                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
644                         READ_REQ, READ_REQ);
645
646         /* 100uS between read request and read is needed */
647         usleep_range(100, 100);
648
649         /* Read CC Sample conversion value Low and high */
650         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
651                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
652         if (ret < 0)
653                 goto fail;
654
655         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
656                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
657         if (ret < 0)
658                 goto fail;
659
660         /*
661          * negative value for Discharging
662          * convert 2's compliment into decimal
663          */
664         if (high & 0x10)
665                 val = (low | (high << 8) | 0xFFFFE000);
666         else
667                 val = (low | (high << 8));
668
669         /*
670          * Convert to unit value in mA
671          * Full scale input voltage is
672          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
673          * Given a 250ms conversion cycle time the LSB corresponds
674          * to 112.9 nAh. Convert to current by dividing by the conversion
675          * time in hours (250ms = 1 / (3600 * 4)h)
676          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
677          */
678         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
679                 (1000 * di->bm->fg_res);
680
681         if (di->turn_off_fg) {
682                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
683
684                 /* Clear any pending read requests */
685                 ret = abx500_set_register_interruptible(di->dev,
686                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
687                 if (ret)
688                         goto fail;
689
690                 /* Stop the CC */
691                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
692                         AB8500_RTC_CC_CONF_REG, 0);
693                 if (ret)
694                         goto fail;
695         }
696         mutex_unlock(&di->cc_lock);
697         (*res) = val;
698
699         return 0;
700 fail:
701         mutex_unlock(&di->cc_lock);
702         return ret;
703 }
704
705 /**
706  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
707  * @di:         pointer to the ab8500_fg structure
708  * @res:        battery instantenous current(on success)
709  *
710  * Returns 0 else error code
711  */
712 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
713 {
714         int ret;
715         int timeout;
716         int res = 0;
717
718         ret = ab8500_fg_inst_curr_start(di);
719         if (ret) {
720                 dev_err(di->dev, "Failed to initialize fg_inst\n");
721                 return 0;
722         }
723
724         /* Wait for CC to actually start */
725         if (!completion_done(&di->ab8500_fg_started)) {
726                 timeout = wait_for_completion_timeout(
727                         &di->ab8500_fg_started,
728                         INS_CURR_TIMEOUT);
729                 dev_dbg(di->dev, "Start time: %d ms\n",
730                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
731                 if (!timeout) {
732                         ret = -ETIME;
733                         dev_err(di->dev, "completion timed out [%d]\n",
734                                 __LINE__);
735                         goto fail;
736                 }
737         }
738
739         ret = ab8500_fg_inst_curr_finalize(di, &res);
740         if (ret) {
741                 dev_err(di->dev, "Failed to finalize fg_inst\n");
742                 return 0;
743         }
744
745         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
746         return res;
747 fail:
748         disable_irq(di->irq);
749         mutex_unlock(&di->cc_lock);
750         return ret;
751 }
752
753 /**
754  * ab8500_fg_acc_cur_work() - average battery current
755  * @work:       pointer to the work_struct structure
756  *
757  * Updated the average battery current obtained from the
758  * coulomb counter.
759  */
760 static void ab8500_fg_acc_cur_work(struct work_struct *work)
761 {
762         int val;
763         int ret;
764         u8 low, med, high;
765
766         struct ab8500_fg *di = container_of(work,
767                 struct ab8500_fg, fg_acc_cur_work);
768
769         mutex_lock(&di->cc_lock);
770         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
771                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
772         if (ret)
773                 goto exit;
774
775         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
776                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
777         if (ret < 0)
778                 goto exit;
779
780         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
781                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
782         if (ret < 0)
783                 goto exit;
784
785         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
786                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
787         if (ret < 0)
788                 goto exit;
789
790         /* Check for sign bit in case of negative value, 2's compliment */
791         if (high & 0x10)
792                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
793         else
794                 val = (low | (med << 8) | (high << 16));
795
796         /*
797          * Convert to uAh
798          * Given a 250ms conversion cycle time the LSB corresponds
799          * to 112.9 nAh.
800          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
801          */
802         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
803                 (100 * di->bm->fg_res);
804
805         /*
806          * Convert to unit value in mA
807          * Full scale input voltage is
808          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
809          * Given a 250ms conversion cycle time the LSB corresponds
810          * to 112.9 nAh. Convert to current by dividing by the conversion
811          * time in hours (= samples / (3600 * 4)h)
812          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
813          */
814         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
815                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
816
817         di->flags.conv_done = true;
818
819         mutex_unlock(&di->cc_lock);
820
821         queue_work(di->fg_wq, &di->fg_work);
822
823         return;
824 exit:
825         dev_err(di->dev,
826                 "Failed to read or write gas gauge registers\n");
827         mutex_unlock(&di->cc_lock);
828         queue_work(di->fg_wq, &di->fg_work);
829 }
830
831 /**
832  * ab8500_fg_bat_voltage() - get battery voltage
833  * @di:         pointer to the ab8500_fg structure
834  *
835  * Returns battery voltage(on success) else error code
836  */
837 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
838 {
839         int vbat;
840         static int prev;
841
842         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
843         if (vbat < 0) {
844                 dev_err(di->dev,
845                         "%s gpadc conversion failed, using previous value\n",
846                         __func__);
847                 return prev;
848         }
849
850         prev = vbat;
851         return vbat;
852 }
853
854 /**
855  * ab8500_fg_volt_to_capacity() - Voltage based capacity
856  * @di:         pointer to the ab8500_fg structure
857  * @voltage:    The voltage to convert to a capacity
858  *
859  * Returns battery capacity in per mille based on voltage
860  */
861 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
862 {
863         int i, tbl_size;
864         struct abx500_v_to_cap *tbl;
865         int cap = 0;
866
867         tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
868         tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
869
870         for (i = 0; i < tbl_size; ++i) {
871                 if (voltage > tbl[i].voltage)
872                         break;
873         }
874
875         if ((i > 0) && (i < tbl_size)) {
876                 cap = interpolate(voltage,
877                         tbl[i].voltage,
878                         tbl[i].capacity * 10,
879                         tbl[i-1].voltage,
880                         tbl[i-1].capacity * 10);
881         } else if (i == 0) {
882                 cap = 1000;
883         } else {
884                 cap = 0;
885         }
886
887         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
888                 __func__, voltage, cap);
889
890         return cap;
891 }
892
893 /**
894  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
895  * @di:         pointer to the ab8500_fg structure
896  *
897  * Returns battery capacity based on battery voltage that is not compensated
898  * for the voltage drop due to the load
899  */
900 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
901 {
902         di->vbat = ab8500_fg_bat_voltage(di);
903         return ab8500_fg_volt_to_capacity(di, di->vbat);
904 }
905
906 /**
907  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
908  * @di:         pointer to the ab8500_fg structure
909  *
910  * Returns battery inner resistance added with the fuel gauge resistor value
911  * to get the total resistance in the whole link from gnd to bat+ node.
912  */
913 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
914 {
915         int i, tbl_size;
916         struct batres_vs_temp *tbl;
917         int resist = 0;
918
919         tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
920         tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
921
922         for (i = 0; i < tbl_size; ++i) {
923                 if (di->bat_temp / 10 > tbl[i].temp)
924                         break;
925         }
926
927         if ((i > 0) && (i < tbl_size)) {
928                 resist = interpolate(di->bat_temp / 10,
929                         tbl[i].temp,
930                         tbl[i].resist,
931                         tbl[i-1].temp,
932                         tbl[i-1].resist);
933         } else if (i == 0) {
934                 resist = tbl[0].resist;
935         } else {
936                 resist = tbl[tbl_size - 1].resist;
937         }
938
939         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
940             " fg resistance %d, total: %d (mOhm)\n",
941                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
942                 (di->bm->fg_res / 10) + resist);
943
944         /* fg_res variable is in 0.1mOhm */
945         resist += di->bm->fg_res / 10;
946
947         return resist;
948 }
949
950 /**
951  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
952  * @di:         pointer to the ab8500_fg structure
953  *
954  * Returns battery capacity based on battery voltage that is load compensated
955  * for the voltage drop
956  */
957 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
958 {
959         int vbat_comp, res;
960         int i = 0;
961         int vbat = 0;
962
963         ab8500_fg_inst_curr_start(di);
964
965         do {
966                 vbat += ab8500_fg_bat_voltage(di);
967                 i++;
968                 usleep_range(5000, 6000);
969         } while (!ab8500_fg_inst_curr_done(di));
970
971         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
972
973         di->vbat = vbat / i;
974         res = ab8500_fg_battery_resistance(di);
975
976         /* Use Ohms law to get the load compensated voltage */
977         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
978
979         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
980                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
981                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
982
983         return ab8500_fg_volt_to_capacity(di, vbat_comp);
984 }
985
986 /**
987  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
988  * @di:         pointer to the ab8500_fg structure
989  * @cap_mah:    capacity in mAh
990  *
991  * Converts capacity in mAh to capacity in permille
992  */
993 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
994 {
995         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
996 }
997
998 /**
999  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1000  * @di:         pointer to the ab8500_fg structure
1001  * @cap_pm:     capacity in permille
1002  *
1003  * Converts capacity in permille to capacity in mAh
1004  */
1005 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1006 {
1007         return cap_pm * di->bat_cap.max_mah_design / 1000;
1008 }
1009
1010 /**
1011  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1012  * @di:         pointer to the ab8500_fg structure
1013  * @cap_mah:    capacity in mAh
1014  *
1015  * Converts capacity in mAh to capacity in uWh
1016  */
1017 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1018 {
1019         u64 div_res;
1020         u32 div_rem;
1021
1022         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1023         div_rem = do_div(div_res, 1000);
1024
1025         /* Make sure to round upwards if necessary */
1026         if (div_rem >= 1000 / 2)
1027                 div_res++;
1028
1029         return (int) div_res;
1030 }
1031
1032 /**
1033  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1034  * @di:         pointer to the ab8500_fg structure
1035  *
1036  * Return the capacity in mAh based on previous calculated capcity and the FG
1037  * accumulator register value. The filter is filled with this capacity
1038  */
1039 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1040 {
1041         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1042                 __func__,
1043                 di->bat_cap.mah,
1044                 di->accu_charge);
1045
1046         /* Capacity should not be less than 0 */
1047         if (di->bat_cap.mah + di->accu_charge > 0)
1048                 di->bat_cap.mah += di->accu_charge;
1049         else
1050                 di->bat_cap.mah = 0;
1051         /*
1052          * We force capacity to 100% once when the algorithm
1053          * reports that it's full.
1054          */
1055         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1056                 di->flags.force_full) {
1057                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1058         }
1059
1060         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1061         di->bat_cap.permille =
1062                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1063
1064         /* We need to update battery voltage and inst current when charging */
1065         di->vbat = ab8500_fg_bat_voltage(di);
1066         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1067
1068         return di->bat_cap.mah;
1069 }
1070
1071 /**
1072  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1073  * @di:         pointer to the ab8500_fg structure
1074  * @comp:       if voltage should be load compensated before capacity calc
1075  *
1076  * Return the capacity in mAh based on the battery voltage. The voltage can
1077  * either be load compensated or not. This value is added to the filter and a
1078  * new mean value is calculated and returned.
1079  */
1080 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1081 {
1082         int permille, mah;
1083
1084         if (comp)
1085                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1086         else
1087                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1088
1089         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1090
1091         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1092         di->bat_cap.permille =
1093                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1094
1095         return di->bat_cap.mah;
1096 }
1097
1098 /**
1099  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1100  * @di:         pointer to the ab8500_fg structure
1101  *
1102  * Return the capacity in mAh based on previous calculated capcity and the FG
1103  * accumulator register value. This value is added to the filter and a
1104  * new mean value is calculated and returned.
1105  */
1106 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1107 {
1108         int permille_volt, permille;
1109
1110         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1111                 __func__,
1112                 di->bat_cap.mah,
1113                 di->accu_charge);
1114
1115         /* Capacity should not be less than 0 */
1116         if (di->bat_cap.mah + di->accu_charge > 0)
1117                 di->bat_cap.mah += di->accu_charge;
1118         else
1119                 di->bat_cap.mah = 0;
1120
1121         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1122                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1123
1124         /*
1125          * Check against voltage based capacity. It can not be lower
1126          * than what the uncompensated voltage says
1127          */
1128         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1129         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1130
1131         if (permille < permille_volt) {
1132                 di->bat_cap.permille = permille_volt;
1133                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1134                         di->bat_cap.permille);
1135
1136                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1137                         __func__,
1138                         permille,
1139                         permille_volt);
1140
1141                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1142         } else {
1143                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144                 di->bat_cap.permille =
1145                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1146         }
1147
1148         return di->bat_cap.mah;
1149 }
1150
1151 /**
1152  * ab8500_fg_capacity_level() - Get the battery capacity level
1153  * @di:         pointer to the ab8500_fg structure
1154  *
1155  * Get the battery capacity level based on the capacity in percent
1156  */
1157 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1158 {
1159         int ret, percent;
1160
1161         percent = di->bat_cap.permille / 10;
1162
1163         if (percent <= di->bm->cap_levels->critical ||
1164                 di->flags.low_bat)
1165                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1166         else if (percent <= di->bm->cap_levels->low)
1167                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1168         else if (percent <= di->bm->cap_levels->normal)
1169                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1170         else if (percent <= di->bm->cap_levels->high)
1171                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1172         else
1173                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1174
1175         return ret;
1176 }
1177
1178 /**
1179  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1180  * @di:         pointer to the ab8500_fg structure
1181  *
1182  * Calculates the capacity to be shown to upper layers. Scales the capacity
1183  * to have 100% as a reference from the actual capacity upon removal of charger
1184  * when charging is in maintenance mode.
1185  */
1186 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1187 {
1188         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1189         int capacity = di->bat_cap.prev_percent;
1190
1191         if (!cs->enable)
1192                 return capacity;
1193
1194         /*
1195          * As long as we are in fully charge mode scale the capacity
1196          * to show 100%.
1197          */
1198         if (di->flags.fully_charged) {
1199                 cs->cap_to_scale[0] = 100;
1200                 cs->cap_to_scale[1] =
1201                         max(capacity, di->bm->fg_params->maint_thres);
1202                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1203                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1204         }
1205
1206         /* Calculates the scaled capacity. */
1207         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1208                                         && (cs->cap_to_scale[1] > 0))
1209                 capacity = min(100,
1210                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1211                                                  cs->cap_to_scale[0],
1212                                                  cs->cap_to_scale[1]));
1213
1214         if (di->flags.charging) {
1215                 if (capacity < cs->disable_cap_level) {
1216                         cs->disable_cap_level = capacity;
1217                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1218                                 cs->disable_cap_level);
1219                 } else if (!di->flags.fully_charged) {
1220                         if (di->bat_cap.prev_percent >=
1221                             cs->disable_cap_level) {
1222                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1223                                 cs->enable = false;
1224                                 capacity = di->bat_cap.prev_percent;
1225                         } else {
1226                                 dev_dbg(di->dev,
1227                                         "Waiting in cap to level %d%%\n",
1228                                         cs->disable_cap_level);
1229                                 capacity = cs->disable_cap_level;
1230                         }
1231                 }
1232         }
1233
1234         return capacity;
1235 }
1236
1237 /**
1238  * ab8500_fg_update_cap_scalers() - Capacity scaling
1239  * @di:         pointer to the ab8500_fg structure
1240  *
1241  * To be called when state change from charge<->discharge to update
1242  * the capacity scalers.
1243  */
1244 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1245 {
1246         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1247
1248         if (!cs->enable)
1249                 return;
1250         if (di->flags.charging) {
1251                 di->bat_cap.cap_scale.disable_cap_level =
1252                         di->bat_cap.cap_scale.scaled_cap;
1253                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1254                                 di->bat_cap.cap_scale.disable_cap_level);
1255         } else {
1256                 if (cs->scaled_cap != 100) {
1257                         cs->cap_to_scale[0] = cs->scaled_cap;
1258                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1259                 } else {
1260                         cs->cap_to_scale[0] = 100;
1261                         cs->cap_to_scale[1] =
1262                                 max(di->bat_cap.prev_percent,
1263                                     di->bm->fg_params->maint_thres);
1264                 }
1265
1266                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1267                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1268         }
1269 }
1270
1271 /**
1272  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1273  * @di:         pointer to the ab8500_fg structure
1274  * @init:       capacity is allowed to go up in init mode
1275  *
1276  * Check if capacity or capacity limit has changed and notify the system
1277  * about it using the power_supply framework
1278  */
1279 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1280 {
1281         bool changed = false;
1282
1283         di->bat_cap.level = ab8500_fg_capacity_level(di);
1284
1285         if (di->bat_cap.level != di->bat_cap.prev_level) {
1286                 /*
1287                  * We do not allow reported capacity level to go up
1288                  * unless we're charging or if we're in init
1289                  */
1290                 if (!(!di->flags.charging && di->bat_cap.level >
1291                         di->bat_cap.prev_level) || init) {
1292                         dev_dbg(di->dev, "level changed from %d to %d\n",
1293                                 di->bat_cap.prev_level,
1294                                 di->bat_cap.level);
1295                         di->bat_cap.prev_level = di->bat_cap.level;
1296                         changed = true;
1297                 } else {
1298                         dev_dbg(di->dev, "level not allowed to go up "
1299                                 "since no charger is connected: %d to %d\n",
1300                                 di->bat_cap.prev_level,
1301                                 di->bat_cap.level);
1302                 }
1303         }
1304
1305         /*
1306          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1307          * shutdown
1308          */
1309         if (di->flags.low_bat) {
1310                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1311                 di->bat_cap.prev_percent = 0;
1312                 di->bat_cap.permille = 0;
1313                 di->bat_cap.prev_mah = 0;
1314                 di->bat_cap.mah = 0;
1315                 changed = true;
1316         } else if (di->flags.fully_charged) {
1317                 /*
1318                  * We report 100% if algorithm reported fully charged
1319                  * and show 100% during maintenance charging (scaling).
1320                  */
1321                 if (di->flags.force_full) {
1322                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1323                         di->bat_cap.prev_mah = di->bat_cap.mah;
1324
1325                         changed = true;
1326
1327                         if (!di->bat_cap.cap_scale.enable &&
1328                                                 di->bm->capacity_scaling) {
1329                                 di->bat_cap.cap_scale.enable = true;
1330                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1331                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1332                                                 di->bat_cap.prev_percent;
1333                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1334                         }
1335                 } else if ( di->bat_cap.prev_percent !=
1336                         (di->bat_cap.permille) / 10) {
1337                         dev_dbg(di->dev,
1338                                 "battery reported full "
1339                                 "but capacity dropping: %d\n",
1340                                 di->bat_cap.permille / 10);
1341                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1342                         di->bat_cap.prev_mah = di->bat_cap.mah;
1343
1344                         changed = true;
1345                 }
1346         } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1347                 if (di->bat_cap.permille / 10 == 0) {
1348                         /*
1349                          * We will not report 0% unless we've got
1350                          * the LOW_BAT IRQ, no matter what the FG
1351                          * algorithm says.
1352                          */
1353                         di->bat_cap.prev_percent = 1;
1354                         di->bat_cap.permille = 1;
1355                         di->bat_cap.prev_mah = 1;
1356                         di->bat_cap.mah = 1;
1357
1358                         changed = true;
1359                 } else if (!(!di->flags.charging &&
1360                         (di->bat_cap.permille / 10) >
1361                         di->bat_cap.prev_percent) || init) {
1362                         /*
1363                          * We do not allow reported capacity to go up
1364                          * unless we're charging or if we're in init
1365                          */
1366                         dev_dbg(di->dev,
1367                                 "capacity changed from %d to %d (%d)\n",
1368                                 di->bat_cap.prev_percent,
1369                                 di->bat_cap.permille / 10,
1370                                 di->bat_cap.permille);
1371                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1372                         di->bat_cap.prev_mah = di->bat_cap.mah;
1373
1374                         changed = true;
1375                 } else {
1376                         dev_dbg(di->dev, "capacity not allowed to go up since "
1377                                 "no charger is connected: %d to %d (%d)\n",
1378                                 di->bat_cap.prev_percent,
1379                                 di->bat_cap.permille / 10,
1380                                 di->bat_cap.permille);
1381                 }
1382         }
1383
1384         if (changed) {
1385                 if (di->bm->capacity_scaling) {
1386                         di->bat_cap.cap_scale.scaled_cap =
1387                                 ab8500_fg_calculate_scaled_capacity(di);
1388
1389                         dev_info(di->dev, "capacity=%d (%d)\n",
1390                                 di->bat_cap.prev_percent,
1391                                 di->bat_cap.cap_scale.scaled_cap);
1392                 }
1393                 power_supply_changed(&di->fg_psy);
1394                 if (di->flags.fully_charged && di->flags.force_full) {
1395                         dev_dbg(di->dev, "Battery full, notifying.\n");
1396                         di->flags.force_full = false;
1397                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1398                 }
1399                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1400         }
1401 }
1402
1403 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1404         enum ab8500_fg_charge_state new_state)
1405 {
1406         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1407                 di->charge_state,
1408                 charge_state[di->charge_state],
1409                 new_state,
1410                 charge_state[new_state]);
1411
1412         di->charge_state = new_state;
1413 }
1414
1415 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1416         enum ab8500_fg_discharge_state new_state)
1417 {
1418         dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1419                 di->discharge_state,
1420                 discharge_state[di->discharge_state],
1421                 new_state,
1422                 discharge_state[new_state]);
1423
1424         di->discharge_state = new_state;
1425 }
1426
1427 /**
1428  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1429  * @di:         pointer to the ab8500_fg structure
1430  *
1431  * Battery capacity calculation state machine for when we're charging
1432  */
1433 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1434 {
1435         /*
1436          * If we change to discharge mode
1437          * we should start with recovery
1438          */
1439         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1440                 ab8500_fg_discharge_state_to(di,
1441                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1442
1443         switch (di->charge_state) {
1444         case AB8500_FG_CHARGE_INIT:
1445                 di->fg_samples = SEC_TO_SAMPLE(
1446                         di->bm->fg_params->accu_charging);
1447
1448                 ab8500_fg_coulomb_counter(di, true);
1449                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1450
1451                 break;
1452
1453         case AB8500_FG_CHARGE_READOUT:
1454                 /*
1455                  * Read the FG and calculate the new capacity
1456                  */
1457                 mutex_lock(&di->cc_lock);
1458                 if (!di->flags.conv_done && !di->flags.force_full) {
1459                         /* Wasn't the CC IRQ that got us here */
1460                         mutex_unlock(&di->cc_lock);
1461                         dev_dbg(di->dev, "%s CC conv not done\n",
1462                                 __func__);
1463
1464                         break;
1465                 }
1466                 di->flags.conv_done = false;
1467                 mutex_unlock(&di->cc_lock);
1468
1469                 ab8500_fg_calc_cap_charging(di);
1470
1471                 break;
1472
1473         default:
1474                 break;
1475         }
1476
1477         /* Check capacity limits */
1478         ab8500_fg_check_capacity_limits(di, false);
1479 }
1480
1481 static void force_capacity(struct ab8500_fg *di)
1482 {
1483         int cap;
1484
1485         ab8500_fg_clear_cap_samples(di);
1486         cap = di->bat_cap.user_mah;
1487         if (cap > di->bat_cap.max_mah_design) {
1488                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1489                         " %d\n", cap, di->bat_cap.max_mah_design);
1490                 cap = di->bat_cap.max_mah_design;
1491         }
1492         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1493         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1494         di->bat_cap.mah = cap;
1495         ab8500_fg_check_capacity_limits(di, true);
1496 }
1497
1498 static bool check_sysfs_capacity(struct ab8500_fg *di)
1499 {
1500         int cap, lower, upper;
1501         int cap_permille;
1502
1503         cap = di->bat_cap.user_mah;
1504
1505         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1506                 di->bat_cap.user_mah);
1507
1508         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1509         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1510
1511         if (lower < 0)
1512                 lower = 0;
1513         /* 1000 is permille, -> 100 percent */
1514         if (upper > 1000)
1515                 upper = 1000;
1516
1517         dev_dbg(di->dev, "Capacity limits:"
1518                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1519                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1520
1521         /* If within limits, use the saved capacity and exit estimation...*/
1522         if (cap_permille > lower && cap_permille < upper) {
1523                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1524                 force_capacity(di);
1525                 return true;
1526         }
1527         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1528         return false;
1529 }
1530
1531 /**
1532  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1533  * @di:         pointer to the ab8500_fg structure
1534  *
1535  * Battery capacity calculation state machine for when we're discharging
1536  */
1537 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1538 {
1539         int sleep_time;
1540
1541         /* If we change to charge mode we should start with init */
1542         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1543                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1544
1545         switch (di->discharge_state) {
1546         case AB8500_FG_DISCHARGE_INIT:
1547                 /* We use the FG IRQ to work on */
1548                 di->init_cnt = 0;
1549                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1550                 ab8500_fg_coulomb_counter(di, true);
1551                 ab8500_fg_discharge_state_to(di,
1552                         AB8500_FG_DISCHARGE_INITMEASURING);
1553
1554                 /* Intentional fallthrough */
1555         case AB8500_FG_DISCHARGE_INITMEASURING:
1556                 /*
1557                  * Discard a number of samples during startup.
1558                  * After that, use compensated voltage for a few
1559                  * samples to get an initial capacity.
1560                  * Then go to READOUT
1561                  */
1562                 sleep_time = di->bm->fg_params->init_timer;
1563
1564                 /* Discard the first [x] seconds */
1565                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1566                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1567
1568                         ab8500_fg_check_capacity_limits(di, true);
1569                 }
1570
1571                 di->init_cnt += sleep_time;
1572                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1573                         ab8500_fg_discharge_state_to(di,
1574                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1575
1576                 break;
1577
1578         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1579                 di->recovery_cnt = 0;
1580                 di->recovery_needed = true;
1581                 ab8500_fg_discharge_state_to(di,
1582                         AB8500_FG_DISCHARGE_RECOVERY);
1583
1584                 /* Intentional fallthrough */
1585
1586         case AB8500_FG_DISCHARGE_RECOVERY:
1587                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1588
1589                 /*
1590                  * We should check the power consumption
1591                  * If low, go to READOUT (after x min) or
1592                  * RECOVERY_SLEEP if time left.
1593                  * If high, go to READOUT
1594                  */
1595                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1596
1597                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1598                         if (di->recovery_cnt >
1599                                 di->bm->fg_params->recovery_total_time) {
1600                                 di->fg_samples = SEC_TO_SAMPLE(
1601                                         di->bm->fg_params->accu_high_curr);
1602                                 ab8500_fg_coulomb_counter(di, true);
1603                                 ab8500_fg_discharge_state_to(di,
1604                                         AB8500_FG_DISCHARGE_READOUT);
1605                                 di->recovery_needed = false;
1606                         } else {
1607                                 queue_delayed_work(di->fg_wq,
1608                                         &di->fg_periodic_work,
1609                                         sleep_time * HZ);
1610                         }
1611                         di->recovery_cnt += sleep_time;
1612                 } else {
1613                         di->fg_samples = SEC_TO_SAMPLE(
1614                                 di->bm->fg_params->accu_high_curr);
1615                         ab8500_fg_coulomb_counter(di, true);
1616                         ab8500_fg_discharge_state_to(di,
1617                                 AB8500_FG_DISCHARGE_READOUT);
1618                 }
1619                 break;
1620
1621         case AB8500_FG_DISCHARGE_READOUT_INIT:
1622                 di->fg_samples = SEC_TO_SAMPLE(
1623                         di->bm->fg_params->accu_high_curr);
1624                 ab8500_fg_coulomb_counter(di, true);
1625                 ab8500_fg_discharge_state_to(di,
1626                                 AB8500_FG_DISCHARGE_READOUT);
1627                 break;
1628
1629         case AB8500_FG_DISCHARGE_READOUT:
1630                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1631
1632                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1633                         /* Detect mode change */
1634                         if (di->high_curr_mode) {
1635                                 di->high_curr_mode = false;
1636                                 di->high_curr_cnt = 0;
1637                         }
1638
1639                         if (di->recovery_needed) {
1640                                 ab8500_fg_discharge_state_to(di,
1641                                         AB8500_FG_DISCHARGE_RECOVERY);
1642
1643                                 queue_delayed_work(di->fg_wq,
1644                                         &di->fg_periodic_work, 0);
1645
1646                                 break;
1647                         }
1648
1649                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1650                 } else {
1651                         mutex_lock(&di->cc_lock);
1652                         if (!di->flags.conv_done) {
1653                                 /* Wasn't the CC IRQ that got us here */
1654                                 mutex_unlock(&di->cc_lock);
1655                                 dev_dbg(di->dev, "%s CC conv not done\n",
1656                                         __func__);
1657
1658                                 break;
1659                         }
1660                         di->flags.conv_done = false;
1661                         mutex_unlock(&di->cc_lock);
1662
1663                         /* Detect mode change */
1664                         if (!di->high_curr_mode) {
1665                                 di->high_curr_mode = true;
1666                                 di->high_curr_cnt = 0;
1667                         }
1668
1669                         di->high_curr_cnt +=
1670                                 di->bm->fg_params->accu_high_curr;
1671                         if (di->high_curr_cnt >
1672                                 di->bm->fg_params->high_curr_time)
1673                                 di->recovery_needed = true;
1674
1675                         ab8500_fg_calc_cap_discharge_fg(di);
1676                 }
1677
1678                 ab8500_fg_check_capacity_limits(di, false);
1679
1680                 break;
1681
1682         case AB8500_FG_DISCHARGE_WAKEUP:
1683                 ab8500_fg_coulomb_counter(di, true);
1684                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1685
1686                 di->fg_samples = SEC_TO_SAMPLE(
1687                         di->bm->fg_params->accu_high_curr);
1688                 ab8500_fg_coulomb_counter(di, true);
1689                 ab8500_fg_discharge_state_to(di,
1690                                 AB8500_FG_DISCHARGE_READOUT);
1691
1692                 ab8500_fg_check_capacity_limits(di, false);
1693
1694                 break;
1695
1696         default:
1697                 break;
1698         }
1699 }
1700
1701 /**
1702  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1703  * @di:         pointer to the ab8500_fg structure
1704  *
1705  */
1706 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1707 {
1708         int ret;
1709
1710         switch (di->calib_state) {
1711         case AB8500_FG_CALIB_INIT:
1712                 dev_dbg(di->dev, "Calibration ongoing...\n");
1713
1714                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1715                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1716                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1717                 if (ret < 0)
1718                         goto err;
1719
1720                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1721                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1723                 if (ret < 0)
1724                         goto err;
1725                 di->calib_state = AB8500_FG_CALIB_WAIT;
1726                 break;
1727         case AB8500_FG_CALIB_END:
1728                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1729                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1730                         CC_MUXOFFSET, CC_MUXOFFSET);
1731                 if (ret < 0)
1732                         goto err;
1733                 di->flags.calibrate = false;
1734                 dev_dbg(di->dev, "Calibration done...\n");
1735                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1736                 break;
1737         case AB8500_FG_CALIB_WAIT:
1738                 dev_dbg(di->dev, "Calibration WFI\n");
1739         default:
1740                 break;
1741         }
1742         return;
1743 err:
1744         /* Something went wrong, don't calibrate then */
1745         dev_err(di->dev, "failed to calibrate the CC\n");
1746         di->flags.calibrate = false;
1747         di->calib_state = AB8500_FG_CALIB_INIT;
1748         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1749 }
1750
1751 /**
1752  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1753  * @di:         pointer to the ab8500_fg structure
1754  *
1755  * Entry point for the battery capacity calculation state machine
1756  */
1757 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1758 {
1759         if (di->flags.calibrate)
1760                 ab8500_fg_algorithm_calibrate(di);
1761         else {
1762                 if (di->flags.charging)
1763                         ab8500_fg_algorithm_charging(di);
1764                 else
1765                         ab8500_fg_algorithm_discharging(di);
1766         }
1767
1768         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1769                 "%d %d %d %d %d %d %d\n",
1770                 di->bat_cap.max_mah_design,
1771                 di->bat_cap.mah,
1772                 di->bat_cap.permille,
1773                 di->bat_cap.level,
1774                 di->bat_cap.prev_mah,
1775                 di->bat_cap.prev_percent,
1776                 di->bat_cap.prev_level,
1777                 di->vbat,
1778                 di->inst_curr,
1779                 di->avg_curr,
1780                 di->accu_charge,
1781                 di->flags.charging,
1782                 di->charge_state,
1783                 di->discharge_state,
1784                 di->high_curr_mode,
1785                 di->recovery_needed);
1786 }
1787
1788 /**
1789  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1790  * @work:       pointer to the work_struct structure
1791  *
1792  * Work queue function for periodic work
1793  */
1794 static void ab8500_fg_periodic_work(struct work_struct *work)
1795 {
1796         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1797                 fg_periodic_work.work);
1798
1799         if (di->init_capacity) {
1800                 /* Get an initial capacity calculation */
1801                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1802                 ab8500_fg_check_capacity_limits(di, true);
1803                 di->init_capacity = false;
1804
1805                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1806         } else if (di->flags.user_cap) {
1807                 if (check_sysfs_capacity(di)) {
1808                         ab8500_fg_check_capacity_limits(di, true);
1809                         if (di->flags.charging)
1810                                 ab8500_fg_charge_state_to(di,
1811                                         AB8500_FG_CHARGE_INIT);
1812                         else
1813                                 ab8500_fg_discharge_state_to(di,
1814                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1815                 }
1816                 di->flags.user_cap = false;
1817                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1818         } else
1819                 ab8500_fg_algorithm(di);
1820
1821 }
1822
1823 /**
1824  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1825  * @work:       pointer to the work_struct structure
1826  *
1827  * Work queue function for checking the OVV_BAT condition
1828  */
1829 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1830 {
1831         int ret;
1832         u8 reg_value;
1833
1834         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1835                 fg_check_hw_failure_work.work);
1836
1837         /*
1838          * If we have had a battery over-voltage situation,
1839          * check ovv-bit to see if it should be reset.
1840          */
1841         if (di->flags.bat_ovv) {
1842                 ret = abx500_get_register_interruptible(di->dev,
1843                         AB8500_CHARGER, AB8500_CH_STAT_REG,
1844                         &reg_value);
1845                 if (ret < 0) {
1846                         dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1847                         return;
1848                 }
1849                 if ((reg_value & BATT_OVV) != BATT_OVV) {
1850                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1851                         di->flags.bat_ovv = false;
1852                         power_supply_changed(&di->fg_psy);
1853                         return;
1854                 }
1855
1856                 /* Not yet recovered from ovv, reschedule this test */
1857                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1858                                    round_jiffies(HZ));
1859         }
1860 }
1861
1862 /**
1863  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864  * @work:       pointer to the work_struct structure
1865  *
1866  * Work queue function for checking the LOW_BAT condition
1867  */
1868 static void ab8500_fg_low_bat_work(struct work_struct *work)
1869 {
1870         int vbat;
1871
1872         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873                 fg_low_bat_work.work);
1874
1875         vbat = ab8500_fg_bat_voltage(di);
1876
1877         /* Check if LOW_BAT still fulfilled */
1878         if (vbat < di->bm->fg_params->lowbat_threshold) {
1879                 di->flags.low_bat = true;
1880                 dev_warn(di->dev, "Battery voltage still LOW\n");
1881
1882                 /*
1883                  * We need to re-schedule this check to be able to detect
1884                  * if the voltage increases again during charging
1885                  */
1886                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1887                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
1888         } else {
1889                 di->flags.low_bat = false;
1890                 dev_warn(di->dev, "Battery voltage OK again\n");
1891         }
1892
1893         /* This is needed to dispatch LOW_BAT */
1894         ab8500_fg_check_capacity_limits(di, false);
1895
1896         /* Set this flag to check if LOW_BAT IRQ still occurs */
1897         di->flags.low_bat_delay = false;
1898 }
1899
1900 /**
1901  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1902  * to the target voltage.
1903  * @di:       pointer to the ab8500_fg structure
1904  * @target    target voltage
1905  *
1906  * Returns bit pattern closest to the target voltage
1907  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1908  */
1909
1910 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1911 {
1912         if (target > BATT_OK_MIN +
1913                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1914                 return BATT_OK_MAX_NR_INCREMENTS;
1915         if (target < BATT_OK_MIN)
1916                 return 0;
1917         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1918 }
1919
1920 /**
1921  * ab8500_fg_battok_init_hw_register - init battok levels
1922  * @di:       pointer to the ab8500_fg structure
1923  *
1924  */
1925
1926 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1927 {
1928         int selected;
1929         int sel0;
1930         int sel1;
1931         int cbp_sel0;
1932         int cbp_sel1;
1933         int ret;
1934         int new_val;
1935
1936         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1937         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1938
1939         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1940         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1941
1942         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1943
1944         if (selected != sel0)
1945                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1946                         sel0, selected, cbp_sel0);
1947
1948         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1949
1950         if (selected != sel1)
1951                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1952                         sel1, selected, cbp_sel1);
1953
1954         new_val = cbp_sel0 | (cbp_sel1 << 4);
1955
1956         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1957         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1958                 AB8500_BATT_OK_REG, new_val);
1959         return ret;
1960 }
1961
1962 /**
1963  * ab8500_fg_instant_work() - Run the FG state machine instantly
1964  * @work:       pointer to the work_struct structure
1965  *
1966  * Work queue function for instant work
1967  */
1968 static void ab8500_fg_instant_work(struct work_struct *work)
1969 {
1970         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1971
1972         ab8500_fg_algorithm(di);
1973 }
1974
1975 /**
1976  * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1977  * @irq:       interrupt number
1978  * @_di:       pointer to the ab8500_fg structure
1979  *
1980  * Returns IRQ status(IRQ_HANDLED)
1981  */
1982 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1983 {
1984         struct ab8500_fg *di = _di;
1985         if (!di->nbr_cceoc_irq_cnt) {
1986                 di->nbr_cceoc_irq_cnt++;
1987                 complete(&di->ab8500_fg_started);
1988         } else {
1989                 di->nbr_cceoc_irq_cnt = 0;
1990                 complete(&di->ab8500_fg_complete);
1991         }
1992         return IRQ_HANDLED;
1993 }
1994
1995 /**
1996  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1997  * @irq:       interrupt number
1998  * @_di:       pointer to the ab8500_fg structure
1999  *
2000  * Returns IRQ status(IRQ_HANDLED)
2001  */
2002 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2003 {
2004         struct ab8500_fg *di = _di;
2005         di->calib_state = AB8500_FG_CALIB_END;
2006         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2007         return IRQ_HANDLED;
2008 }
2009
2010 /**
2011  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2012  * @irq:       interrupt number
2013  * @_di:       pointer to the ab8500_fg structure
2014  *
2015  * Returns IRQ status(IRQ_HANDLED)
2016  */
2017 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2018 {
2019         struct ab8500_fg *di = _di;
2020
2021         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2022
2023         return IRQ_HANDLED;
2024 }
2025
2026 /**
2027  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2028  * @irq:       interrupt number
2029  * @_di:       pointer to the ab8500_fg structure
2030  *
2031  * Returns IRQ status(IRQ_HANDLED)
2032  */
2033 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2034 {
2035         struct ab8500_fg *di = _di;
2036
2037         dev_dbg(di->dev, "Battery OVV\n");
2038         di->flags.bat_ovv = true;
2039         power_supply_changed(&di->fg_psy);
2040
2041         /* Schedule a new HW failure check */
2042         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2043
2044         return IRQ_HANDLED;
2045 }
2046
2047 /**
2048  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2049  * @irq:       interrupt number
2050  * @_di:       pointer to the ab8500_fg structure
2051  *
2052  * Returns IRQ status(IRQ_HANDLED)
2053  */
2054 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2055 {
2056         struct ab8500_fg *di = _di;
2057
2058         if (!di->flags.low_bat_delay) {
2059                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2060                 di->flags.low_bat_delay = true;
2061                 /*
2062                  * Start a timer to check LOW_BAT again after some time
2063                  * This is done to avoid shutdown on single voltage dips
2064                  */
2065                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2066                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2067         }
2068         return IRQ_HANDLED;
2069 }
2070
2071 /**
2072  * ab8500_fg_get_property() - get the fg properties
2073  * @psy:        pointer to the power_supply structure
2074  * @psp:        pointer to the power_supply_property structure
2075  * @val:        pointer to the power_supply_propval union
2076  *
2077  * This function gets called when an application tries to get the
2078  * fg properties by reading the sysfs files.
2079  * voltage_now:         battery voltage
2080  * current_now:         battery instant current
2081  * current_avg:         battery average current
2082  * charge_full_design:  capacity where battery is considered full
2083  * charge_now:          battery capacity in nAh
2084  * capacity:            capacity in percent
2085  * capacity_level:      capacity level
2086  *
2087  * Returns error code in case of failure else 0 on success
2088  */
2089 static int ab8500_fg_get_property(struct power_supply *psy,
2090         enum power_supply_property psp,
2091         union power_supply_propval *val)
2092 {
2093         struct ab8500_fg *di;
2094
2095         di = to_ab8500_fg_device_info(psy);
2096
2097         /*
2098          * If battery is identified as unknown and charging of unknown
2099          * batteries is disabled, we always report 100% capacity and
2100          * capacity level UNKNOWN, since we can't calculate
2101          * remaining capacity
2102          */
2103
2104         switch (psp) {
2105         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2106                 if (di->flags.bat_ovv)
2107                         val->intval = BATT_OVV_VALUE * 1000;
2108                 else
2109                         val->intval = di->vbat * 1000;
2110                 break;
2111         case POWER_SUPPLY_PROP_CURRENT_NOW:
2112                 val->intval = di->inst_curr * 1000;
2113                 break;
2114         case POWER_SUPPLY_PROP_CURRENT_AVG:
2115                 val->intval = di->avg_curr * 1000;
2116                 break;
2117         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2118                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2119                                 di->bat_cap.max_mah_design);
2120                 break;
2121         case POWER_SUPPLY_PROP_ENERGY_FULL:
2122                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2123                                 di->bat_cap.max_mah);
2124                 break;
2125         case POWER_SUPPLY_PROP_ENERGY_NOW:
2126                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2127                                 di->flags.batt_id_received)
2128                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2129                                         di->bat_cap.max_mah);
2130                 else
2131                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2132                                         di->bat_cap.prev_mah);
2133                 break;
2134         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2135                 val->intval = di->bat_cap.max_mah_design;
2136                 break;
2137         case POWER_SUPPLY_PROP_CHARGE_FULL:
2138                 val->intval = di->bat_cap.max_mah;
2139                 break;
2140         case POWER_SUPPLY_PROP_CHARGE_NOW:
2141                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2142                                 di->flags.batt_id_received)
2143                         val->intval = di->bat_cap.max_mah;
2144                 else
2145                         val->intval = di->bat_cap.prev_mah;
2146                 break;
2147         case POWER_SUPPLY_PROP_CAPACITY:
2148                 if (di->bm->capacity_scaling)
2149                         val->intval = di->bat_cap.cap_scale.scaled_cap;
2150                 else if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2151                                 di->flags.batt_id_received)
2152                         val->intval = 100;
2153                 else
2154                         val->intval = di->bat_cap.prev_percent;
2155                 break;
2156         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2157                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2158                                 di->flags.batt_id_received)
2159                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2160                 else
2161                         val->intval = di->bat_cap.prev_level;
2162                 break;
2163         default:
2164                 return -EINVAL;
2165         }
2166         return 0;
2167 }
2168
2169 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2170 {
2171         struct power_supply *psy;
2172         struct power_supply *ext;
2173         struct ab8500_fg *di;
2174         union power_supply_propval ret;
2175         int i, j;
2176         bool psy_found = false;
2177
2178         psy = (struct power_supply *)data;
2179         ext = dev_get_drvdata(dev);
2180         di = to_ab8500_fg_device_info(psy);
2181
2182         /*
2183          * For all psy where the name of your driver
2184          * appears in any supplied_to
2185          */
2186         for (i = 0; i < ext->num_supplicants; i++) {
2187                 if (!strcmp(ext->supplied_to[i], psy->name))
2188                         psy_found = true;
2189         }
2190
2191         if (!psy_found)
2192                 return 0;
2193
2194         /* Go through all properties for the psy */
2195         for (j = 0; j < ext->num_properties; j++) {
2196                 enum power_supply_property prop;
2197                 prop = ext->properties[j];
2198
2199                 if (ext->get_property(ext, prop, &ret))
2200                         continue;
2201
2202                 switch (prop) {
2203                 case POWER_SUPPLY_PROP_STATUS:
2204                         switch (ext->type) {
2205                         case POWER_SUPPLY_TYPE_BATTERY:
2206                                 switch (ret.intval) {
2207                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2208                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2209                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2210                                         if (!di->flags.charging)
2211                                                 break;
2212                                         di->flags.charging = false;
2213                                         di->flags.fully_charged = false;
2214                                         if (di->bm->capacity_scaling)
2215                                                 ab8500_fg_update_cap_scalers(di);
2216                                         queue_work(di->fg_wq, &di->fg_work);
2217                                         break;
2218                                 case POWER_SUPPLY_STATUS_FULL:
2219                                         if (di->flags.fully_charged)
2220                                                 break;
2221                                         di->flags.fully_charged = true;
2222                                         di->flags.force_full = true;
2223                                         /* Save current capacity as maximum */
2224                                         di->bat_cap.max_mah = di->bat_cap.mah;
2225                                         queue_work(di->fg_wq, &di->fg_work);
2226                                         break;
2227                                 case POWER_SUPPLY_STATUS_CHARGING:
2228                                         if (di->flags.charging &&
2229                                                 !di->flags.fully_charged)
2230                                                 break;
2231                                         di->flags.charging = true;
2232                                         di->flags.fully_charged = false;
2233                                         if (di->bm->capacity_scaling)
2234                                                 ab8500_fg_update_cap_scalers(di);
2235                                         queue_work(di->fg_wq, &di->fg_work);
2236                                         break;
2237                                 };
2238                         default:
2239                                 break;
2240                         };
2241                         break;
2242                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2243                         switch (ext->type) {
2244                         case POWER_SUPPLY_TYPE_BATTERY:
2245                                 if (!di->flags.batt_id_received) {
2246                                         const struct abx500_battery_type *b;
2247
2248                                         b = &(di->bm->bat_type[di->bm->batt_id]);
2249
2250                                         di->flags.batt_id_received = true;
2251
2252                                         di->bat_cap.max_mah_design =
2253                                                 MILLI_TO_MICRO *
2254                                                 b->charge_full_design;
2255
2256                                         di->bat_cap.max_mah =
2257                                                 di->bat_cap.max_mah_design;
2258
2259                                         di->vbat_nom = b->nominal_voltage;
2260                                 }
2261
2262                                 if (ret.intval)
2263                                         di->flags.batt_unknown = false;
2264                                 else
2265                                         di->flags.batt_unknown = true;
2266                                 break;
2267                         default:
2268                                 break;
2269                         }
2270                         break;
2271                 case POWER_SUPPLY_PROP_TEMP:
2272                         switch (ext->type) {
2273                         case POWER_SUPPLY_TYPE_BATTERY:
2274                                 if (di->flags.batt_id_received)
2275                                         di->bat_temp = ret.intval;
2276                                 break;
2277                         default:
2278                                 break;
2279                         }
2280                         break;
2281                 default:
2282                         break;
2283                 }
2284         }
2285         return 0;
2286 }
2287
2288 /**
2289  * ab8500_fg_init_hw_registers() - Set up FG related registers
2290  * @di:         pointer to the ab8500_fg structure
2291  *
2292  * Set up battery OVV, low battery voltage registers
2293  */
2294 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2295 {
2296         int ret;
2297
2298         /* Set VBAT OVV threshold */
2299         ret = abx500_mask_and_set_register_interruptible(di->dev,
2300                 AB8500_CHARGER,
2301                 AB8500_BATT_OVV,
2302                 BATT_OVV_TH_4P75,
2303                 BATT_OVV_TH_4P75);
2304         if (ret) {
2305                 dev_err(di->dev, "failed to set BATT_OVV\n");
2306                 goto out;
2307         }
2308
2309         /* Enable VBAT OVV detection */
2310         ret = abx500_mask_and_set_register_interruptible(di->dev,
2311                 AB8500_CHARGER,
2312                 AB8500_BATT_OVV,
2313                 BATT_OVV_ENA,
2314                 BATT_OVV_ENA);
2315         if (ret) {
2316                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2317                 goto out;
2318         }
2319
2320         /* Low Battery Voltage */
2321         ret = abx500_set_register_interruptible(di->dev,
2322                 AB8500_SYS_CTRL2_BLOCK,
2323                 AB8500_LOW_BAT_REG,
2324                 ab8500_volt_to_regval(
2325                         di->bm->fg_params->lowbat_threshold) << 1 |
2326                 LOW_BAT_ENABLE);
2327         if (ret) {
2328                 dev_err(di->dev, "%s write failed\n", __func__);
2329                 goto out;
2330         }
2331
2332         /* Battery OK threshold */
2333         ret = ab8500_fg_battok_init_hw_register(di);
2334         if (ret) {
2335                 dev_err(di->dev, "BattOk init write failed.\n");
2336                 goto out;
2337         }
2338 out:
2339         return ret;
2340 }
2341
2342 /**
2343  * ab8500_fg_external_power_changed() - callback for power supply changes
2344  * @psy:       pointer to the structure power_supply
2345  *
2346  * This function is the entry point of the pointer external_power_changed
2347  * of the structure power_supply.
2348  * This function gets executed when there is a change in any external power
2349  * supply that this driver needs to be notified of.
2350  */
2351 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2352 {
2353         struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2354
2355         class_for_each_device(power_supply_class, NULL,
2356                 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2357 }
2358
2359 /**
2360  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2361  * @work:       pointer to the work_struct structure
2362  *
2363  * Used to reset the current battery capacity to be able to
2364  * retrigger a new voltage base capacity calculation. For
2365  * test and verification purpose.
2366  */
2367 static void ab8500_fg_reinit_work(struct work_struct *work)
2368 {
2369         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2370                 fg_reinit_work.work);
2371
2372         if (di->flags.calibrate == false) {
2373                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2374                 ab8500_fg_clear_cap_samples(di);
2375                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2376                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2377                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2378                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2379
2380         } else {
2381                 dev_err(di->dev, "Residual offset calibration ongoing "
2382                         "retrying..\n");
2383                 /* Wait one second until next try*/
2384                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2385                         round_jiffies(1));
2386         }
2387 }
2388
2389 /**
2390  * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2391  *
2392  * This function can be used to force the FG algorithm to recalculate a new
2393  * voltage based battery capacity.
2394  */
2395 void ab8500_fg_reinit(void)
2396 {
2397         struct ab8500_fg *di = ab8500_fg_get();
2398         /* User won't be notified if a null pointer returned. */
2399         if (di != NULL)
2400                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2401 }
2402
2403 /* Exposure to the sysfs interface */
2404
2405 struct ab8500_fg_sysfs_entry {
2406         struct attribute attr;
2407         ssize_t (*show)(struct ab8500_fg *, char *);
2408         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2409 };
2410
2411 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2412 {
2413         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2414 }
2415
2416 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2417                                  size_t count)
2418 {
2419         unsigned long charge_full;
2420         ssize_t ret = -EINVAL;
2421
2422         ret = strict_strtoul(buf, 10, &charge_full);
2423
2424         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2425
2426         if (!ret) {
2427                 di->bat_cap.max_mah = (int) charge_full;
2428                 ret = count;
2429         }
2430         return ret;
2431 }
2432
2433 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2434 {
2435         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2436 }
2437
2438 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2439                                  size_t count)
2440 {
2441         unsigned long charge_now;
2442         ssize_t ret;
2443
2444         ret = strict_strtoul(buf, 10, &charge_now);
2445
2446         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2447                 ret, charge_now, di->bat_cap.prev_mah);
2448
2449         if (!ret) {
2450                 di->bat_cap.user_mah = (int) charge_now;
2451                 di->flags.user_cap = true;
2452                 ret = count;
2453                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2454         }
2455         return ret;
2456 }
2457
2458 static struct ab8500_fg_sysfs_entry charge_full_attr =
2459         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2460
2461 static struct ab8500_fg_sysfs_entry charge_now_attr =
2462         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2463
2464 static ssize_t
2465 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2466 {
2467         struct ab8500_fg_sysfs_entry *entry;
2468         struct ab8500_fg *di;
2469
2470         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2471         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2472
2473         if (!entry->show)
2474                 return -EIO;
2475
2476         return entry->show(di, buf);
2477 }
2478 static ssize_t
2479 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2480                 size_t count)
2481 {
2482         struct ab8500_fg_sysfs_entry *entry;
2483         struct ab8500_fg *di;
2484
2485         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2486         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2487
2488         if (!entry->store)
2489                 return -EIO;
2490
2491         return entry->store(di, buf, count);
2492 }
2493
2494 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2495         .show = ab8500_fg_show,
2496         .store = ab8500_fg_store,
2497 };
2498
2499 static struct attribute *ab8500_fg_attrs[] = {
2500         &charge_full_attr.attr,
2501         &charge_now_attr.attr,
2502         NULL,
2503 };
2504
2505 static struct kobj_type ab8500_fg_ktype = {
2506         .sysfs_ops = &ab8500_fg_sysfs_ops,
2507         .default_attrs = ab8500_fg_attrs,
2508 };
2509
2510 /**
2511  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2512  * @di:                pointer to the struct ab8500_chargalg
2513  *
2514  * This function removes the entry in sysfs.
2515  */
2516 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2517 {
2518         kobject_del(&di->fg_kobject);
2519 }
2520
2521 /**
2522  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2523  * @di:                pointer to the struct ab8500_chargalg
2524  *
2525  * This function adds an entry in sysfs.
2526  * Returns error code in case of failure else 0(on success)
2527  */
2528 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2529 {
2530         int ret = 0;
2531
2532         ret = kobject_init_and_add(&di->fg_kobject,
2533                 &ab8500_fg_ktype,
2534                 NULL, "battery");
2535         if (ret < 0)
2536                 dev_err(di->dev, "failed to create sysfs entry\n");
2537
2538         return ret;
2539 }
2540 /* Exposure to the sysfs interface <<END>> */
2541
2542 #if defined(CONFIG_PM)
2543 static int ab8500_fg_resume(struct platform_device *pdev)
2544 {
2545         struct ab8500_fg *di = platform_get_drvdata(pdev);
2546
2547         /*
2548          * Change state if we're not charging. If we're charging we will wake
2549          * up on the FG IRQ
2550          */
2551         if (!di->flags.charging) {
2552                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2553                 queue_work(di->fg_wq, &di->fg_work);
2554         }
2555
2556         return 0;
2557 }
2558
2559 static int ab8500_fg_suspend(struct platform_device *pdev,
2560         pm_message_t state)
2561 {
2562         struct ab8500_fg *di = platform_get_drvdata(pdev);
2563
2564         flush_delayed_work(&di->fg_periodic_work);
2565
2566         /*
2567          * If the FG is enabled we will disable it before going to suspend
2568          * only if we're not charging
2569          */
2570         if (di->flags.fg_enabled && !di->flags.charging)
2571                 ab8500_fg_coulomb_counter(di, false);
2572
2573         return 0;
2574 }
2575 #else
2576 #define ab8500_fg_suspend      NULL
2577 #define ab8500_fg_resume       NULL
2578 #endif
2579
2580 static int ab8500_fg_remove(struct platform_device *pdev)
2581 {
2582         int ret = 0;
2583         struct ab8500_fg *di = platform_get_drvdata(pdev);
2584
2585         list_del(&di->node);
2586
2587         /* Disable coulomb counter */
2588         ret = ab8500_fg_coulomb_counter(di, false);
2589         if (ret)
2590                 dev_err(di->dev, "failed to disable coulomb counter\n");
2591
2592         destroy_workqueue(di->fg_wq);
2593         ab8500_fg_sysfs_exit(di);
2594
2595         flush_scheduled_work();
2596         power_supply_unregister(&di->fg_psy);
2597         platform_set_drvdata(pdev, NULL);
2598         return ret;
2599 }
2600
2601 /* ab8500 fg driver interrupts and their respective isr */
2602 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2603         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2604         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2605         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2606         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2607         {"CCEOC", ab8500_fg_cc_data_end_handler},
2608 };
2609
2610 static char *supply_interface[] = {
2611         "ab8500_chargalg",
2612         "ab8500_usb",
2613 };
2614
2615 static int ab8500_fg_probe(struct platform_device *pdev)
2616 {
2617         struct device_node *np = pdev->dev.of_node;
2618         struct abx500_bm_data *plat = pdev->dev.platform_data;
2619         struct ab8500_fg *di;
2620         int i, irq;
2621         int ret = 0;
2622
2623         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2624         if (!di) {
2625                 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
2626                 return -ENOMEM;
2627         }
2628
2629         if (!plat) {
2630                 dev_err(&pdev->dev, "no battery management data supplied\n");
2631                 return -EINVAL;
2632         }
2633         di->bm = plat;
2634
2635         if (np) {
2636                 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
2637                 if (ret) {
2638                         dev_err(&pdev->dev, "failed to get battery information\n");
2639                         return ret;
2640                 }
2641         }
2642
2643         mutex_init(&di->cc_lock);
2644
2645         /* get parent data */
2646         di->dev = &pdev->dev;
2647         di->parent = dev_get_drvdata(pdev->dev.parent);
2648         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2649
2650         di->fg_psy.name = "ab8500_fg";
2651         di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2652         di->fg_psy.properties = ab8500_fg_props;
2653         di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2654         di->fg_psy.get_property = ab8500_fg_get_property;
2655         di->fg_psy.supplied_to = supply_interface;
2656         di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
2657         di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2658
2659         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2660                 di->bm->bat_type[di->bm->batt_id].charge_full_design;
2661
2662         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2663
2664         di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
2665
2666         di->init_capacity = true;
2667
2668         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2669         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2670
2671         /* Create a work queue for running the FG algorithm */
2672         di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2673         if (di->fg_wq == NULL) {
2674                 dev_err(di->dev, "failed to create work queue\n");
2675                 return -ENOMEM;
2676         }
2677
2678         /* Init work for running the fg algorithm instantly */
2679         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2680
2681         /* Init work for getting the battery accumulated current */
2682         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2683
2684         /* Init work for reinitialising the fg algorithm */
2685         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
2686                 ab8500_fg_reinit_work);
2687
2688         /* Work delayed Queue to run the state machine */
2689         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
2690                 ab8500_fg_periodic_work);
2691
2692         /* Work to check low battery condition */
2693         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
2694                 ab8500_fg_low_bat_work);
2695
2696         /* Init work for HW failure check */
2697         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
2698                 ab8500_fg_check_hw_failure_work);
2699
2700         /* Initialize OVV, and other registers */
2701         ret = ab8500_fg_init_hw_registers(di);
2702         if (ret) {
2703                 dev_err(di->dev, "failed to initialize registers\n");
2704                 goto free_inst_curr_wq;
2705         }
2706
2707         /* Consider battery unknown until we're informed otherwise */
2708         di->flags.batt_unknown = true;
2709         di->flags.batt_id_received = false;
2710
2711         /* Register FG power supply class */
2712         ret = power_supply_register(di->dev, &di->fg_psy);
2713         if (ret) {
2714                 dev_err(di->dev, "failed to register FG psy\n");
2715                 goto free_inst_curr_wq;
2716         }
2717
2718         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
2719         ab8500_fg_coulomb_counter(di, true);
2720
2721         /*
2722          * Initialize completion used to notify completion and start
2723          * of inst current
2724          */
2725         init_completion(&di->ab8500_fg_started);
2726         init_completion(&di->ab8500_fg_complete);
2727
2728         /* Register interrupts */
2729         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2730                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2731                 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2732                         IRQF_SHARED | IRQF_NO_SUSPEND,
2733                         ab8500_fg_irq[i].name, di);
2734
2735                 if (ret != 0) {
2736                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2737                                 , ab8500_fg_irq[i].name, irq, ret);
2738                         goto free_irq;
2739                 }
2740                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2741                         ab8500_fg_irq[i].name, irq, ret);
2742         }
2743         di->irq = platform_get_irq_byname(pdev, "CCEOC");
2744         disable_irq(di->irq);
2745         di->nbr_cceoc_irq_cnt = 0;
2746
2747         platform_set_drvdata(pdev, di);
2748
2749         ret = ab8500_fg_sysfs_init(di);
2750         if (ret) {
2751                 dev_err(di->dev, "failed to create sysfs entry\n");
2752                 goto free_irq;
2753         }
2754
2755         /* Calibrate the fg first time */
2756         di->flags.calibrate = true;
2757         di->calib_state = AB8500_FG_CALIB_INIT;
2758
2759         /* Use room temp as default value until we get an update from driver. */
2760         di->bat_temp = 210;
2761
2762         /* Run the FG algorithm */
2763         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2764
2765         list_add_tail(&di->node, &ab8500_fg_list);
2766
2767         return ret;
2768
2769 free_irq:
2770         power_supply_unregister(&di->fg_psy);
2771
2772         /* We also have to free all successfully registered irqs */
2773         for (i = i - 1; i >= 0; i--) {
2774                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2775                 free_irq(irq, di);
2776         }
2777 free_inst_curr_wq:
2778         destroy_workqueue(di->fg_wq);
2779         return ret;
2780 }
2781
2782 static const struct of_device_id ab8500_fg_match[] = {
2783         { .compatible = "stericsson,ab8500-fg", },
2784         { },
2785 };
2786
2787 static struct platform_driver ab8500_fg_driver = {
2788         .probe = ab8500_fg_probe,
2789         .remove = ab8500_fg_remove,
2790         .suspend = ab8500_fg_suspend,
2791         .resume = ab8500_fg_resume,
2792         .driver = {
2793                 .name = "ab8500-fg",
2794                 .owner = THIS_MODULE,
2795                 .of_match_table = ab8500_fg_match,
2796         },
2797 };
2798
2799 static int __init ab8500_fg_init(void)
2800 {
2801         return platform_driver_register(&ab8500_fg_driver);
2802 }
2803
2804 static void __exit ab8500_fg_exit(void)
2805 {
2806         platform_driver_unregister(&ab8500_fg_driver);
2807 }
2808
2809 subsys_initcall_sync(ab8500_fg_init);
2810 module_exit(ab8500_fg_exit);
2811
2812 MODULE_LICENSE("GPL v2");
2813 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2814 MODULE_ALIAS("platform:ab8500-fg");
2815 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");